
Communication-aware Design Space Exploration
for Efficient Run-time MPSoC Management

1Amit Kumar Singh, 2Akash Kumar, 3Wu Jigang and 1Thambipillai Srikanthan
1 School of Computer Engineering, Nanyang Technological University, Singapore

2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
3 School of Computer Science and Software, Tianjin Polytechnic University, Tianjin, China

Email: 1{amit0011, astsrikan}@ntu.edu.sg, 2akash@nus.edu.sg, 3asjgwu@gmail.com

Abstract—Real-time multi-media applications are increasingly
mapped on modern embedded systems based on Multiprocessor
Systems-on-Chip (MPSoCs). Tasks of the applications need to be
mapped on the MPSoC resources efficiently in order to satisfy
their performance constraints. Exploring all the mappings, i.e.
tasks to resources combinations exhaustively may take days or
weeks. Additionally, the exploration is performed at design-time
that cannot handle dynamism in applications and resources’
status. A run-time mapping technique can cater for the dy-
namism but cannot guarantee for strict timing deadlines due
to large computations involved at run-time. Thus, an approach
performing feasible compute intensive exploration at design-time
and using the explored results at run-time is required. This
paper presents a solution in the same direction. Communication-
aware design space exploration techniques have been proposed
to explore different mapping options to be selected at run-time
subject to desired performance and available MPSoC resources.
Experiments show that the proposed techniques for exploration
are faster over an exhaustive exploration and provides almost
the same quality of results.

I. INTRODUCTION

Advanced multimedia embedded systems (e.g., smart
phones, tablets, PDAs) need to support multiple applications
concurrently. The increasing performance demands of concur-
rently running applications are satisfied by relying the systems
on multiprocessor systems-on-ship (MPSoCs), for example,
IBM Cell [1] and NXP Nexperia [2]. The MPSoCs may con-
tain different type of processing elements (PEs) connected by a
communication network in order to achieve high performance
by exploiting their distinct features.

The system users expect that throughput constraints of all
applications running in the system are satisfied which heavily
depends upon how efficiently application tasks are mapped
onto system resources (PEs). There is an enormous number of
possibilities for mapping the tasks onto the PEs. The mapping
is accomplished either by design-time DSE [3][4] or run-time
mapping strategies [5][6]. The design-time DSE strategies are
incapable of handling dynamism such as adding a new appli-
cation into the platform at run-time. On the other hand, the
run-time mapping strategies cannot provide timing guarantees
due to lack of any previous analysis and limited computational
resources at run-time. Thus, an approach performing compute
intensive analysis (DSE) at design-time and using the analysis
results at run-time is required.

The design-time DSE strategies need to find a number of
mappings by taking an application and a platform as input.
An exhaustive DSE to find all the possible mappings is not
scalable when the number of tasks/PEs is large as we need
to explore for lot of tasks to PEs combinations. Existing DSE
strategies are applicable only to fixed MPSoC platform, don’t

scale well with the number of PEs in the platform and don’t
always provide the largest throughput mapping as they perform
DSE in view of optimizing for the performance metrics such
as energy and resource optimization.

Contribution: This paper presents design-time DSE strate-
gies that perform analysis on a generic MPSoC platform
in view of optimizing throughput and produce resource-
throughput trade-off points, i.e. tasks to PEs mappings with
their throughput. A resource has been referred as a tile that
essentially contains a processing engine along with other
elements such as memory. The platform contains different
type of tiles such as a processor or a reconfigurable hardware
(RH) block as the processing engine, i.e. the platform is
heterogeneous. The generated points can be used by a light-
weight run-time manager to select the best point depending
upon the available tiles in the platform and desired throughput.
First, an exhaustive DSE strategy is presented that produces all
the possible tasks to PEs mappings, which is not scalable with
the number of tasks in the application. To overcome the large
exploration overhead (may be a couple of weeks for large
application size), we present a communication-aware DSE
(CADSE) strategy that discards the evaluation of inefficient
points and produces almost the same best trade-off points.
To further accelerate the DSE, we incorporated pruning in
the CADSE (PCADSE) where evaluation of the number of
trade-off points is further reduced based on a pruning idea.
The quality of the best mappings generated by the CADSE
and PCADSE strategies do not differ significantly, while the
exploration process is speeded up.

Overview. Section II introduces state-of-the-art multi-
processor DSE strategies. Our proposed DSE methodologies
along with multiprocessor/application model used in this work
are introduced in Section III. Section IV presents a set of ex-
perimental results on the efficiency of the proposed approach.
Section V concludes the paper and provides directions for
future work.

II. RELATED WORK

Several DSE strategies providing single mapping for an
application have been reported in literature [7][8][9]. These
strategies are applicable only to fixed MPSoC platforms and
mappings are not optimized from throughput point of view as
throughput optimization is not their target but to satisfy some
constraint. Further, they cannot handle dynamism in resource
availability and throughput (QoS) requirement at run-time.
However, our DSE strategies are applied to a generic MPSoC
platform and generate a number of mappings with different
resource requirement and throughput, which helps to handle

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.18

65

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.18

72

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.18

72

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.18

72

��

��

��

�� ��

��

��

��

�� ��

�� ��

Fig. 1. Multiprocessor platform example.

run-time dynamism and allows them to be mapped on any
architecture without requiring analysis to be repeated.

DSE strategies providing multiple mappings for homoge-
neous MPSoC platforms have been recently presented in [4],
[10] and [11]. In [4], DSE is performed in view of optimizing
for the resource usage, whereas in [10] and [11], for optimizing
power. These strategies have several drawbacks, e.g., applica-
ble only to fixed homogeneous platforms, generated mappings
are not optimized from throughput point of view, generate
duplicate mappings for larger platforms and not scalable with
the platform size. The duplicate mappings have the same
throughput but they differ in placement of tasks on different
tiles with the same tasks to tiles binding. Singh et al. [12]
propose a DSE strategy that performs exploration in view of
optimizing throughput by considering a generic platform but
the considered platform is homogeneous, i.e., contains only
one type of tile, and the exploration follows a pruning strategy.

Our strategy considers a generic platform containing dif-
ferent types of tiles depending upon the application tasks’
specifications and always provides mappings with maximum
throughput by performing exploration in a communication-
aware manner. The generated mappings are applicable to any
platform containing tiles with maximum separation between
two of them as the one considered during DSE without
repeating the DSE. The generation of duplicate mappings are
avoided by not considering a bigger platform than required
that can exploit all the parallelism present in the application.

III. PROPOSED DESIGN SPACE EXPLORATION

METHODOLOGIES

This section introduces our proposed DSE methodologies.
First, we describe the hardware MPSoC architecture and
application model used in our DSE methodologies.

Multiprocessor Architecture Model. The hardware archi-
tecture model describes platform processing units and the in-
terconnection network between them. The platform model uses
tile-based architecture that uses an interconnection network to
connect the tiles as shown in the example platform of Fig. 1.
The platform contains tiles t1, t2, t3 & t4, which are connected
by point-to-point connections (c) with fixed latencies. Latency
of connections through any Network-on-Chip (NoC) can be
modeled so long as the latencies between tiles are provided.
Each tile contains a processing engine (processor P or RH),
a local memory (M, size in bits), a set of communication
buffers called network interface (NI) that are accessed both
by the interconnect and the local processor, and maximum
number of input/output connections to connect with the NI that
provide maximum incoming/outgoing bandwidth (in bits/time-
unit). Multiprocessor systems such as StepNP [13] and Eclipse
[14] fit nicely into this platform model.

��

�	�

��

�
	
����

����

��

�

�

�

�

	� 	�

	�
	�

��
��

�	�� ����
���
�
�����
�
�����

��
��
���
�
���
��
�
��������
��
�
������

�

�� �	�

�
	 ��

������
�	�����������������
�

������
�	�����������������	����� ��
��

Fig. 2. SDF Graph model of an H.263 decoder.

The communication network used in the example platform
of Fig. 1 is arranged in a 2-D mesh topology. The distance
between two tiles is referred to as hop distance. Adjacent tiles
t1 & t2 are at hop distance of 1 and t1 & t4 at hop distance
of 2 (1 hop in X-direction to reach t2 and 1-hop in Y-direction
to reach t4). The latency of connections between the tiles is
directly proportional to hop distance. We increase the latency
of connections between the tiles to account for the higher hop
distances. This facilitates for finding mappings even when the
tiles are further apart in the actual platform.

Application Model. The application model considers
throughput-constrained multimedia applications consisting of
multiple tasks. Synchronous Dataflow Graphs (SDFGs) [15]
are used to model such applications. Throughput is an im-
portant constraint and determines how often tasks of the
application finish their execution, which is determined by
the cycles in the SDFG. An SDFG model of H.263 decoder
application is shown in Fig. 2. Nodes modeling tasks are
called actors that communicate with tokens sent from one
actor to another through edges modeling dependencies. The
application is modeled with four actors vld, iq, idct & mc and
four edges d1, d2, d3 & d4. An actor has following attributes:
its implementation alternatives (e.g., processor and RH tile),
execution time (in time-units) and memory needed (in bits)
on the implementation alternatives. An edge has following
attributes: size of a token (in bits), memory (in tokens) needed
when connected actors are allocated to the same tile, memory
(in tokens) needed in source and destination tiles, bandwidth
(in bits/time-unit) needed when connected actors are allocated
to different tiles. An actor fires (executes) when there are
sufficient tokens on all of its input edges and sufficient buffer
space on all of its output channels. At each firing, a fixed
number of tokens from the input edges are consumed and a
fixed number of tokens on the output edges are produced.
These numbers are referred to rates that define how often
actors have to fire with respect to each other. The edges may
have initial tokens to start the actor firing, indicated by a
bullet in the Fig. 2. The application model also specifies a
throughput-constraint.

Existing DSE strategies find mappings while performing
optimization for power and resource usage. This might lead
to mapping of parallel executing actors on the same tile and
thus forcing their execution sequentially, resulting in reduced
throughput. However, our strategies optimize throughput so
produce mappings with maximum throughput. Our strategies
map the connected and sequentially executing actors on the
same tile, resulting in reduced communication overhead that
might maximize throughput. A number of mappings are eval-
uated for each multimedia application to be supported on a
hardware platform. The evaluation considers finding different

66737373

!����	�����"
�
#�����#���	
�� "����$���	
��
� �
�
���������
�	�%����	��
������#�
��
��������

&��� ��'()��(��
����

*��
��
����
���+
�+"���(
�
������������

,�

-��

��
�������� .���'()��(��
�����/

0����)

�
�

��
��
��
��
�
�

1��������$�
2)����)��

�1234�

��
�������� .��

*��
��
��"������	�� �
�
������%���
�������������
��	��		�
)���
��
)������������
��

��
��
�%��
����������
�
���)�������������%���
���

&��� &��,

0������)�&��
�5�#��	����%����#���
��� ��6&��738
��	
�� .���'���6&���85�95��6&��,8�

�

��������� .��

������������,�/,�

-��

��
��
��
��
��
�

:�	�
�	���
 �

Fig. 3. Exhaustive Design Space Exploration Flow.

mappings and their throughput. For each mapping, actors
are bound to tiles and edges to memory inside tiles or to
connections in the platform. The binding is considered valid
if memory imposed, allocated input/output connections and
allocated incoming/outgoing bandwidth are less than or equal
to the maximum available on each tile. Only the valid bindings
are considered and throughput for the same is computed. For
computing throughput, first, a static-order schedule for each
tile is constructed, which orders the execution of bound actors.
Then, all the binding and scheduling decisions are modeled
in a graph called binding-aware SDFG. Finally, throughput is
computed by self-timed state-space exploration of the binding-
aware SDFG [16]. We now introduce our DSE strategies.

A. Exhaustive Design Space Exploration

The exhaustive design space exploration (EDSE) flow eval-
uates all the possible actors to tiles combinations, i.e., map-
pings. The flow is presented in Fig. 3. The flow takes appli-
cation models as input and stores the best mapping (MTDB)
at each possible resource combination. The applications are
evaluated one after another by incrementing the application
number (appNumber++). The main steps of the flow are
highlighted and described subsequently.

1) Considering a Suitable Platform Graph: This step of
the analysis flow considers a platform graph that can evaluate
all possible mappings for each application. The application
actors implementation alternatives could be a number of tile
types. In particular, we have considered processor (Proc) and
reconfigurable hardware (RH) tiles. The considered platform
contains max nA Proc & max nA RH tiles, where max nA
is the maximum value of number of actors in an application
amongst all the applications. This platform is capable of
exploiting all the parallelism present in each of the application
and considering any bigger platform wouldn’t provide better
performance.

The initial considered platform contains tiles separated by
a distance of one hop distance (hop distance = 1), which
caters for a minimum latency for all the connections between
the tiles. The DSE flow is repeated by considering a similar
platform containing tiles separated by one higher hop distance
(hop distance++), i.e., with increased latency for connections,

till hop distance reaches to max hop distance (input to the
DSE flow). The designers can opt for a suitable value of
max hop distance depending upon the expected hardware
platform at run-time, where, maximum hop distance between
two tiles can be up to max hop distance.

Varying hop distance consideration provides mappings
where application edges are mapped to connections at
hop distance of one (to cater for minimum latency) to
max hop distance (to cater for maximum latency). This caters
for the run-time aspects when the available tiles are at different
hop distances.

2) Evaluating Processor Tiles Mappings: This step evalu-
ates all the possible actors to processor (Proc) tiles mappings.
The evaluation follows a set of steps described subsequently.
An application with one actor (a1) to be mapped on Proc tiles
has only one unique actor to tile mapping, which is computed
from equation 1. An application with two actors (a1,a2) has
two unique mappings that is computed from equation 2. One
mapping contains actors on separate tiles (1C0 implies that
from the remaining one actor a1, it is not chosen to combine
it with actor a2) and another on the same tile (1C1 implies
that actor a1 is chosen to combine it with actor a2). Similarly,
for an application with three actors (a1,a2,a3), the unique
mappings are computed from equation 3. First, actor a3 is
mapped separately, i.e., not combined with others (from the
remaining two actors a1 & a2, none is chosen to combine with
a3, indicated as 2C0) and remaining two actors are mapped
by using equation 2 (fEDSE(2,a1,a2)), providing two unique
mappings. Then, from the remaining two actors one actor is
chosen to combine with actor a3 (2C1) and the remaining actor
is mapped separately, providing two unique mappings. Next,
from the remaining two actors, both are chosen to combine
with actor a3, providing one unique mapping. Thus, for an
application with three actors, a total of five unique actors to
tiles mappings are evaluated.

The equations are extended in the similar manner for larger
number of actors. For n actors (a1,a2,...,an), the mappings
can be computed from equation 4. It can be observed that
when computing mappings for larger number of actors, the
mappings computed at lower number of actors are used, such
as fEDSE(n− 1,a1,a2,...,an−1) in fEDSE(n,a1,a2,...,an).

fEDSE(1, a1) = 1 (1)

fEDSE(2, a1, a2) =
1 C0 × f(1, a1) +

1 C1 (2)

fEDSE(3, a1, a2, a3) =
2 C0 × f(2, a1, a2)

+2C1 × f(1, remain actor) +2 C2

(3)

.

.

.

fEDSE(n, a1, a2, ..., an) =
(n−1) C0 × f(n− 1, a1, a2, ..., an−1)

+(n−1)C1 × f(n− 2, remain actors)

+(n−1)C2 × f(n− 3, remain actors)

.

.

+(n−1)Cn−2 × f(1, remain actor) +(n−1) Cn−1

(4)

67747474

Algorithm 1: Proc/RH tiles Comb. Mappings Evaluation

Input: Proc tiles mappings M
Output: Proc and RH tiles combination mappings to be added to set M
for each Proc tiles mapping α (∈ M) do

findProc&RHTilesCombMappings(α, t1);
end

function findProc&RHTilesCombMappings(Mapping β, Tile
startProcTile)

if startProcTile == lastProcTile+1 then
return;

end
for Tile i = firstProcTile to lastProcTile (in current mapping) do

if tile i contains actor(s) and all of them can be mapped on RH
tile then

Move actor(s) of tile i on a free RH tile to generate a new
mapping α;
Compute throughput of α;
Add α with its throughput to set M ;
findProc&RHTilesCombMappings(α, i+1);

end
end

end function

3) Evaluating Processor and Reconfigurable Hardware
Tiles Combination Mappings: The Proc and RH tiles com-
bination mappings are evaluated by Algorithm 1, which takes
Proc tiles mappings (M) obtained in the previous step (Fig.
3) as input. The algorithm evaluates a number of mappings
and adds them in the same set. Thus, the final mapping set M
contains all the evaluated mappings using different Proc/RH
tiles combinations. For the example H.263 decoder application
when each actor has two implementation alternatives, we get
a total of 94 mappings at each hop distance value.

4) Selecting Best Mapping at Each Resource Combina-
tion: At each Proc/RH tiles combination, we get a number
of mappings. For example, at 2Proc & 2RH tiles resource
combination, we get a total of 6 mappings for the H.263
decoder. This step selects the maximum throughput mapping
at each resource combination and stores it into the mappings &
throughput database (MTDB) (Fig. 3). These stored mappings
provide options for mapping the application at run-time. The
best mapping can be selected based on the available platform
resources and desired throughput. The selected mapping is
then used to configure the platform.

B. Communication-Aware Design Space Exploration

The communication-aware design space exploration
(CADSE) strategy incorporates communication awareness in
the EDSE (Fig. 3). The step to explore Proc tiles mappings
(Evaluate actors-to-Proc tiles mappings) is modified to
perform the exploration in communication-aware manner.
For an application with n actors (a1,a2,...,an), the Proc tiles
mappings are evaluated from equation 5, which requires n-1,
n-2, n-3, ..., 2, 1 actors mappings in advance as in the EDSE.
These mappings can be calculated by putting different values
of n in the equation 5. This equation differs from equation 4
while choosing actors to be combined with actor an on the
same tile. The chosen actors and actor an are checked if they
are connected (conn) before they are mapped on the same
tile. For example, (n−1)C2−conn in equation 5 specifies that
the chosen (C) two actors and actor an are connected.

Algorithm 2: Distinct Channels Calculation

Input: Application Graph
Output: Number of distinct channels
distinctChannelCount = 0;
for actor ai = FirstActor (a1) to LastActor (an) do

for actor aj = actor next to ai (i.e. ai+1) to LastActor (an) do
if a channel exists between ai and aj then

distinctChannelCount++;
end

end
end

fCADSE(n, a1, a2, ..., an) =
(n−1) C0−conn × f(n− 1, a1, a2, ..., an−1)

+(n−1)C1−conn × f(n− 2, remain actors)

+(n−1)C2−conn × f(n− 3, remain actors)

.

.

+(n−1)C(n−2)−conn × f(1, remain actor) +(n−1) C(n−1)−conn
(5)

To find whether a set of actors are connected, we find
number of distinct channels between them. If there are more
than one channel between two actors then only one channel
is counted as the distinct channel. The actors are connected if
the number of distinct channels between the actors is ≥ (the
number of actors – 1). For n actors (a1,a2,...,an), the total
number of distinct channels are calculated from Algorithm 2.

C. Pruning-based Communication-Aware Design Space Ex-
ploration

The pruning-based communication-aware design space ex-
ploration (PCADSE) strategy incorporates pruning in the
CADSE strategy. In Fig. 3, after evaluating Proc tiles mapping
by CADSE, only the maximum throughput mapping at each
Proc tile count is passed to evaluate Proc/RH tiles combination
mappings as earlier. Proc tile count for a mapping is defined
as the number of used Proc tiles. This strategy assumes
that by starting with the best Proc tile mapping we should
get the best mappings at Proc/RH tiles combinations. The
pruning consideration facilitates for speeded exploration over
the CADSE and provides almost the same quality (throughput)
mappings.

IV. EXPERIMENTS

The proposed DSE methodologies have been implemented
as an extension to the publicly available tool set SDF3 [17].
To evaluate run-time and quality of the methodologies, 100
random applications modeled as SDFGs with 4, 5, 6 and 7
actors having one of their implementation alternatives as Proc
tile and other RH tile if present have been considered. The
same generic platform graph is considered to evaluate the
different DSE methodologies. We have adopted a tile-based
architecture but any type of architecture can be modeled so
long latencies between the tiles are known. The experiments
have been performed on a Core 2 Duo processor at 3.16 GHz.

The number of mappings evaluated by EDSE increases
exponentially with the number of actors. Further, the number
of mappings increases even more when the implementation
alternatives of actors get increased. Thus, the exploration may
take a couple of days. This makes the EDSE non-scalable
although it always provides the best quality of mapping at
each resource combination. The CADSE has been employed

68757575

��

��
���	
 ����	

�
�

�

�

�

��

��
���	
 ����	

��
��
��
��

��
���
���

�

	

�

�

�

 � �
�
� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� ��

�

���	
��

���������������� !�����"�#$������%�&%���&��#''(%$#�%����

Fig. 4. Speed up obtained by CADSE and PCADSE over EDSE

����

���
���	
 ����	

��

�

���
���

�

	

�

���

����

���

����

 � �
�
� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� ��

��
��
��
��

�

�

��
��
!
#(
%)�

��
�
���
���

�

���

 � �
�
� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� ��

��
�

���	
��

����������������&�� *&' ��+#(���

Fig. 5. Quality of mappings by CADSE and PCADSE over EDSE

to speed up the exploration process while providing almost the
same quality (throughput) of mappings. The PCADSE speeds
up the exploration process further while providing a bit of
degraded quality of mappings.

Fig. 4 shows the speed up obtained by CADSE and
PCADSE over the EDSE for all the 100 applications. The
speed up by CADSE and PCADSE is calculated by dividing
execution time of EDSE to the execution time of CADSE
and PCADSE, respectively. The applications are sorted by the
number of actors within them. It can be observed that CADSE
is faster over the EDSE, and the PCADSE is faster even over
the CADSE for all the applications. It is also clear that as
the number of actors increases in the applications, the speed
up obtained by the CADSE increases as the strategy discards
evaluation of more number of mappings by incorporating
communication-aware exploration, whereas speed up obtained
by the PCADSE increases further as the strategy has to
prune from a larger number of Proc tiles mappings. On an
average, the CADSE and PCADSE is faster by 3.7× and 11×,
respectively when compared to EDSE.

Fig. 5 shows the quality (throughput) of the best mapping
at 2 Proc and and 1 RH tiles resource combination for all
the applications when tiles are assumed to be separated by a
fixed hop distance. The best mapping throughput obtained by
CADSE and PCADSE are normalized with respect to (w.r.t.)
EDSE. The normalized throughput values are plotted after
sorting them in descending order. It can be observed that the
CADSE and PCADSE provide the same best mappings as
of EDSE for more than 90% and 80% of the applications
respectively. Similar behavior is obtained at other resource
combinations. Thus, we can say that for most of the appli-
cations, we get the same quality of mappings by all the DSE
strategies.

The DSE methodologies store the best mappings at each
resource combination at varying hop distance values (referred
as hops). The best mapping at different hops remains the same
with a bit of different quality of the mapping as the delays of
connections between the tiles get changed. At run-time, the
best mapping can be selected depending upon the available

resources and hop distance between them.

V. CONCLUSION

This paper presents design space exploration (DSE) strate-
gies for supporting efficient run-time MPSoC management.
The strategies store the best mapping at each resource combi-
nation, which can be directly used at run-time depending upon
the available resources and desired throughput. Three DSE
strategies have been presented. One strategy performs DSE
exhaustively (EDSE) and produces the best quality of mapping
at each resource combination, whereas, this strategy has worst
run-time. Next, a communication-aware DSE (CADSE) strat-
egy is presented to perform the exploration in communication-
aware manner. This reduces the total number of mappings to
be evaluated and thus the run-time for exploration. The quality
of mappings remains almost the same. To further reduce the
exploration run-time, a pruning criteria has been incorporated
in the CADSE, which provides a bit of degraded quality of
mappings. In future, we plan to develop more ways of faster
DSE in order to further speed up the exploration process
while providing almost the same quality of mappings as of
the EDSE.

REFERENCES

[1] M. Kistler et al., “Cell multiprocessor communication network: Built
for speed,” IEEE Micro, vol. 26, pp. 10–23, 2006.

[2] M. Kim et al., “Energy-aware cosynthesis of real-time multimedia
applications on mpsocs using heterogeneous scheduling policies,” ACM
Trans. Embed. Comput. Syst., vol. 7, pp. 9:1–9:19, 2008.

[3] G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti, “Efficient
design space exploration for application specific systems-on-a-chip,” J.
Syst. Archit., vol. 53, pp. 733–750, 2007.

[4] S. Stuijk et al., “A predictable multiprocessor design flow for streaming
applications with dynamic behaviour,” in Proceedings of the 13th
Euromicro Conference on Digital System Design, 2010, pp. 548–555.

[5] V. Nollet et al., “Run-time management of a mpsoc containing fpga
fabric tiles,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, pp.
24–33, 2008.

[6] A. K. Singh et al., “Communication-aware heuristics for run-time task
mapping on noc-based mpsoc platforms,” J. Syst. Archit., vol. 56, pp.
242–255, 2010.

[7] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor,” in Proc. EMSOFT’07, 2007, pp.
57–66.

[8] A. Bonfietti et al., “Throughput constraint for synchronous data flow
graphs,” in Proc. CPAIOR ’09. Springer-Verlag, 2009, pp. 26–40.

[9] A. Schranzhofer et al., “Dynamic power-aware mapping of applications
onto heterogeneous mpsoc platforms,” Industrial Informatics, IEEE
Transactions on, vol. 6, no. 4, pp. 692 –707, 2010.

[10] C. Ykman-Couvreur at al., “Linking run-time resource management
of embedded multi-core platforms with automated design-time explo-
ration,” Computers Digital Techniques, IET, vol. 5, no. 2, pp. 123 –135,
2011.

[11] G. Mariani et al., “An industrial design space exploration framework
for supporting run-time resource management on multi-core systems,”
in Proceedings of DATE, 2010, pp. 196–201.

[12] A. K. Singh et al., “A hybrid strategy for mapping multiple throughput-
constrained applications on mpsocs,” in accepted for publication in Proc.
of CASES, 2011.

[13] P. G. Paulin et al., “Application of a multi-processor soc platform to
high-speed packet forwarding,” in Proc. DATE, 2004, pp. 58–63.

[14] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspers, P. van der
Wolf, E.-J. D. Pol, O. P. Gangwal, and A. Timmer, “A heterogeneous
multiprocessor architecture for flexible media processing,” IEEE Des.
Test, vol. 19, pp. 39–50, 2002.

[15] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. 36, pp. 24–35, 1987.

[16] A. H. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” in Proc. ACSD, 2006, pp. 25–36.

[17] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proc.
ACSD, 2006, pp. 276–278.

69767676

