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Abstract— Hitherto discovered approaches analyze the execu-
tion time of a real-time application on all the possible cache hi-
erarchy setups to find the application specific optimal two-level
inclusive data cache hierarchy to reduce cost, space and energy
consumption while satisfying the time deadline in real-time Multi-
Processor Systems on Chip (MPSoC). These brute-force like ap-
proaches can take years to complete. Alternatively, application’s
memory access trace driven crude estimation methods can find a
cache hierarchy quickly by compromising the accuracy of results.
In this article, for the first time, we propose a fast and accurate
application’s trace driven approach to find the optimal real-time
application specific two-level inclusive data cache hierarchy. Our
proposed approach “TRISHUL” predicts the optimal cache hi-
erarchy performance first and then utilizes that information to
find the optimal cache hierarchy quickly. TRISHUL can suggest
a cache hierarchy, which has up to 128 times smaller size, up to
7 times faster compared to the suggestion of the state-of-the-art
crude trace driven two-level inclusive cache hierarchy selection
approach for the application traces analyzed.

I. INTRODUCTION
Guaranteed execution time and performance in real-time

computer applications allow planning the efficient use of the
application as well as other related tasks. Due to this fact,
from saving lives in hospitals to compressing images on digital
cameras, real-time applications can be found everywhere. To
satisfy the performance and time critical nature in the real-time
applications, use of MPSoCs with multi-level cache hierarchy
on real-time systems is growing day by day. By keeping data
handy to the processors, cache memory hierarchy hides the
latency of slow memory transactions. However, if the cache
configurations1 in the cache hierarchy are not chosen appropri-
ately, it can have catastrophic effects by exceeding completion
time deadline and by causing adverse effects on cost, space and
energy consumption [2].

As a data cache hierarchy can have single or multiple cache
memories in each level and one cache memory can influ-
ence others’ cache hits/misses (inter-influencing), analyzing
the given application’s execution time on all possible cache
hierarchy configurations2 is a mandatory step in deciding the
optimal application specific data cache hierarchy for real-time
MPSoCs. However, take the cache hierarchy of Figure 1
(collected from [14]) to understand the problem with analy-
sis time. Figure 1 depicts a widely used two-level inclusive
data cache hierarchy (Harvard Architecture) on contemporary
MPSoCs [8, 3, 11, 16]. In Figure 1, the processor cores in-
clude private caches which loads data in the shared cache be-
fore loading on them. The private caches search data in the

1Combination of cache parameters such as number of cache sets (set size),
number of storage locations in each set (associativity), capacity of each storage
location (cache line/block size), etc.

2A cache hierarchy setup with a specific configuration per cache memory.

shared cache before memory. Therefore, shared cache con-
tains the superset of the private caches. See [22] for inclusive
cache hierarchy details. If each cache memory has ten possible
configurations and fifteen seconds are taken on average to find
the execution time of an application on one cache hierarchy
configuration, it will take eighteen days of continuous analysis
to find the optimal cache hierarchy, unless any speedup mech-
anism is used.

Application’s total execution time as well as time spent on
instruction/data memory operation can be calculated quite ac-
curately from the number of cache hits and misses [9]. There-
fore, finding the number of cache hits and misses in each level
of the data cache hierarchy will be enough to find the most ap-
propriate application specific data cache hierarchy. If the range
of cache hits and misses for each level in the data cache hier-
archy (or required cache hierarchy performance CHP ) to sat-
isfy the allowable data memory operation time (WCDMOT )
for real-time application is known, the searching process for
the most appropriate cache hierarchy can be shortened by
pruning the infeasible cache hierarchy configurations. Even
though maximum allowable WCDMOT can be calculated
using worst-case timing analysis [20, 17], to the best of our
knowledge, no proposal has ever been made to estimate/predict
the required performance of a multi-level/two-level inclusive
data cache hierarchy in real-time MPSoCs. Moreover, no sig-
nificantly fast method is known to find the most optimal two-
level inclusive data cache hierarchy in real-time MPSoCs.
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Fig. 1. Two-level Cache Hierarchy in MPSoC Architecture (collected
from [14])

In this article, for the first time, we present a fast and ac-
curate application’s memory access trace driven process to se-
lect the optimal two-level inclusive data cache hierarchy for
real-time MPSoCs. Our proposed cache hierarchy selection
process “TRISHUL” (Time Restricted Interconnected Simula-
tion of Hierarchical-cache Utility Library) finds the smallest
storage capacity configurations, to save cost and space-energy
consumption while meeting the time deadline, for each cache
memory in the cache hierarchy. Our target architecture is the
one presented in Figure 1. TRISHUL predicts the required



CHP first with a novel approach. CHP is then used to re-
duce the cache hierarchy design space by pruning the infea-
sible cache hierarchy configurations. Therefore, a significant
amount of time can be saved. To analyze each cache memory’s
behavior with minimal memory consumption and without ef-
fecting the accuracy of analysis, TRISHUL adopts “Single-
pass technique (details in Section II), through a layered ap-
proach. Another unique feature of TRISHUL is, when a cache
hierarchy is selected for an application but the WCDMOT
has reduced, the optimal cache hierarchy can be found with
minimal cache simulation. Due to all these features, TR-
ISHUL can find the most optimal cache hierarchy in similar
or less time than the state-of-the-art application trace driven
crude method DIMSim [14] to select a two-level inclusive data
cache hierarchy in real-time MPSoCs. TRISHUL is upto 7
times faster than DIMSim and the TRISHUL suggested shared
caches can be up to 128 times less in size than DIMSim’s
suggestions for the application traces presented in this article.
Note that TRISHUL can find the optimal one among all those
cache hierarchies which have the same block size/cache line
size in a particular level. The article is written assuming that
all cache configurations can have a fixed block size only.

The rest of the paper is structured as follows: Section II
discusses the related works, Section III explains TRISHUL’s
working policy and implementations, Section IV discusses the
results and analyzes the TRISHUL suggested cache hierar-
chies’ optimality and Section V concludes the paper.

II. RELATED WORK
The worst case execution time of an application and the

maximum number of main memory accesses estimated using
worst-case timing analysis [4, 5] serve as the required CHP to
select a single application specific cache memory. Even though
real-time systems are usually application specific [18, 9] and
the maximum number of main memory accesses acceptable for
the WCDMOT can be estimated using the worst-case timing
analysis, inter-influencing cache memories in the multi-level
data cache hierarchy do not allow required CHP to be ex-
tracted from the number of memory accesses. No other meth-
ods are known either to predict the required CHP for real-time
application specific two-level inclusive data cache hierarchy.

A single application specific cache memory is selected by
evaluating the applications execution time on a large group of
cache configurations. For this purpose, three types of applica-
tion’s memory access trace driven cache behavior simulation
approaches are very popular due their speed compared to cy-
cle accurate simulators or instruction set simulators. In the
type called the compressed trace simulation, redundant infor-
mation is pruned to compress the memory access trace [13, 19].
In the second type called the parallel simulation, cache con-
figurations are simulated in parallel by using parallel hard-
ware to reduce the overall simulation time [1, 15]. In con-
trast to parallel simulation, one processing unit is used as op-
timally as possible in the third type called single-pass simula-
tion [12, 9]. In Single-pass simulation, several cache configu-
rations are simulated by reading the application’s memory ac-
cess trace once. To mimic the hardware behavior as minimal as
possible, cache configurations are represented by mainly four
cache parameters: (i) set size (S), (ii) associativity (A), (iii)
cache block/line size (B) and (iv) replacement policy. To sim-
ulate all the cache configurations quickly and accurately, sev-
eral additional mechanisms (such as Inclusion properties [7],
Intersection properties [6], etc.) are applied too in single-pass
simulation. Single-pass simulation can be deployed with com-
pressed trace simulation and/or parallel simulation.

Due to the advantages, attempts have been made to adopt
single-pass simulation techniques to select appropriate multi-
level cache hierarchy. Two proposals made by Wei Zang et
al.[22, 23] are the latest in these attempts. However, Zang’s ap-
proaches are limited to two-level Exclusive Cache hierarchy3

only. Cache coherency is not considered in Zang’s approaches;
hence, not usable in MPSoCs causing coherency through data
sharing. Zang’s approaches are very restricted in terms of us-
ability as they require the cache hierarchy to have first level
cache with Least Recently Used (LRU) replacement policy and
the second level cache with First-In-First-Out (FIFO) replace-
ment policy ( Note that TRISHUL allows different replacement
policies in shared and private caches).

To the best of our knowledge, only one approach DIMSim
has adopted single-pass simulation so far to make a crude se-
lection of two-level inclusive data cache hierarchy in real-time
MPSoCs. To handle coherency, DIMSim finds a shared cache
first that can satisfy the WCDMOT alone and, on top of that,
a private level configuration to cover system overheads. As a
result, the size of the shared cache is always much larger than
required. Moreover, due to addition of private caches, traffic
to shared cache is reduced causing a reduction in memory op-
eration time further. As system overheads are dynamic and
not predictable, adding a private cache per processor to han-
dle unpredictable amount of system overhead is impractical
and can cause excessively large private caches. Most impor-
tantly, shared caches cannot be found using DIMSim if the
WCDMOT is not large enough to be satisfied by a single
cache (Section IV details this problem with experiment re-
sults).
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Fig. 2. TRISHUL Cache Hierarchy Selection Flow

III. TRISHUL
In search for the optimal real-time application specific two-

level inclusive data cache hierarchy, TRISHUL deployes three
major components: (a) Cache Hierarchy Performance Predic-
tor (CHPP), (b) Single-pass Private Cache Simulator (SPCS),
and (c) Single-pass Shared Cache Simulator (SSCS). Figure 2
depicts the work flow of these components. The target real-
time application’s memory access trace is prepared before-
hand. To generate the trace, memory accesses are observed
and captured at the memory controller while the real-time MP-
SoC (without caches) is executing the application as communi-
cating tasks or multiple applications. After that, data accesses
from the trace are extracted and annotated; so that, for every

3In exclusive cache hierarchy, requested content is loaded in the privates
caches directly from memory and shared cache stores the evicted content from
private caches



data block accessed, (i) operation type (read or write), (ii) pro-
cessing cycle when the request was made and (iii) processor
that made the request can be identified. Once the trace file is
ready, CHPP predicts required CHP . After that SPCS sim-
ulates all the possible homogeneous configurations of the pri-
vate level in the cache hierarchy4. After simulation, a config-
uration for the private level in the cache hierarchy is selected
following some specific criteria and a trace file is generated
that records all the memory block addresses missed in the se-
lected private level configuration. We call the new trace as
the secondary trace. Using the secondary trace, SSCS finds
the smallest feasible shared cache configuration. SPCS and
SSCS excludes all those private level configurations and shared
level configurations in the cache hierarchy which exceeds the
required CHP . In the following subsections, all these com-
ponents and their working policies are described in details fol-
lowing Figure 2.

A. Cache Hierarchy Performance Predictor (CHPP)
Roles: Predict the performance for the optimal cache hierar-

chy (CHP ) for an application.
Inputs: CHPP takes three inputs: (i)WCDMOT for the

real-time application, (ii) Application trace file, and (iii) time
to access each data in the private cache, shared cache and
main memory (access time is inclusive of time to take a re-
quest, search and serve). The WCDMOT is provided by
the user, considering the application(s) throughput and latency
constraints. Data access time in the private cache, shared cache
or main memory can be found from the product manual.

CHPP Work flow: From the trace file, CHPP extracts the
(a) total number of memory accesses (NA), and (b) number
of unique memory block addresses (UNA) depending on the
target B. On gathering of all the required inputs, CHPP for-
mulates Equation 1 where TAP , TAS and TAM refer to the
total number of sequentially served data blocks from the pri-
vate level of the cache hierarchy that contains all the private
caches5, the shared cache and the main memory respectively.
As in inclusive cache hierarchy, shared cache can serve only
the missed memory blocks from the private level (inclusive
of data collected from memory), TAS also refers to the total
number of cache misses in the private cache level. Similarly,
TAM refers to the number of misses in shared cache. TP ,
TS and TM refer to the data access time from private cache,
shared cache and main memory respectively.
WCDMOT = (TAP×TP )+(TAS×TS)+(TAM×TM)

(1)
When a requested data is absent in a two-level inclusive

data cache hierarchy, the data block is loaded from the main
memory to shared cache, shared cache to private cache and
then to processor. While loading, private cache and shared
cache can keep serving other requests (Harvard Architecture).
Therefore, TAP ≥ TAS ≥ TAM . Private caches can-
not serve more than the processor requests (NA). To serve
a data from shared cache, (TP + TS) time will be consumed.
Therefore, even if everything is missed in the private caches,
shared cache cannot serve more than WCDMOT/(TP+TS)
accesses. Similarly, main memory cannot serve more than
WCDMOT/(TP + TS + TM) accesses. Main memory
accesses cannot be less than UNA either as unique memory

4In a homogeneous configuration of the private cache level, every proces-
sor’s private cache memory has the same S, A, B and replacement policy

5If two processors make requests to their private caches in parallel at the
same processing cycle, only one sequential access is considered in that cycle

block addresses will cause a cache miss at least for the first
access.

A cache hierarchy with the smallest cache configurations
are preferred for final design; because, small caches consume
less space-energy and cost less. As such cache hierarchy will
generate the maximum number of memory accesses (or low-
est number of cache hits) among other available cache hierar-
chies, if the minimum values for TAP and TAS, but maxi-
mum value for TAM can be found to satisfy WCDMOT , it
will be the required CHP . Any cache hierarchy generating
more misses in the private level than TAS and less sequen-
tial hits than TAP will be infeasible. Similarly, shared cache
configuration generating more misses than TAM will be un-
usable. Therefore, CHPP finds the maximum values for TAM
and minimum values for TAP and TAS using its Integer Lin-
ear Programming (ILP) Solver, with the following upper and
lower bounds for TAP , TAS and TAM :

1. (WCDMOT/(TP + TS + TM)) ≥ TAM ≥ UNA
2. (WCDMOT/(TP + TS)) ≥ TAS ≥ TAM
3. NA ≥ TAP ≥ TAS

B. Single-pass Private Cache Simulator (SPCS)
Role: (i) By reading the application trace once find the ap-

propriate private level configuration in the cache hierarchy, and
(ii) Generate a secondary trace file.

Details: In each private level configuration, number of cache
memories is equal to the number of processors and every cache
memory has the same configuration defined by four cache pa-
rameters mentioned in Section II. To represent multiple private
level configurations, SPCS utilizes a simulation tree adopted
from [18] and modified to satisfy SPCS. Each level in the sim-
ulation tree represents a particular private level configuration
containing cache memories with the same S. Figure 3(b) il-
lustrates a simulation tree starting with a private level configu-
ration containing cache memories with S = 2. The first node
on the top left, marked ‘0’ refers to cache set 0 in all the cache
memories of the particular private level configuration. Simi-
larly, the second node with token ‘1’ refers to cache set 1. At
the second level of the two trees, there are a total of four nodes
stamped ‘00’, ‘10’, ‘01’ and ‘11’, which are used to represent
the cache sets in all the cache memories of the private level
configuration containing cache memories of S = 4. More pri-
vate level configurations with caches containing larger number
of sets can be represented by expanding the tree further. In Fig-
ure 3(b), two lists containing two nodes each can be seen with
tree node ‘00. These lists represent the cache lines of cache set
‘00 in two different processors’ private caches with A = 2.
Each node in the associativity list points to the memory block
content that supposed to be in that cache line.

To determine cache hits/misses quickly for a requested data,
SPCS maintains a look-up table (LT ). In Figure 3(a), an ex-
ample of a SPCS look-up table has been presented. For each
memory block address stored in any cache memory, one look-
up table entry is created which is accessed using the memory
block address as the key. With each memory block address, a
bit array is attached per private level configuration. N th bit in
a bit array indicates the availability status of the memory block
in the N th processor’s private cache memory. For example,
memory address “10010” is associated with bit array ‘011’ for
private level configuration containing three caches with S = 2.
‘011’ indicates that the content from the memory block address
“10010” is absent in the second and third processors’ private
caches (1 indicates miss), but is present in the first processor’s
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private cache. To reduce entry search time, look-up table en-
tries are arranged into sets and entries are sorted on their keys
to facilitate binary search. Memory blocks are mapped to look-
up table sets just like cache sets.

By reading the trace entry for memory block (RA) once,
SPCS determines cache misses in all the private level configu-
rations by utilizing Algorithm 1. Just by reading the bit arrays
for RA, SPCS identifies the appropriate processor’s cache in
each private level configuration that has not stored RA. For
these caches, SPCS records misses and then updates the look-
up table and simulation tree to reflect after miss scenario. To
record the number of sequential data blocks served from the
private level (TAP ′), SPCS just counts the number of differ-
ent cycles when a data access occurred. From the bit arrays,
SPCS also knows quickly which processors’ caches have to
be updated/invalidated when a particular processor updates a
shared data (coherency handling).

After simulation, all the private level configurations’ ob-
served TAP and TAS are substituted in Equation 1 to find
the largest value for TAM below the CHPP predicted TAM
(we call this fine tuned value as TAM ′). The private level
configuration that generates the largest TAM ′ is selected for
shared cache generation and its TAM ′ is used as the miss limit
in shared cache simulation.

C. Single-pass Shared Cache Simulator (SSCS)
Role: Finding the optimal shared cache configuration by

reading the secondary trace file only once.
Details: SSCS simulates one shared cache memory’s multi-

ple configurations. SSCS is actually the simulator of [6] with-
out any intersection property deployed and modified to accom-
modate the use of TAM ′. The Look-up table and simulation
tree are also used by SSCS to represent shared cache config-
urations. However, one look-up table and its associated simu-
lation tree are generated to simulate cache configurations with
varying S and A. The look-up table and the simulation tree in
SSCS looks exactly same as in SPCS; however, the bits in the
look-up table bit arrays provide data availability information
for cache configurations with the same S and B but with dif-
ferent A. For example, when the look-up table in Figure 3(a)
will be used for SSCS, the bit array associated with memory
address 10010 for S =1 will indicate that the memory block
content will be absent in the shared cache configurations with
S = 1 and A = 1 and 2 provided three options 1,2 and 4 for A
value. SSCS will add three lists containing 1, 2 and 4 nodes to
represent A = 1, 2 and 4 respectively with each tree node. That
means; the top level in the tree in Figure 3(b) will represent the
fixed cache line sized shared cache configurations with S = 2
and A = 1, 2 and 4. After simulation, the shared cache config-
uration with the largest number of memory accesses (TAM ′′)

Algorithm 1: SPCSEvaluation(RequestedAddress(RA),
RequestingProcessor(N), MissLimit(TAS))

1 LT =Look-up Table;
2 AN = The associativity list for the Nth processor;
3 if (RA is not found in LT ) then
4 Record one cache miss for all the configurations of Processor N ’s private

cache;
5 Exclude the tree level L from simulation whose total number of misses is

greater than TAS
6 Place RA in LT and place pointer to RA’s location in LT in all the
7 configurations for processor N ’s private caches in the simulation tree;

8 else
9 Select the tree level L = 0(smallest cache set size S = 2L) in the tree;

10 while 2L is not larger than the largest set size do
11 if (Lth level is not excluded for simulation) then
12 if (Write Operation) then
13 if (RA found in AN ) then
14 For set size 2L, update/invalidate bit arrays for RA in

LT for
15 the processors I where

I ̸= N, I = 1, 2, 3, ..., Last processor;
16 else
17 Record a cache miss for processor N ’s configuration

with set size 2L;
18 Place RA in AN and update the LT record;
19 update/Invalidate bit arrays for RA in LT for
20 all AI where I ̸= N, I =

1, 2, 3, ..., Last processor number;

21 else
22 if (Not found in AN or invalid) then
23 Record a cache miss for processor N ’s configuration

with set size 2L;
24 Place RA in AN and update the LT record;

25 Exclude the tree level L from simulation whose total number of
misses is greater than TAS

26 L = L + 1;

is selected for final design.
From here, we use n apostrophes (’) after TAP and TAS

but n + 1 apostrophes after TAM to indicate the observed
number of sequential accesses in private level, shared level and
main memory in the nth cache hierarchy configuration.

By now, readers may be starving to know, when TRISHUL
selects a private level configuration X with TAS′ misses and
a shared cache configuration with TAM ′′ misses:

1. Will there be any smaller private level configuration with
TAS′′ > TAS′ and larger shared cache configuration
with TAM ′′′ ≤ TAM ′′ that still satisfy WCDMOT ?

2. If no shared cache is found for X , can a larger private
level configuration with TAS′′ < TAS′ have a shared
cache to satisfy WCDMOT ?

3. How to select the optimal cache hierarchy with minimal
simulation when an application’s WCDMOT reduces?



Trace WCDMOT
TRISHUL (Optimal) DIMSim TRISHUL DIMSim
Private Shared Shared AMT Decision Decision

(sec) Config Config. Config (Sec) in (Sec) in (Sec)
JPEG
barbara 1.00 (8X2) (1X2) (8X16) 0.96 1700 1832

0.40 (4X16) (1X2) N/A 0.40 361 N/A
0.15 (16X16) (64X16) N/A 0.15 281 N/A

criss 1.00 (8X2) (1X2) (8X16) 0.96 1699 1758
0.40 (4X16) (1X2) N/A 0.40 345 N/A
0.15 (16X16) (64X16) N/A 0.15 280 N/A

graph 1.00 (8X2) (1X2) (8X16) 0.96 1792 1752
0.40 (4X16) (1X2) N/A 0.40 354 N/A
0.15 (16X16) (128X8) N/A 0.15 283 N/A

lena 1.00 (8X2) (1X2) (8X16) 0.96 1761 1735
0.40 (4X16) (1X2) N/A 0.40 344 N/A
0.15 (16X16) (64X16) N/A 0.15 281 N/A

photo1 1.00 (8X2) (1X2) (8X16) 0.96 1769 1722
0.40 (4X16) (1X2) N/A 0.40 346 N/A
0.15 (16X16) (128X8) N/A 0.15 281 N/A

photo2 1.00 (8X2) (1X2) (8X16) 0.96 1772 1751
0.40 (4X16) (1X2) N/A 0.40 346 N/A
0.15 (16X16) (128X8) N/A 0.15 281 N/A

H264
Bluesky 1.00 (2X8) (8X8) (8X4) 0.99 2336 1526

0.75 (8X4) (1X2) (16X16) 0.61 525 1525
0.40 (2X16) (64X16) N/A 0.39 511 N/A

river 1.00 (2X8) (8X8) (8X4) 0.99 2145 1541
0.75 (8X4) (1X2) (16X16) 0.61 524 1472
0.40 (2X16) (64X16) N/A 0.38 640 N/A

station 1.00 (2X8) (8X8) (8X4) 0.99 2255 1506
0.75 (8X4) (1X2) (16X16) 0.61 600 1422
0.40 (2X16) (64X16) N/A 0.38 478 N/A

pedest. 1.00 (2X8) (8X8) (8X4) 0.99 2262 1464
0.75 (8X4) (1X2) (16X16) 0.61 529 1436
0.40 (2X16) (64X16) N/A 0.38 696 N/A

tractor 1.00 (2X8) (8X8) (8X4) 0.99 2255 1507
0.75 (8X4) (1X2) (16X16) 0.61 523 1449
0.40 (2X16) (64X16) N/A 0.39 706 N/A

TABLE I
EFFICIENCY OF TRISHUL OVER DIMSIM

Let’s answer all these questions in the following section.

IV. EXPERIMENT AND RESULTS
DIMSim showed that a crude estimation of a real-time ap-

plication specific two-level inclusive data cache hierarchy re-
duces the design space exploration time from years to min-
utes. Therefore, our experiment setup is to find out whether
TRISHUL can find the optimal cache hierarchy within similar
or less time than DIMSim. We implement TRISHUL using C
language and re-implement DIMSim following the guidelines
provided in [14].

We implement a six core cache-less multiprocessor imple-
mentation using the Tensilica tool set [21]. Like DIMSim,
we execute JPEG encoder and H264 encoder (only the motion
estimation kernel) to generate traces for different image and
video benchmarks. Both the applications are partitioned into
multiple communicating/sharing tasks which are mapped on
separate processors. Data sharing is performed only through
shared cache.

For Simulation, we execute TRISHUL and DIMSim on a
machine with a dual core Opteron64 2GHz processor, 8GB
of main memory and 1MByte shared L2 cache. In our ex-
periment, each private cache or shared cache has 75 possi-
ble configurations where S = 1 to 16384, A = 1, 2, 4, 8, 16,
B = 4Bytes and FIFO replacement policy. We used TP = 1
ns, TS = 4 ns, and TM = 15 ns (based on the Xtensa proces-
sor [21]), assuming that all the applications are mapped on a
1GHz processor with one clock cycle private cache latency.

Table I presents the experiment results in TRISHUL and
DIMSim. Column 1 presents the six JPEG traces and five
H264 traces. Column 2 presents the generous (1.0sec), regular
(0.40sec for JPEG and 0.75sec for H264) and stingy (0.15sec
for JPEG and 0.40sec for H264) WCDMOT calculated us-
ing [10] for every trace file. Column 3 presents the con-
figuration of each cache in the private level selected by TR-
ISHUL. Columm 4 and 5 present the shared cache configu-
rations selected by TRISHUL and DIMSim respectively. No
private level cache configuration has been presented for DIM-
Sim as no practical private cache selection criteria has been
provided in [14]. Column 6 presents the actual data opera-
tion time (AMT ) of the TRISHUL selected cache hierarchy.

Column 7 presents the total time to select an optimal cache
hierarchy in TRISHUL. The last column presents the time to
select a shared cache only in DIMSim. For example, for JPEG
Barbara and WCDMOT =1.0sec, TRIHSUL selected a pri-
vate level configuration with each cache containing (S = 8,
A = 2 and B = 4Bytes). The selected shared cache con-
figuration in TRISHUL and DIMSim contain (S = 1, A = 2
and B = 4Bytes) and (S = 8, A = 16 and B = 4Bytes)
respectively. The TRISHUL selected cache hierarchy has a
AMT =0.96sec. For this case, TRISHUL selected the entire
cache hierarchy in 28min (approx). On the other hand, DIM-
Sim took almost 31min just to select a shared cache. Note
that in this example the entire cache hierarchy selected by TR-
ISHUL is only 396Bytes. However, DIMSim’s shared cache
is alone 512Bytes. The results reveal that TRISHUL selected
shared cache can be 128 times smaller or 2 times bigger in size
compared to DIMSim’s shared cache. Readers may wandering
why, sometimes DIMSim suggested shared cache is smaller
than TRISHUL suggested shared cache in the cache hierar-
chy (ex. bluesky and WCDMOT = 1.0). In TRISHUL,
private cache misses generated in parallel, are sequentialized
and searched in shared cache. This ordering process is ran-
dom. Depending on the ordering, cache misses may increase
in the shared cache. In DIMSim, no parallel access is con-
sidered. Therefore, if the trace file has the most optimized
ordering of accesses, DIMSim may produce smaller shared
caches compared to TRISHUL. In Figure 4, the CHPP pre-
dicted values for TAP , TAS and TAM ′ and their correspond-
ing TAP ′, TAS′ and TAM ′′ in the TRISHUL selected cache
hierarchies are presented in groups for generous, regular and
stingy WCDMOT . In each group, the order of the trace files
is same as the order in Table I where the left most bar pair in-
dicates the predicted and observed values in Barbara and the
the right most bar pair represents the tractor trace. Figure 4(b)
shows that TAS is within 96%-64% accuracy range compared
to TAS′. Similarly, Figure 4(c) shows that TAM ′ is within
99.95%-74.55% accuracy range compared to TAM ′′. The
minimum value of sequential private cache accesses (TAP )
is also very accurately predicted by CHPP (see in Figure 4(a)).
Due to the accurate predictions, TRISHUL can select a cache
hierarchy without simulating all the possible configurations for
each cache. For each JPEG trace, TRISHUL simulated neither
more than 54 nor less than 38 out of 75 private level configu-
rations. For every H264 trace, the number of private level con-
figurations simulated is in between 33 to 53. TRISHUL sim-
ulated 27-60 and 30-45 shared cache configurations for JPEG
and H264 respectively. Moreover, the cache hierarchy selected
by TRISHUL for each trace file can closely satisfy the given
WCDMOT with their AMT .

Results show that TRISHUL is quite efficient in finding a
cache hierarchy for the given criteria. However, to prove that
TRISHUL choose the optimal cache hierarchy, we have to an-
swer Question 1 and 2. To find the answers, let’s take an ex-
ample to analyze. Lets consider that we have two cache hierar-
chies ‘H1’ with private level configuration ‘C1’ and ‘H2’ with
private level configuration ‘C2’. ‘C2’ is bigger than ‘C1’. For
a trace file and fixed B, number of misses in ‘C2’ is TAS′′

which will always be smaller than misses in ‘C1’ (TAS′). For
a fixed B and trace file, total number of sequential accesses to
the private level (TAP ) does not change when cache hierarchy
configuration is changed (see Figure 4(a)). Therefore,

1. Answer for Question 1: if both ‘H1’ and ‘H2’ could
satisfy WCDMOT with equal number of memory ac-
cesses (TAM ′′ = TAM ′′′), it means (TAP ′ × TP ) +
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(TAS′ × TS) + (TAM ′′ × TM) = (TAP ′′ × TP ) +
(TAS′′ × TS) + (TAM ′′′ × TM). As TAP ′ =
TAP ′′ and TAM ′′ = TAM ′′′, TAS′ must be equal
to TAS′′. Otherwise WCDMOT cannot be satisfied.
So, ‘H1’ cannot satisfy WCDMOT when TAS′ >
TAS′′ and TAM ′′ = TAM ′′′. Even if ‘H1’ could sat-
isfy WCDMOT with TAS′ > TAS′′ and TAM ′′ <
TAM ′′′, it would not be optimal. Because, less memory
accesses means more storage capacity in the cache hier-
archy (more space and energy consumption besides being
costly).

2. Answer for Question 2:In this case, TRISHUL selected
private level configuration is representing ‘C1’ that can-
not satisfy WCDMOT with ‘H1’. So, for ‘H1’,
WCDMOT − (TAP ′ × TP ) < (TAS′ × TS) +
(TAM ′′ × TM). If ‘H2’ could satisfy WCDMOT ,
WCDMOT − (TAP ′′ × TP ) = (TAS′′ × TS) +
(TAM ′′′ × TM). As TAP ′ = TAP ′′, it means
(TAS′′ × TS) + (TAM ′′′ × TM) < (TAS′ × TS) +
(TAM ′′ × TM); or TS × (TAS′ − TAS′′) > TM ×
(TAM ′′′ − TAM ′′). As TAS′ > TAS′′, to have a posi-
tive value of (TAM ′′′ − TAM ′′), the TAM ′′′ must be
larger than TAM ′′. But in reality, TAM ′′′ cannot be
larger than TAM ′′ when TAS′ > TAS′′. Because to
satisfy WCDMOT by ‘H2’, TAM ′′′ has to be less than
TAM ′′. So, answer for Question 2 is “No”.

So, TRISHUL selects the optimal cache hierarchy if there ex-
ists one.

From the last two columns of Table I, it can be seen
that TRISHUL and DIMSim spent almost similar time to
select a cache hierarchy and shared cache respectively for
WCDMOT=1.0sec. However, DIMSim failed to make
any decision for WCDMOT <1.0sec in any JPEG and
for WCDMOT <0.75sec in any H264 trace. The rea-
son is, as DIMSim selects a shared cache first that alone
can satisfy the given WCDMOT , it is impossible to satisfy
WCDMOT <1.0sec (for JPEG) or 0.75sec (for H264) by
any single cache memory with any configuration simulated in
our experiment. On the other hand, TRISHUL saves a huge
amount of time for WCDMOT <1.0sec. The reason is,
when private level cache hierarchy configurations are simu-
lated for WCDMOT=1.0sec, SPCS records the results for
any private level configuration that do not exceed the CHPP
given TAS. Therefore, when the WCDMOT reduces, re-
quired TAS value will be decreased and can only be satisfied
by a larger private level configuration. As all the larger private
level configurations’ TAS′ values are recorded for the trace
file in the SPCS produced result for WCDMOT=1.0sec, the

appropriate private level configuration can be selected with-
out further simulation for any WCDMOT <1.0sec with the
help of CHPP. Once the private level configuration is selected,
shared cache can be selected with the help of SSCS. This
is the answer for Question 3. When DIMSim cannot find a
shared cache for WCDMOT <1.0sec in JPEG, the solu-
tion for WCDMOT =1.0sec has to be used. Same goes for
H264. For example, for WCDMOT =0.4sec and bluesky,
TRISHUL took around 8min to decide a cache hierarchy. But
for DIMSim, the solution for WCDMOT =0.75sec has to be
used. So, DIMSim’s decision time is 25min (3 times slower
than TRISHUL). In this way, TRISHUL can be up to 7 times
faster than DIMSIM for the traces analyzed in Table I.

V. CONCLUSION
In this article, we present an application trace driven method

to select the optimal two-level inclusive data cache hierar-
chy selection process for real-time MPSoCs. The method
TRISHUL presents a novel mechanism to find the required
cache hierarchy performance without analyzing/simulating
any cache memory behavior. TRISHUL can select an opti-
mal cache hierarchy within a time period necessary to select
a single shared cache by the available trace driven two-level
inclusive data cache hierarchy selectors.
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