
The Potential of Diffusive Load Balancing at Large Scale

Matthias Lieber
TU Dresden

01062 Dresden, Germany
matthias.lieber@tu-

dresden.de

Kerstin Gößner
TU Dresden

01062 Dresden, Germany
kerstin.goessner@tu-

dresden.de

Wolfgang E. Nagel
TU Dresden

01062 Dresden, Germany
wolfgang.nagel@tu-

dresden.de

ABSTRACT
Dynamic load balancing with diffusive methods is known
to provide minimal load transfer and requires communica-
tion between neighbor nodes only. These are very attractive
properties for highly parallel systems. We compare diffusive
methods with state-of-the-art geometrical and graph-based
partitioning methods on thousands of nodes. When load bal-
ancing overheads, i. e. repartitioning computation time and
migration, have to be minimized, diffusive methods provide
substantial benefits.
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1. INTRODUCTION
Load balance is one important challenge for HPC applica-

tions that use tens of thousands or even – in future Exascale
systems – millions of computing nodes [8, 13]. Many scien-
tific applications exhibit dynamic workload variations, e. g.
due to adaptivity in time and/or space. Additionally, hard-
ware variability is expected to increase [13]. Thus, dynamic
load balancing is required that reacts to the variations and
repartitions the application to minimize idling at synchro-
nization points while keeping the edge-cut low. Ideally, a
load balancing scheme would also cause little overhead such
that it can be called frequently. Overheads are caused by
the computing time of the method itself and by the amount
of resulting task migration.

Motivation: Various different methods for repartition-
ing have been developed [17]. They can be categorized into
geometrical methods that use coordinates of computational
tasks to partition them and graph-based methods that use
topological information of the tasks. Centralized reparti-
tioners will clearly fail for highly parallel applications. How-
ever, even most of the parallel methods require at least some
global communication, which hinders their scalability. In
previous work [12] we developed a hierarchical geometrical
method based on space-filling curves (SFCs) that performs
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only little global communication and demonstrated a very
good scalability. However, the amount of migration is very
high, which is typical for SFC-based partitioning. A fully
distributed algorithm based on gossip is presented by Menon
and Kalé [14]. It is fast and scales very well, but it does not
take the edge-cut into account.

Contribution: In this paper we practically evaluate the
potential of diffusive load balancing algorithms, which have
been mainly developed in the 1990s, for large-scale dynamic
load balancing. To the best of our knowledge, publications
about the application of diffusive load balancing in HPC are
very rare [7, 18], especially in the recent years.1 In this
work we compare the relevant performance metrics (load
balance, run time, migration, edge-cut) of five different diffu-
sive schemes with four other load balancing methods (SFC,
recursive bisection, ParMetis, and hierarchical SFC) and
demonstrate that there are no reasons not to use diffusive
schemes. Especially when load balancing overhead matters,
they provide substantial benefits.

2. DIFFUSIVE LOAD BALANCING
Diffusive load balancing operates on an undirected, con-

nected graph G = (V,E) of computing nodes, usually de-
fined by the network topology. In several iterations, nodes
balance a load value with their neighbors Nv and eventually
the algorithm converges to global balance. In this way each
node creates a load transfer vector for all its neighbors. In
a second step, called task selection, local tasks are selected
for migration to satisfy the load transfers.

Original diffusion (OD): In the original algorithm [6],
each node v updates its load lv per iteration i according to:

li+1
v = liv +

∑
w∈Nv

αvw(liw − liv)

where αvw is the diffusion parameter. The optimal value
depends on the topology of G.

Second-order diffusion (SO): The second-order algo-
rithm [15] extends OD such that the previous iteration’s
transfer influences the current. The parameter β ∈ (0, 2)
controls the influence. Optimal values are derived in [9].

Improved diffusion (ID): In this algorithm, also called
CHEBY [10], the update rule depends on the iteration i
and its parameters are derived from the smallest and largest
positive eigenvalues of the weighted Laplacian matrix of G.
Their computation is required only once if G is fixed.

1One exception is their use in popular multilevel graph par-
titioners such as ParMetis [16], but here they are embedded
into a much more complex method.
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Figure 1: Visualization of the LWFA scenario’s load
distribution on a slice through the center of the 3D
mesh. The load is shown relative to the average.

Chemotaxis-inspired diffusion (CT): The biologically
inspired algorithm [5] extends OD by additionally exchang-
ing a so-called signal. It is the difference of lv and the capac-
ity (target node load) and guides the load diffusion. CT re-
quires an initial collective communication to determine the
capacity and twice the number of messages per iteration
compared to the previous methods.

Dimension exchange (DE): The dimension exchange
algorithm [19] does not build on OD and, in a strict sense, is
not a diffusion method. The main difference is that the cur-
rent load is updated immediately before exchanging with the
next neighbor, which allows load to flow faster. This requires
proper scheduling of communication, which is straightfor-
ward on regular graphs such as meshes. However, due to
more frequent synchronization, a single iteration may take
longer compared to OD, SO, and ID.

Task selection: After load transfers have been com-
puted, migrating tasks need to be selected to create a bal-
anced partitioning. Typically tasks are communicating and
thus form a graph that should be respected to reduce the
amount of edges crossing partition borders. Like diffusion,
task selection is usually implemented such that only neigh-
bors communicate, if necessary, in several passes [7, 18].

3. BENCHMARK PROGRAM
We implemented the diffusive load balancing methods in-

troduced in Sec. 2 in an MPI-based benchmark program. All
three test scenarios consist of a 3D mesh of weighted tasks
to be mapped onto a 3D mesh of nodes of size k1 × k2 × k3.

Artificial scenarios: The POINT and BOX scenarios
define a region of overloaded nodes that lead to a load bal-
ance of avg(lv)/max(lv) = 0.9. In POINT, only a single
node at ki/2 is overloaded, whereas in BOX a rectangular
subset of nodes of size ki/2 + 1 around ki/2 for each dimen-
sion i ∈ {1, 2, 3} is equally overloaded. Initially each node
owns 8× 8× 8 = 512 tasks of equal load.

Real application scenario: We use recorded workload
data of a laser wakefield acceleration (LWFA) simulation
with the open source particle-in-cell code PIConGPU [3, 4],
shown in Fig. 1. We partitioned the grid of 64 × 512 × 32
tasks into 16 × 16 × 8 equally sized rectangular partitions
leading to a load balance of 0.82 for the selected time step.

Diffusion implementation: Except for DE, the com-
munication is implemented with persistent messages. Inde-
pendent of the actual number of neighbors, three MPI func-
tions are called per iteration: MPI Startall, MPI Waitall
(recv), MPI Waitall (send). Each message is 8 byte. We use
optimal diffusion parameters for 3D meshes [19] in OD, SO,
and CT (α = 1/6) and also in DE (α = (1+sin(π/kmax))−1).
For SO we choose β = 1.8, which turned out to be ro-
bust for all our configurations (we observed that the opti-
mal β depends on the termination criterion, scenario, node

count, and topology). For the signal diffusion in CT we use
αsig = 1/max(degs, degr) where degs and degr are the node
degrees of sender and receiver, respectively.

Task selection: We implemented a simple task selection
scheme that, for each neighbor separately, iteratively selects
tasks that lead to the highest edge-cut gain (or lowest loss)
until the load transfer is satisfied. Only one pass is executed,
i. e. tasks do not hop across nodes. The only communica-
tion involved is sending the result to the neighbors. The
complexity depends on the number of neighbors and local
tasks, but not on the total number of nodes.

Non-diffusive methods: We included the geometrical
methods recursive bisection (RCB) and Hilbert space-filling
curves (HSFC) as well as graph partitioning with ParMetis’
AdaptiveRepart [16] routine using the Zoltan load balancing
library [1, 2] into the benchmark. Additionally, we ran our
hierarchical SFC-based method (Hier SFC) that we imple-
mented in the FD4 library [11, 12]. Note that these methods
do not take the 3D mesh topology of the nodes into account.

HPC systems: We performed measurements on two
Petaflop-class HPC systems: The IBM Blue Gene/Q system
Juqueen (16 cores/node, PowerPC A2, 5D torus network,
BGQ driver V1R2M4) and the Bull HPC cluster Taurus (24
cores/node, Intel Xeon E5 2860v3, Infiniband FDR fat tree,
Intel MPI 5.1.3). On Juqueen, we embedded the bench-
mark’s 3D node mesh into the 5D torus by two times fold-
ing one dimension into two (or two dimensions into three),
which leads to a mapping where all neighbors in the 3D mesh
are also neighbors in the hardware network. Except for the
last experiment, we use one process per Juqueen node. Note
that we do not take the hardware topology on Taurus into
account and always use all 24 cores per hardware node.

Performance metrics: We report the max. run time
of the load balancing algorithm among all processes. For dif-
fusive methods, we additionally report the iteration count
until our termination criterion avg(lv)/max(lv) = 0.999 for
the virtual load is reached. After an initial run to determine
the number of iterations, we run (without checking the cri-
terion) 61 repetitions on Taurus (19 on Juqueen, where we
observed nearly no variation) and report the median run
time. For ID, we do not include the eigenvalue calculation
in the run times. With TransferMax we indicate the max-
imum load transfer between any two nodes relative to the
average load avg(lv), whereas TransferTot denotes the sum
of all load transfers relative to the total load Σlv.

Performance metrics that include task selection:
We report the remaining load imbalance after task selec-
tion as max(li)/avg(li)−1, where 0 implies perfect balance.
With MigrationMax we indicate the maximum number
of tasks a node sends and receives. MigrationTot denotes
the total number of migrated tasks relative to the total num-
ber of tasks in the mesh. The edge-cut, i. e. the number of
edges in the task mesh cut by partition borders, is measured
as the maximum among all nodes EdgeCutMax and the
total amount EdgeCutTot relative to all edges.

4. RESULTS
Influence of scenario: Fig. 2 shows results for 2048

nodes arranged in a 16 × 16 × 8 mesh. In all cases, the
task mesh consists of 1 048 576 tasks. Looking at the diffu-
sion methods first, we can generally summarize w. r. t. iter-
ations, run time, migration, and edge-cut that the POINT
scenario induces the lowest costs and the LWFA scenario the
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Figure 2: Performance of diffusive algorithms and the hierarchical SFC-based method (upper part) compared
to Zoltan methods (lower part) on a mesh of 16×16×8 = 2048 nodes. The three bars per method show metrics
for the POINT (top), BOX (middle), and LWFA (bottom) scenarios. Notes: Scales for the Zoltan and diffusion
metrics are the same except for the Taurus run times. Run time for diffusive methods is split up in diffusion
(blue/left part) and task selection (brown/right part). Error bars denote 25/75 percentiles of total run time.
Skipped runs on Juqueen are marked with a cross.
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Figure 3: Scalability of diffusive algorithms and the hierarchical SFC-based method (upper part) compared
to Zoltan methods (lower part) for the BOX scenario. The four bars per method show metrics for 1024 (top),
2048, 4096, and 8192 (bottom) nodes. Notes: Scales for the Zoltan and diffusion metrics are the same except
for the run times. Run time for diffusive methods is split up in diffusion (blue/left part) and task selection
(brown/right part). Error bars denote 25/75 percentiles of total run time. Skipped runs on Juqueen are
marked with a cross.
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Figure 4: Scalability of second order diffusion and dimension exchange (without task selection) for the BOX
scenario. The five bars per method show metrics for 8192 (top), 16 384, 32 768, 65 536, and 131 072 (bottom)
nodes, which are mapped to hardware cores in this case.



highest. Regarding run time, SO, ID and DE are the clear
leaders. However, DE computes larger transfers, which in-
duces slightly higher migration costs. SO and ID, on the
other side, always result in approx. the same minimal task
migration among the diffusive methods.

Hier SFC is the fastest method in two cases, but it gen-
erates clearly more migration, especially for the LWFA sce-
nario. The Zoltan methods take much longer then the tree
fastest diffusive algorithms. But on Juqueen, due to fast
MPI collectives, HSFC is able to outperform at least OD
and CT in some cases. RCB appears to be the best Zoltan
method w. r. t. balance and edge-cut and improves over dif-
fusion in some cases, while ParMetis is not able to provide a
high load balance. However, none of the Zoltan methods are
able to achieve the low task migration the diffusive methods
provide for all three scenarios.

Scalability up to 8192: With the same set of methods
we show a scalability comparison for the BOX scenario in
Fig. 3. Regarding the diffusive methods and Hier SFC, we
can make the same observations as before: SO, ID, and DE
are the best with DE resulting in higher task migration and
Hier SFC is approx. 1.5 times faster but generates by far the
largest migration among all. The run time advantage of the
three best diffusive methods over the Zoltan methods gets
even greater at larger scales. At 8192 nodes, SO is 8.6 times
faster than HSFC on Juqueen and even 60 times faster than
RCB on Taurus. Also the migration costs are clearly higher
with Zoltan, except for the total migration with ParMetis
at the expense of load balance.

On Juqueen we can also confirm the expectation that the
time per iteration does not change with the number of nodes.
It is 38µs for SO, 54µs for DE, and 110µs for CT.

Scalability up to 128 Ki: To study the behavior at
larger scales, we selected the two best diffusive algorithms
SO and DE (favoring SO over ID, since it is much simpler
and achieves approx. the same results) and performed mea-
surements with up to 128 Ki nodes without task selection,
whose run time does not depend on the node count. Here,
we treated the 16 cores per Juqueen node as a sixth network
dimension to emulate a system with a larger node count.
Fig. 4 shows the results for two different target load bal-
ances. We can see that DE increases its run time with the
size of the largest dimension, leading to a better scalability
behavior than SO. Reducing the target load balance to 0.99,
which might be sufficient for most applications since load is
usually estimated, decreases the run time by factor 2.1–3.7
with SO and by factor 1.7–1.9 with DE. Even if we would
add the task selection time, diffusion allows to stay within
the low millisecond range for load balancing of 128 Ki nodes.

5. CONCLUSIONS AND FUTURE WORK
We compared five diffusive load balancing algorithms with

other load balancing methods on thousands of nodes. The
results show that diffusive schemes are attractive when load
balancing overhead, i. e. computation time and task migra-
tion, has to be very low, e. g. in case of frequent rebalancing.

However, there are some remaining research questions to
be solved for the efficient application of diffusive schemes:
(a) What is a fast and high-quality method for task selection
allowing to trade-off balance, migration and edge-cut? (b)
How do we scalably implement the termination criterion for
diffusion when no fast collectives are available? E. g. would
an estimation or auto-tuned value for the iteration count be

sufficient? And finally, (c) how can we apply diffusion on
today’s common hardware topologies like fat trees?

Acknowledgments: We thank the Jülich Supercomput-
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