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Abstract—Dealing with real-time constraints is 

always a problem in a typical System-on-chip design. It 
is worsened in a multi-processor system connected via 
a network. FPGA prototyping is a quick way to do a 
real-time simulation of the system and identify the 
potential problems. In this paper we propose a 
reconfigurable MPNoC architecture in which both the 
network and the processing nodes are configured. The 
flow allows for each component to be tested separately 
prior to testing the entire design.  This allows for quick 
design iterations of the system. An example design of 
such an architecture that has been mapped onto an 
FPGA is presented. 
 
 

I. Introduction 
NE of the major problems when mapping 
applications to processing platforms like NoCs 

is dealing with real-time constraints; e.g., how to 
deal with them on an architecture that includes non-
predictable elements like caches and shared buses. 
This problem is becoming even worse due to the 
increasing dynamism inside applications and due to 
the dynamically changing set of running applications 
(on a single platform); this especially holds for the 
video domain. Guaranteeing real-time behavior 
therefore requires dynamic adaptation of the video 
quality, without being disruptive, and still satisfying 
non-functional constraints, like latency and 
throughput constraints. As a result many design 
iterations are needed. FPGA prototyping is one of 
the ways to explore the design space and to identify 
potential bottlenecks in the system, since it allows 
one to run cycle accurate models on real hardware, 
and is much faster than simulation. 

Here we present a design flow that can be used to 
generate network-based MPSoC quickly. The 
application determines the architecture and the 
communication requirements of the system. The 
design of computation and communication 
infrastructure is decoupled. IP blocks (processing 
nodes) and the network are generated separately. 
The two are customized to the application 
requirements and tested at a higher level which 

allows for quick iterations.  
The system was designed with configurable cores 

from Silicon Hive [3] and connected via the 
Æthereal network developed by ESAS (Embedded 
Systems Architecture on Silicon) group at Philips 
[4]. The Æthereal network is a TDMA based 
network-on-chip (NoC) that can provide guarantees 
in communication. The system was simulated and 
tested and mapped on to an FPGA.  

The rest of the paper is organized as follows. We 
start with summarizing the design flow for Silicon 
Hive cores and for Æthereal NoC generation. We 
then introduce the flow which uses both of these and 
allows one to design and test MPSoC architectures 
quickly. This is followed by a section on the actual 
implementation work carried out together with 
results. The relevant work that has been done in 
MPSoC and NoC is overviewed, before presenting 
the conclusions of this research and a direction for 
the future work that will be carried out to further this 
research. 

II.  Silicon Hive Cores 
Silicon Hive has an entire tool chain of rapidly 

designing custom VLIW cores, a library of function 
units for designers to choose from and adaptive 
software-development tools [3]. One of the main 
strengths of Silicon Hive cores lies in the ease with 
which the cores can be generated with design time 
configurability. The cores are generated from a 
flexible architecture template that can vary the 
number of processing units, function units, register 
files, interconnects, and local memories. New 
instructions, function-units and registers can also be 
added. Even the lengths of operations within the 
instruction words are configurable. 

Figure 1 shows a flowchart of Silicon Hive system 
design flow. The flow starts with a TIM (The 
Incredible Machine) description file. In this file one 
can specify all information relevant for the 
generation, programming, and simulation of a 
processor, e.g. register file sizes and widths, 
interconnect, issue slots, operation sets, custom 
operations, memory and I/O subsystem of the 
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processor. Thus, using the TIM language the entire 
processor can be described in relatively few code 
lines. TIM also drives the development-tool 
generator that creates a matching assembler, linker, 
C compiler, instruction-set simulator, and cycle-
accurate simulator. These boxes are shown in grey in 
the figure. Once a TIM file is created, it is tested 
with representative programs from the application 
domain. It provides important feedback to the 
designer, such as the scheduling of instructions to 
processor resources (i.e. register files, issue slots, 
interconnect), which reflects resource utilization. 

Figure 1: Silicon Hive design flow for cores 

Once the design has been verified, a complete 
synthesizable RTL hardware description of the 
processors is generated. Pre-written blocks of VHDL 
or Verilog (stored in the component library depicted 
in the flow) are invoked from TIM description and 
the processor is generated. This flow has several 
properties that are useful for processor designers: 

- It allows for quick generation of a processor, 
including VHDL generation. 

- It allows for fast design-space exploration of 
a processor. 

- The resulting processors are tuned to specific 
application domains in terms of area, 
performance and power trade-offs.  

 
Some of the cores that have been designed by 

Silicon Hive are avispa_im2, moustique_ic1 and 
avispa_ch1 that have specifically been customized 
for image processing algorithms, camera based 
applications and wireless OFDM respectively. 
Avispa_ch1 has 60 issue slots per word, i.e. it can do 
up to 60 DSP operations in parallel, the instruction 
memory is of size 48K, has 103 function units, 130 
register files, and 4 dual-port mini-caches. The core 
area is about 4 mm2 and it dissipates 150mW when 

running at 150MHz. 

III.  Æthereal Network-on-Chip 
In this section we briefly describe the design flow 

of network generation and configuration. A detailed 
description can be found in [4]. Figure 2 shows the 
Æthereal design flow. The user provides the 
architecture around the network together with the 
communication requirements of the application. 
Communication, in Æthereal, is expressed by means 
of connections. A connection specifies a 
communication between a master port and a slave 
port, the required (minimum) bandwidth, the 
(maximum) allowed latency, and burst size for read 
and/or write data, and the traffic class (best-effort or 
guaranteed). The user also provides the topology to 
be used for the underlying network e.g. a mesh or a 
ring. With these details, a network is generated and 
the architecture entities mapped to it.  

 

 
Figure 2: Æthereal design flow for network 

For the network itself, many parameters are 
specified which can be either customized by hand or 
left to the tool. Some of the things that can be 
configured are flit duration, number of slots in the 
TDMA table; arity and BE buffer sizes for the 
routers; and number of ports, connection per port, 
and buffer size per connection for each instance of 
the network interface (NI). 

This is followed by the configuration step in 
which the tool computes the network configuration 
code that contains the information to program the 



hardware and setup the connections. Configuration 
code essentially contains the values to be written to 
NI registers, such as connection identifiers, and for 
each connection, the path and other relevant 
information. An API is available to the programmer 
to manage the communication between ports at run-
time as well. The API supports the functions like 
open_config_conn(), close_config_conn(), 
create_path(), etc. It should be emphasized that if 
the network is to be reconfigured for a different 
communication pattern, it is possible to do so, 
provided the required hardware is already existent. 
A slot is also allocated for connections with 
guaranteed latency and throughput. 

Once the entire NoC specification is ready, the 
user may generate a SystemC and/or a VHDL code. 
In either of these cases, TCL scripts used to simulate 
traffic are also generated. The TCL scripts are 
parameterized based on the specified communication 
requirements. It is also possible to analytically 
compute results for verification that GT traffic meets 
the previously specified requirements. 

IV.  Overall Design Flow 
The overall design flow is presented in Figure 3. 

The application is taken and partitioned by the user. 
It is split into different sections of the codes to be 
run on Silicon Hive processors. The communication 
requirements between the cores are also determined 
by this partition for the network generation.  

 
Figure 3: The new flow for overall design 

These together with the overall architecture are 

fed to the Æthereal flow. The flow generates the 
network and provides the VHDL code of the whole 
network. It also provides the code which is needed 
for the configuration of the network. This code is fed 
to the Silicon Hive flow together with the 
application code. This generates the processor cores 
using the flow as explained above and tests them 
with the application programs.  

Once the processor core is verified, the VHDL 
from the flow is generated and combined with the 
same from Æthereal flow. The two are simulated 
using all the code segments to confirm that the 
overall design is correct. The code can be then 
synthesized for the required technology accordingly 
– whether ASIC or FPGA.  

The flow was tested with an example and mapped 
onto FPGA in our case. The same is explained in the 
next section.  

V. Implementation and Results 
Figure 4 shows the top level architecture that we 

decided to implement and test our design flow with. 
In the application we have two processing nodes and 
one configuration node. The network itself is rather 
simple – it has only one router and two network 
interfaces, one for each processing node – but 
sufficient to demonstrate the flexibility in the flow. 
Two connections are needed – in the first one, Node 
1 is the master and Node 2 is the slave, while in the 
second, roles are reversed. The bandwidth for each 
of these connections is set to 100 MB/s, the data 
width is 32 bits, and both have “GT” (Guaranteed 
Throughput) traffic. 

 

 
Figure 4: The top-level architecture with 

connections 

The total number of cores needed for the 
application is 3. For sake of simplicity we decided to 
use the same core both for configuration of the 
network and for processing. The core used was 
customized for 4 issue slots, 32-bit data path, and 
one master and slave port for communication. The 
size of memory for data and program was set to 
16KB and 32KB respectively. Both Æthereal and 
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Silicon Hive cores were configured to use DTL 
(Device Transaction Level) protocol for 
communication. 

From both the flows, VHDL for each was 
generated and combined as described in the previous 
section. It was simulated to test if there were any 
errors in integration. Once the simulation was 
verified, the source code was synthesized for Xilinx 
Virtex II [1] series. The generated design was 
debugged and verified by using both logic analyzer 
and ChipScope. For both of them, a wrapper had to 
be written around the actual design to export the 
signals to be examined on a separate output port. 
GoLogic analyzers from NCI were used for the same 
[2].  

The target platform for the design was Xilinx 
Virtex II 6000FF1152-C4. The chip itself has about 
72,000 logic cells (LCs) and 144 block RAMs of 18 
kbits each. The entire design uses about 65% of the 
entire chip area in terms of LCs. Each processor core 
takes about 20% while the network takes about 5% 
including network interfaces and the router. A total 
of 29 block RAMs were used for memory.  

It should be mentioned that ChipScope also uses 
the block RAMs on-chip for storing the samples. In 
our example, we used a total of 61 block RAMs for 
ChipScope. This allowed us to sample 60 signals, 
each of depth 16,384.  

The design was optimized for area and runs at 
about 12.5 MHz. The maximum frequency at which 
it can be operated is 18 MHz. The bandwidth 
achieved is 2.5 MB/s per connection, which is as 
expected. 100 MB/s is the bandwidth assuming the 
network runs at 500 MHz, while in the prototype it 
is only run at 12.5 MHz.  

VI.  Related Work 
For MPSoC design a systematic design-flow has 

been proposed for hardware/software prototype 
generation from bus-functional models of various 
IPs [5]. This is a higher level of abstraction that 
allows the integration of heterogeneous hardware, 
software components and sophisticated 
communication interconnects to adapt different 
description models. A two-layer hardware-
dependent software (HdS) has also been proposed 
for SoC design [6]. The HdS consists of hardware 
abstraction layer to abstract the sub-system 
architecture and SoC abstraction layer to abstract the 
global MPSoC architecture. 

In order to meet the communication requirements 
of the future MPSoC designs, networks-on-chip are 
being developed. They are a promising alternative to 
traditional buses in terms of scalability and wiring. 
A host of networks are available in the literature. 
Pande et al [7] reviews the state of the art in this 

technology in terms of design, automatic synthesis 
and testing. One of the examples of NoC is 
Technion’s QNoC (QoS NoC) that is based on a 2-D 
mesh [8]. Pre-emptive priority scheduling provides 
timing predictability between four service classes, 
and round robin scheduling is used within a class. 
An iterative simulation-based approach is used to 
determine the best network resources. 

Another example is Nostrum mesh network 
[9][10]. In the Nostrum network, hot-potato routing 
is used for best effort traffic, meaning that packets 
are always routed and latency is deterministic. GT 
traffic is facilitated by zero-payload best-effort 
packets moving back and fourth between the source 
and destination. When necessary, payload can be 
added to these empty packets. Thus, these empty 
best-effort packets essentially reserve bandwidth for 
payload through a single path in each direction, 
which is called a virtual circuit. As a result, 
bandwidth is always reserved symmetrically 
between source and destination, even when no 
payload arrives. 

VII.  Conclusions and Future Work 
In this paper, we have a presented a novel design 

flow that can be used to quickly generate network-
based MPSoC. The IPs in the design are fully 
configurable and the network is designed to match 
the application requirements. As an example a 
simple architecture is implemented and mapped onto 
the FPGA. 

We are already in the process of generating a 
more complex network with 4 cores and map a real 
application on the architecture. Our next course of 
action is to make the configuration of the application 
dynamic, i.e. to configure the memories of the 
processor nodes through a host. Through this 
dynamic configuration we hope to be able to 
demonstrate re-configurability of the system to 
support task dynamism in the system. 

Further, we would like to emphasize on 
integration of the two flows at a higher level. In the 
current setup, the integration was achieved at the 
RTL level. Integration at a higher level would allow 
us to test different variations of the complete system 
in a shorter time.  
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