

Nadir- and elevation-dependent GNSS group delay variations

Lambert Wanninger Hael Sumaya Susanne Beer


Geodetic Institute, TU Dresden

IAG Com. 4 Symp.: Positioning and Applications, Wroclaw, 4.-7. Sept. 2016

GNSS Group Delay Variations (GDV)

GPS SVN49

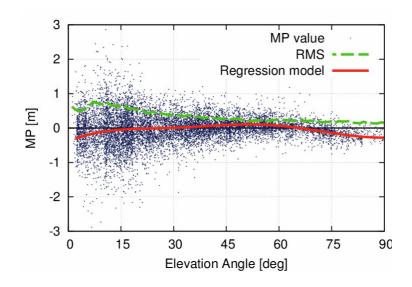
- 1st GPS SV with L5 payload
- launched in 2009
- satellite-internal multipath
 - → mainly affects code
 - → elevation-dependent errors
- never entered service,
 but still transmits occasionally

How to detect/model GDV?

Code Multipath Observable: MP [m]

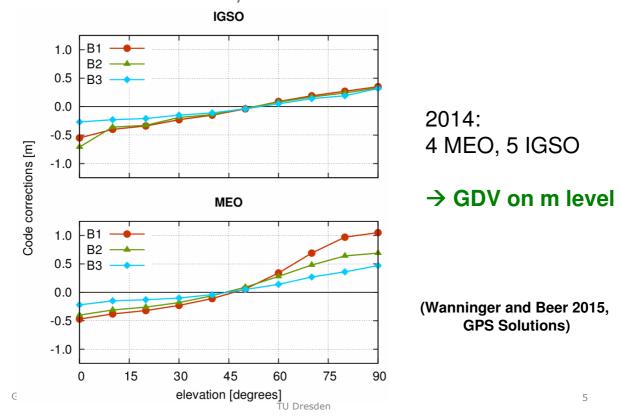
$$MP_i = C_i + (m_{ij} - 1) \cdot \Phi_i - m_{ij} \cdot \Phi_j - B$$

Linear Combination of:

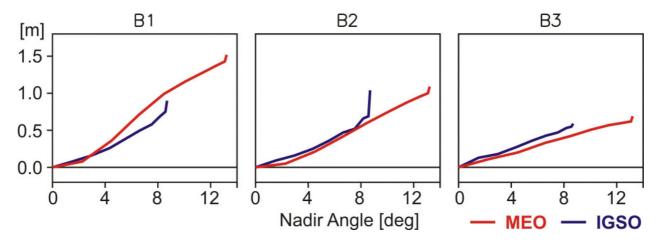

- single-frequency code C_i
- dual-frequency phase Φ_i , Φ_i
- bias term (ambiguities, constant delays) B
- frequency-dependent factor m_{ij}

Free of effects from: orbits, position, clocks, refraction But: code multipath

GNSS Group Delay Variations

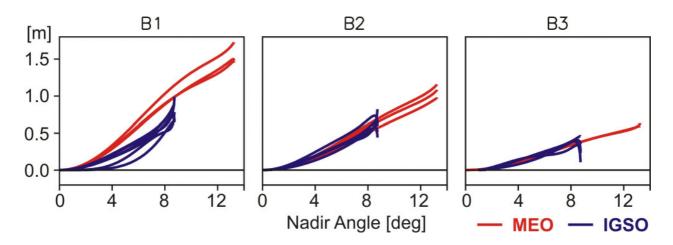

Geodetic Institute TU Dresden 3

How to detect/model GDV?



Regression Model: Calibration of code variations with respect to carrier-phases

Satellites: BDS GDV, 2014



Satellites: BDS GDV, 2014

2014: 4 MEO, 5 IGSO orbit type specific correction

Satellites: BDS GDV, 2016

2016: 3 MEO, 6 IGSO satellite individual corrections

GNSS Group Delay Variations

Geodetic Institute TU Dresden

7

Satellites: smaller GDV for all other GNSS

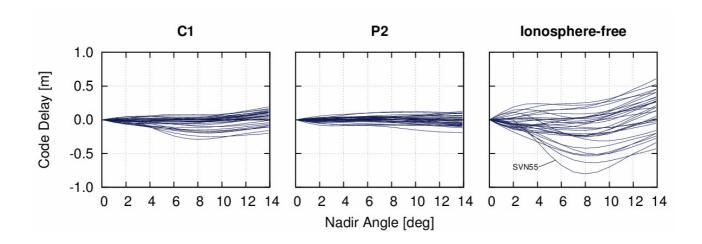
Challenges

- code multipath
 - → low-pass filtering, many different stations
- dependence on tracking channel characteristics ?
 - → (receiver selection,) majority voting, averaging
- code/phase, frequency-dependent properties
 - → common reference point at antennas
 - → phase wind-up
- separation sat. ant. from rec. ant.
 - (→ absolute calibration values for receiving antennas)
 - → reference antenna type

Separation of GPS satellite and receiver GDV

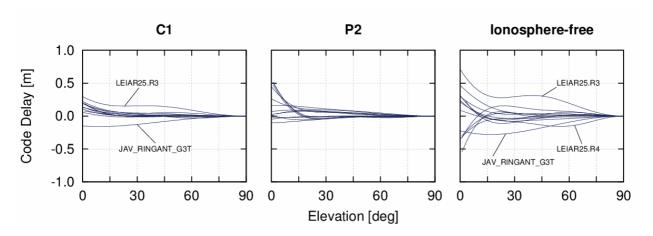
Set of reference antennas, Dorne-Margolin type:

AOAD/M_T TRM29659.00 LEIAT504 (GG) ASH700936D_M


- → Satellite GDV refer to this set of receiving antennas
- → All receiving antenna GDV refer to this set of antennas

GNSS Group Delay Variations

Geodetic Institute TU Dresden


9

Results for 31 GPS satellites, 2015

→ GPS GDV: smaller as those of BDS by factor of ~10

Results for 13 receiving antenna types, GPS only

→ GDV of 3 receiving antennas differ significantly from the other geodetic antennas:

JAV_RINGANT_G3T LEIAR25.R3 LEIAR25.R4

GNSS Group Delay Variations

Geodetic Institute TU Dresden

11

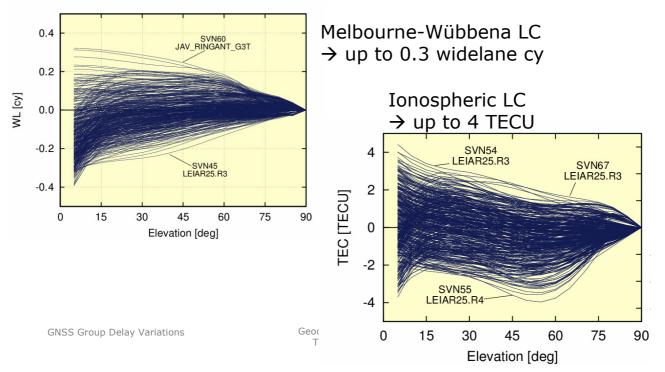
Application of GDV corrections

Not necessary for code-based positioning.

But it improves results of ... PPP-Widelane ambiguity fixing

dual-frequency code/phase Melbourne-Wübbena

Iono.-free single-frequency PPP


L1 single-frequency code/phase

TEC determination

with dual-frequency code

Combined GPS satellite/receiver antenna GDV

31 SV x 13 antenna types = 403 correction data sets

Summary, Conclusions

GNSS Group Delay Variations (GDV)

- determined from MP linear combinations of reference stations observations
- large GDV for 2nd generation BDS (and GPS SVN49)
- some receiving antenna types differ significantly from other geodetic antennas

Corrections should be applied wherever code is used for precise applications