
Run-Time Mapping for Reliable Many-Cores Based
on Energy/Performance Trade-offs

C. Bolchini, M. Carminati, A. Miele
Politecnico di Milano

Dip. Elettronica, Informazione e Bioingegneria
Milano - Italy

{bolchini|mcarminati|miele}@elet.polimi.it

A. Das, A. Kumar, B. Veeravalli
National University of Singapore

Dep. of Electrical and Computer Engineering
Singapore

{akdas|akash|elebv}@nus.edu.sg

Abstract—This paper presents a run-time resource manager
for NoC-based many-core architectures that dynamically de-
termines the most effective mapping of tasks on the process-
ing nodes of the architecture to optimize system reliability
while leveraging on performance and communication energy. An
adaptive engine is exploited to pursue the given optimization
goal taking into account various metrics. Experimental results
for a set of benchmarks show that the adaptive engine (with
MTTF optimization only) achieves 16% improvement in MTTF
with respect to static pre-computed mapping at a reasonable
communication energy overhead of 10%. Further, with MTTF
and energy optimization engine turned-on, the adaptive engine
is able to minimize communication energy consumption by 50%
while exploiting the available MTTF slack.

I. INTRODUCTION

To accommodate the applications’ ever-increasing demands
and to achieve and exploit easily-manageable scalability, com-
plex many-core systems are built by integrating low-cost
Commercial Off-The-Shelf (COTS) components. Most recent
many-core systems consist of processing nodes interconnected
via networks-on-chip (NoCs) in a mesh-based architecture.
Data processing applications (e.g., audio/video processing)
mapped onto these platforms are typically executed multiple
times in a periodic fashion, with the average number of
iterations per unit time determining the overall throughput;
they are often characterized by large data exchange among
the tasks. Therefore, task allocation is pivotal in determining
energy consumption associated with communication among
dependent tasks of the application. Data communication ag-
nostic mapping of these applications on a many-core system
can lead to a significant energy consumption on the NoC
communication infrastructure, contributing to as much as
≈ 60% of the overall application energy consumption [1].

Shrinking transistor geometries and aggressive voltage scal-
ing are negatively impacting the dependability of the process-
ing elements and the communication backbone of many-core
systems [2]. Permanent device defects have gained a lot of
research focus over the past decades due to their adverse
effects in the deep sub-micron technologies. Quite a few
research works were directed towards application mapping
on many-core platforms with the objective of balancing the
temperature of the cores [3]–[5]. Although lifetime reliability
of a core is closely related to temperature, other aging factors,

such as operating frequency, voltage and current-density, are
not captured. If aging is not incorporated explicitly in the
application mapping, some cores can age faster than others,
thereby reducing the operational life of a system.

Aging-aware task mapping techniques can be classified
into design-time [6]–[10] and run-time based [11]–[13] ones.
The former techniques suffer from the following limitations.
First of all, most of these approaches use worst-case task
execution time to determine the application task mapping,
thus wasting the significant slack available at run-time due
to the dynamism in the application execution time. Secondly,
the same application can have multiple modes, characterized
by different task execution time. Static techniques involve
determining mapping for all these modes (treating them as
individual applications) thereby exploding the design-space.
Finally, the existing techniques are limited by the number of
fault-scenarios (and hence core availability). As established
in [14], the number of mappings grows exponentially with
the number of fault-scenarios, which implies a significant
overhead for storing and accessing them. The state-of-the-
art dynamic approaches mainly suffer from two limitations;
on one hand, the extra computation effort spent in defin-
ing mappings from scratch and discarding any design-time
decision and, on the other hand, these approaches do not
address concurrently the minimization of energy consumption,
throughput degradation and aging.

This paper proposes a run-time technique that adapts a set
of pre-computed, design-time decisions, based on run-time
application dynamism. The objective of the mixed design-
time/run-time approach is to mitigate aging in a many-core
system and minimize application communication energy while
satisfying throughput requirements to provide the desired
quality-of-service to end users. The key contributions are:

• a design-time/run-time adaptive engine for application
mapping on many-core systems;

• a dynamic mitigation of core aging and application com-
munication energy;

• a fast heuristic to minimize the execution time of the
run-time adaptive engine.

Experiments conducted on a set of real-life applications
demonstrate that the proposed dynamic approach is able to in-

crease reliability of a 16%, with no energy optimization. With
multi-application and multi-throughput scenarios, the proposed
technique achieves on average 27% and 22% better results,
respectively. In terms of joint optimization, the proposed
dynamic engine is able to exploit the slack in the MTTF (with
respect to the static scenario) to minimize the communication
energy achieving 50% lower energy on average for all the
applications.

The rest of the paper is organized as follows. A brief
overview of the related works on reliability and energy is
provided in Section II. This is followed by an introduction
to application and architecture model along with problem
statement in Section III. The proposed methodology is dis-
cussed next in Section IV. Experimental results are presented
in Section V. Finally, the paper is concluded in Section VI
with key future directions.

II. RELATED WORK

The problem of scheduling dependent tasks with precedence
constraints on a finite set of processing elements, with the aim
of maximizing or minimizing an objective function, is NP-
complete. Energy/reliability-aware task mapping and schedul-
ing fall within this set of problems; it can be performed at
design-time [15] or at run-time [16]. Design-time approaches
can devote much more time in finding the best solution, since
the computation is performed statically and off-line once in
the entire system lifetime [6]–[10]. In [6] and [7], a simulated
annealing-based technique is proposed to address the lifetime
reliability-aware task mapping problem with the objective
of maximizing system lifetime measured as mean time to
failure, MTTF. Another reliability-driven task mapping ap-
proach is proposed in [8]: a cluster-based allocation technique
to cope with fault-tolerant issues by smartly allocating the
extra tasks needed for this purpose. In [9], two static energy-
aware heuristics for task mapping are presented to optimize
performance with respect to energy consumption. Finally, a
convex optimization-based mapping generation technique to
maximize system MTTF is proposed in [10]. Many mapping
solutions for several use cases are computed at design-time
and stored; at run-time, the best pre-computed solution is
applied according to the current fault-scenario. This approach
assumes to know all the possible run-time scenarios and
requires substantial amount of memory to store a mapping
database; moreover, it does not consider energy consumption.

The main limitation of all these static design-time policies is
the fact that they assume a-priori knowledge of the workload
(e.g., task-graph composition, execution times, and applica-
tions’ schedules) and of the system (e.g., faulty nodes, and
architecture aging trend). These assumptions are admissible
when considering a static application scenario, but they do
not hold in scenarios where the applications number and their
characteristics are unknown in advance and can change in an
unpredictable manner. This paper presents a novel approach to
simultaneously optimize the three dimensions viz: components
aging, reliability and energy consumption while adapting the
system to run-time dynamism.

Dynamic approaches are more suitable to adapt task map-
ping at unknown run-time scenarios. An interesting work is
the one presented in [12]: simple mapping configurations
are statically computed and then enhanced through run-time
heuristics, allowing to track actual components aging. In [13],
a run-time task mapping technique is proposed to explicitly
optimize system lifetime; application mapping is computed at
run-time together with the frequency at which the re-mapping
algorithm needs to be invoked. While these approaches share
some common points with the one this paper introduces,
they do not take into account energy consumption which is
critical for modern embedded systems. The work that is more
closely related to the one here proposed is [11]; although data-
communication is optimized together with reliability, it does
not guarantee maximization of the system lifetime.

Thus, to the best of the authors’ knowledge, the aim of
the proposed work of optimizing energy consumption and
aging, while meeting a throughput constraint, represents an
innovation in the many-core architecture scenario.

III. BACKGROUND AND PROBLEM STATEMENT

Before getting into the details of the proposal, we set
the ground by defining the used models and the addressed
problem.

A. Relevant Models

Application Model: In data-intensive computing envi-
ronments, as the one we consider, it is common to execute
parallel multi-threaded applications as sample applications. An
application is a directed graph G = (V,E), where V is the set
of nodes representing tasks of the application and E is the set
of edges {ei,j | 1 ≤ i, j ≤ |V |}, representing data dependency
among tasks vi and vj . Each task vi ∈ V is annotated with
its execution time τi, and each edge ei,j with the size of the
exchanged message di,j .
In the experimental scenarios presented later in this paper, we
consider multiple applications, being executed in a mutually
exclusive fashion on the reference architecture. This means
that all applications are known at design-time, but not the
workload in terms of the order of execution and the starting
times, thus leading to a highly-variable workload scenario and
the need for a run-time mapping policy.

Architecture Model: The architecture we refer to is a
many-core computing fabric, highly modular and configurable,
devoted to the acceleration of parallel multi-threaded data-
intensive applications. The architecture is organized in basic
processing nodes, interconnected to each other and to the I/O
interface by means of a Network-on-Chip (NoC) infrastruc-
ture. It is not necessary, within the scope of this work, to
further detail the internal structure of a single node, may it
be a multi or a single processor platform, made up of general
purpose processors or specific hardware accelerators; however,
all the cores are considered to be homogeneous.
Being connected through a NoC infrastructure, each process-
ing node has a specific position described by its (x, y) integer
coordinates; a node can communicate with any other node in

FC

Fabric
Controller

Processing
Nodes

PN2
(1,2)

PN3
(1,3)

PN4
(2,1)

PN5
(2,2)

PN6
(2,3)

PN7
(3,1)

PN8
(3,2)

PN9
(3,3)

NoC
Routing
Elements

PN1
(1,1)

Figure 1. The reference architecture is composed of several processing
elements and coordinated by a unique fabric controller.

the architecture by means of messages sent through the NoC
routing elements. The location of the nodes is fundamental
to properly model the communication among them, in terms
of message latency and energy consumption, as explained in
Section IV.
The platform activity is coordinated by a special node, which
is named fabric controller (refer to Figure 1). This node is in
charge of dispatching the applications to the other processing
nodes, by computing the best mapping and scheduling con-
figuration, according to specific ad-hoc designed metrics. This
special node is connected to the NoC infrastructure through
a special link, it is hardened by design so to achieve fault
tolerant properties, and it is assumed not to influence the
thermal profile of the system.

B. Problem Statement

Given i) a set of n applications A = {a1, a2, . . . , an},
modeled as directed graphs G = (V,E) and executed in
a mutually exclusive fashion, ii) a computing architecture
composed of m processing elements, each one described by its
coordinates (x, y) and connected through a NoC infrastructure
to the others, and iii) a user-defined throughput constraint,
which may vary during the execution, the given applications
must be mapped on the available processing nodes so as to
meet the given constraint. Moreover, the mapping policies
must be chosen so as to minimize the energy consumption and
to maximize the nodes lifetime, by balancing the components
aging to extend the system lifetime.

IV. THE PROPOSED APPROACH

The proposed solution combines a static approach together
with a dynamic one to solve the mapping problem in the
presence of conflicting optimization goals (as performance,
reliability and energy consumption) while retaining the best
from both worlds. Static approaches have the flexibility to ex-
plore all possible mapping solutions to generate the optimum
result, at the expense of longer design space exploration time.
However, these approaches are not able to cope with changing
environments of resource availability or scenarios where the
exact execution time of an application is not known a-priori.
Dynamic approaches are able to tackle these problems, but, on
the other hand, they usually suffer from high execution time
overhead or low quality solutions.

Constraints &
Design-Time

Metrics

ArchitectureSet of Applications Constraints &
Run-Time Metrics

Design-Time Computation Run-Time Optimization

Performance

Re
lia

bi
lity

Performance

En
er

gy

Performance

Re
lia

bi
lity

Mapping
Database

Performance

Reliability

Performance

Energy
Consumption

Reliability

Figure 2. Overview of the proposed methodology.

An overall schema of the proposed approach is presented
in Figure 2: it exploits design-time strategies to compute
good mapping solutions to start from; these solutions are
then dynamically optimized. In this proposal, we considered
a state-of-the-art static strategy [10] aiming at optimizing
reliability under a performance constraint; this approach is able
to exploit all the needed information (the applications task-
graphs, the architecture topology, the performance constraint
and reliability/performance metrics – grouped by a dashed
line in Figure 2) available at design-time and to perform an
accurate design space exploration devoted to the identification
of the best solution. The output of this first step is a database
of solutions (Mapping Database), which contains the best
mapping for each input application. Note that, although the
static mapping of [10] is used as the starting mapping in the
proposed dynamic approach, the strategy is orthogonal with
respect to the static mapping generation and can be used in
conjunction with other existing static techniques (e.g., [6]).

The dynamic approach selects the best mapping for an
application from the database and uses it at run-time to
optimize energy and reliability (measured as mean time to
failure, MTTF) while fulfilling the throughput constraint.

A. Metrics Definition

When minimizing energy consumption and maximizing the
components’ reliability, to meet a performance constraint the
proposed system must be able to capture the relevant aspects of
all three considered dimensions. Performance can be directly
measured in terms of the execution times, while reliability and
power consumption, since direct sensors are not available, are
to be modeled.

Performance: Within the proposed methodology, system
performance is measured in terms of throughput. Throughput
is defined as the amount of data processed by the system in
a unit of time; in particular, throughput is computed, every
time an application instance terminates, as the ratio between
the amount of processed data during the current execution and
the time elapsed between the execution start and end times,
defined as makespan.

More formally:

throughputi =
datai

makespani
(1)

where makespani = (tend,i− tstart,i) and i is the index that
is incremented by 1 every time the application (belonging to
the set of n applications analyzed at design-time) is issued in
the system.

Reliability: Extrinsic failures or wear-out related faults
are well-studied phenomena for ICs. As established in [17],
wear-out related defects are a result of transistor feature
reduction and increasing transistor and power density. There
are four dominant wear-out effects for ICs: electromigration
(EM), time-dependent dielectric breakdown (TDDB), stress
migration (SM) and thermal cycling (TC).

For the current research, since the focus of the work is
on the mapping policies, EM related wear-out failures are
assumed, however, any other effects can be easily incorporated
either standalone or using Sum-of-Failure Rate (SOFR) model
for any combination of the above failure effects. EM refers to
the movement of metal atoms from the interconnect wires and
vias due to the flow of current through it. The fault density
due to EM is shown to have Weibull distribution with scale
parameter given by the following equation (refer [17]).

αEM (T) = A0(J − Jcrit)−ne
Ea
KT (2)

where A0 and n are material-related constant, J(Jcrit) is the
(critical) current density, Ea is the activation energy, K is the
Boltzman’s constant and T is the temperature.

The lifetime reliability of a processor at the end of the first
period of an application graph is calculated according to the
following equation (ref. [10]).

R(tp) = e−(A)β where

A =
∑ ∆ti

α(Ti)
(3)

α(Ti) =
A0(J − Jcrit)−ne

Ea
KTi

Γ
(

1 + 1
β

)
where tp is the period of the application, A the aging effect
of processor, ∆ti the time intervals within period tp, and β
the slope parameter of the Weibull distribution. The reliability
after m periods of the application graph and the closed form
expression for the mean time to a permanent fault (MTTF)
are given by the following equations.

R(tmp) = e−(m×A)β (4)

MTTF =

∞∑
i=0

e−(i×A)β × tp (5)

Energy Consumption: Two are the main contributions
to energy consumption in NoC-based MPSoCs: computation
and communication energy. The former is almost constant,
regardless of the mapping, when considering homogeneous
architectures [1]. For this reason it is neglected in the follow-
ing analysis. The latter is mapping-dependent and represents
≈ 60% of the overall application energy consumption. In [18],
the authors defined bit energy (Ebit) as the energy consumed

when one bit of data is communicated through the routers and
links of a NoC.

Ebit = ESbit + ELbit (6)

where ESbit and ELbit are the energy consumed by the switch
and the link, respectively. The energy per bit consumed in
transferring data between task vi and vj mapped on proces-
sor p and processor q, respectively, and positioned nhops(p, q)
away is given by Equation 7 according to [1].

Ebit(p, q) =

{
nhops(p, q)ESbit + (nhops(p, q)− 1)ELbit if p 6= q

0 otherwise
(7)

where nhops(p, q) is the number of routers between processors
p and q. The total communication energy is thus given by

CE =
∑

(i,j)∈E
dij × Ebit(p, q) (8)

B. Run-Time Optimization

The dynamic approach has been defined in terms of an adap-
tive engine running on the architecture’s fabric controller, able
to monitor the system behavior and status (both architectural
parameters and application ones), and consequently take deci-
sions and act to modify the working conditions and parameters
with the aim to improve the pursued goals. This engine has
been implemented in terms of the so called Observe–Decide–
Act (ODA) control loop [19]; it continues observing a set
of sensed parameters and computing aggregated metrics and,
based on the analysis of the metrics, the engine takes decisions
about the distribution of the applications on the architecture
cores, and remaps the various tasks.

The observe phase is devoted to the computation of the set
of adopted metrics that describe the status of the system in a
given instant of time. In particular, it computes the throughput
according to the start and end time of each application
iteration and estimates the energy consumption according to
the current mapping. However, the engine cannot compute
the actual MTTF because it would require to be able to
predict changes in the architecture. Indeed, a good parameter
representing the current aging status of each of the core is A
(refer to Equation 3), and it can be computed by monitoring
temperature variations in time by means of hardware sensors.

The engine enters the decide phase when a specified ac-
tivation condition on the monitored metrics is triggered. As
an example, it is possible to set an activation condition when
a core is aging faster than the others (how much faster is
defined by the designer). In this first proposal, we adopted an
activation rule based on a fixed sleep period, i.e., the engine
periodically adapts. In the future versions, activation rules that
trigger adaptation on-demand will be investigated. The decide
phase is devoted to the identification of the most convenient
task, or set of tasks, to be remapped and the selection of the
cores where to move them, in order to improve the current
values of the optimization metrics while fulfilling the given
performance constraint on the throughput. In this proposal,
we considered only the relocation of a single task per move,

however, multiple relocations are under investigation to speed
up the adaptation process.

The algorithm for the definition of the remapping moves
is shown in Algorithm 1. The basic idea is to improve the
architecture lifetime by periodically unloading the eldest core
and distributing a part of the tasks mapped on it to other units,
while trying at the same time to limit the energy consumption.
Thus, according to the A metric, the engine selects the eldest
node Co and a set of the k youngest ones CN = {Cn1 , ..., Cnk}
(Lines 1-6). Then, the engine defines all the possible moves
as a single relocation of a task tj from Co to Cni (Lines 7-
11), and sorts them according to the following priority order:
considering the age of the node Cnk (youngest first, since
it is the most unstressed one) and, in case of same value,
considering task tj duration (largest first, since it is the one
mainly contributing to core aging – Line 12). Moreover, to
pursue energy saving, in the sorting process, the age of the
moves causing an increase in the communication energy will
be weighted by the energy variation ∆CEtj ,Cni

. It is worth
noting that the energy variation contribution can be turned-off
while optimizing reliability only.

The engine evaluates each move’s costs/benefits ratio by
applying it for one cycle to analyse the achievable make-span
and, consequently, whether the throughput constraint is met
or not. Indeed, differently from the energy variation that is
estimated according to a defined model, the current make-span
cannot be measured off-line, since it depends on the actual
execution of the application on the architecture; in fact, an
estimation of such a value would require the scheduling to be
known in advance, and this computation would be too time-
consuming to be performed on-the-fly on the fabric controller.
Therefore, in the act phase the engine will attempt a move
per cycle in the given order; if the move is accepted, the
engine will sleep until the activation condition will be triggered
another time, otherwise it will try with the subsequent move
in the list (Lines 13-21).

Algorithm 1 Task remapping strategy
1: TC ← specified throughput constraint
2: Co ← eldest core in the architecture
3: Cn ← k youngest cores in the architecture
4: To ← set of tasks mapped on Co
5: CEref ← Energy consumption of the current mapping
6: M← � – Set of candidate moves
7: for each tj ∈ To ∧ Cni ∈ Cn do
8: define move tj : Co → Cni
9: ∆CEtj ,Cni ← CEref − CEmove

10: M← M ∪ {tj : Co → Cni}
11: end for
12: Sort M according to priority function f(ACni , τj ,∆CEtj ,Cni)
13: apply first tj : Co → Cni ∈ M
14: run the application per 1 cycle
15: T ← current throughput
16: while T < TC do
17: undo previous move
18: apply next tj : Co → Cni ∈ M
19: run the application per 1 cycle
20: T ← current throughput
21: end while
22: return

V. EXPERIMENTAL RESULTS

We compare the effectiveness of the proposed dynamic
approach with the Static MaxMTTF one, proposed in [10].
A functional simulator has been implemented using Sys-
temC/TLM [20] to model the dynamic engine together with the
described NoC-based many-core architecture running applica-
tions modeled as task-graphs. A set of six real-life applications
is considered, namely FFT, MPEG Decoder, MWD, Picture-
in-Picture (PiP), VOPD, and Romberg Integration, from [21];
two different architectural platforms are selected, composed
of a 3× 3 and 3× 4 mesh NoC, respectively. The bit energy
(Ebit) for modeling communication energy of an application is
calculated using expressions provided in [18] for packet-based
NoC using 65nm technology parameters from [22]. The fol-
lowing parameters are used for computing aging [10]: current
density J = 1.5×106A/cm2, activation energy Ea = 0.48eV ,
slope parameter β = 2, temperature T = 295K and n = 1.1.
HotSpot [23] has been used to characterize the temperature of
the cores to account both the self-activity and the temperature
of neighbour cores. The considered performance requirement
is computed by taking the best performance possible on the
given architecture (computed at design-time through a design
space exploration) and by adding to it an extra 20%. This
value has been chosen to be consistent with the application
scenario and with the state of the art [10].

The introduction of an adaptive engine can cause both a
performance and energy communication overhead. The for-
mer one is due to the actual time needed by the engine
to compute the next move; in the considered system, it is
completely hidden since such computation is performed during
the applications’ execution. However, changing the mapping
of the architecture implies communicating information to
the cores, thus introducing delays and increasing the used
communication energy. Indeed, although this aspect has been
neglected in this work, we expect the impact to be limited, if
not negligible, with respect to the overall performance/energy
consumption, being the amount of data very small.

A. Reliability Performance

Figure 3 plots the normalized aging of the proposed dy-
namic technique with respect to the maximum MTTF obtained
using the static approach for the adopted experimental setup.
In this experiment, energy optimization was disabled, and the
proposed dynamic adaptation engine migrates tasks on cores
to optimize MTTF. The reported MTTF values are normalized
with respect to the MTTF of an unstressed architecture.

A few considerations can be drawn. First of all, for all
applications considered (including those not shown explicitly
in the figure), the MTTF obtained using the proposed dy-
namic approach is better than the one achieved in the Static
MaxMTTF scenario, as indicated on the bars for the proposed
technique. This is due to the adaptation of the architecture
to balance the stress of different units thereby improving
the overall MTTF. For the six considered applications, the
proposed technique improves MTTF by 16% on average.
Moreover, the MTTF improvement increases as the number of

fft mpeg mwd vopd romberg pip
0

0.2

0.4

0.6

0.8

1

Applications

N
or

m
al

iz
ed

 M
T

T
F

(a) 3x3 NoC

fft mpeg mwd vopd romberg pip
0

0.2

0.4

0.6

0.8

1

Applications

N
or

m
al

iz
ed

 M
T

T
F

(b) 3x4 NoC

Static MaxMTTF Proposed Dynamic

31.5%

14.9%

11.8%

9.0% 5.1%

22.7%

32.7%

48.2%

16.8%
22.4%

16.1%

20.6%

Figure 3. MTTF performance of the proposed approach.

Table I
ENERGY PERFORMANCE OF THE PROPOSED DYNAMIC APPROACH WITH

MTTF OPTIMIZATION ONLY

Applications Static MaxMTTF Proposed Dynamic
3× 3 3× 4

FFT 1 1 1.162704082
MPEG 1 1.017674265 1
MWD 1 1.040284091 1
VOPD 1 1.138318841 1.286558603

Romberg 1 1 1.052919355
PiP 1 1.346435185 1.430726496

Average 1 1.090452064 1.155484756

cores in the architecture grows. This is because the adaptation
engine is able to better balance the architecture load/aging by
switching between the unused units.

Table I reports a comparative analysis of the communication
energy between the static and the proposed dynamic technique
(with energy optimization turned off) on the two different
architectures. Energy consumption increases by an average of
9% and of 15%, on the two architectures, due to the adaptation
engine that uses extra energy for task migration.

B. Multi-Application & Multi-Throughput Scenarios

Figure 4 plots the result for three multi-application and three
multi-throughput test cases on the 3×3 architecture. The multi-
application and multi-throughput scenarios are generated by
randomly selecting the applications to increase the workload,
in a not homogeneous way. The number of iterations for
each application in the test cases are specified in Table II.
As an example, one iteration of MultiApp01 consists of
2, 000 iterations of VOPD, 10, 000 of Romberg, and 4, 000
of FFT; this workload is repeated infinitely. The iteration of
multi-throughput application MultiThr01 consists of 10, 000
iterations of MPEG with the same deadline used in the static
scenario, and 10, 000 iterations with deadline relaxed by 2×.

The static approach generates application mappings consid-
ering an unused architecture, i.e., age of all the cores are 0.
As a result, when applications are switched at run-time, the
static pre-computed mappings are no-longer optimal in terms
of MTTF because they ignore the current age of the different
cores. Such information, on the other hand, is exploited by
the dynamic approach that can adapt accordingly and produce

Table II
PARAMETERS FOR MULTI-APPLICATION AND MULTI-THROUGHPUT

MultiApp01 MultiApp02 MultiApp03
VOPD (2,000) MPEG (5,000) MPEG (10,000)

Romberg (10,000) MPEG (1,000) PiP (5,000)
FFT (4,000) Romberg (4,000) VOPD (4000)

MPEG (1,000) PiP (8,000)

MultiThr01 MultiThr02 MultiThr03
MPEG1 (10,000) VOPD1 (10,000) PiP1 (10,000)
MPEG2 (10,000) VOPD2 (10,000) PiP2 (10,000)

MultiApp01 MultiApp02 MultiApp03 MultiThr01 MultiThr02 MultiThr03
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
T

T
F

Static MTTF
Proposed Dynamic

Figure 4. MTTF performance with multi-application and multi-throughput
scenarios.

MTTF optimized solutions. For all the three multi-applications
considered, the proposed technique improves the architecture
MTTF by 27% on average.

Applications are often characterized by varying throughput
requirements. Computing the application mapping at design-
time for all applications and for all throughput requirements re-
sults in an explosion in the design space. With 20 applications
having on average two different throughput requirements, the
number of application mappings to be pre-computed at design-
time is 220. This imposes a significant overhead in terms of
storage for the mapping, and of time to retrieve the information
at run-time. An alternative approach adopted for most design-
time approaches is to generate one mapping for each of
these applications by using the stricter throughput require-
ment. Therefore, such approach gives good results when the
throughput requirement is strict, but is not able to optimize the
MTTF when the requirement is relaxed. Indeed, the dynamic
approach is able to adapt to this changing scenario. Although,
the initial mapping for the dynamic approach is the one pre-
computed at design-time with a stricter deadline, the adaptive
engine is able to explore different other mappings fulfilling
the relaxed throughput requirement, possibly achieving better
results. Experimental results for the three multi-throughput
applications indicate that the proposed technique improves
system MTTF by 22%, on average, when compared to the
one using static mapping without adaptation.

C. Communication Energy Performance

Figure 5 plots the normalized communication energy of the
proposed technique compared to the static approach, when
optimizing both communication energy and MTTF. Similarly
to the previous experiments, the initial mapping for this

Proposed Dynamic
Proposed Dynamic with Enegy Optimization

Static MaxMTTF

N
or

m
al

iz
ed

 C
om

m
. E

ne
rg

y

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
TT

F

0.5

1.0

1.5

fft mpeg mwd vopd romberg pip

Figure 5. Communication energy performance for the proposed technique.

experiment is the best MTTF mapping coming from the
static approach. However, the adaptive engine incorporates
communication energy and system lifetime when selecting
a local move. For a more comprehensive comparison, we
report results with and without the communication energy
optimization, to highlight how MTTF and energy consumption
are affected. All values are normalized with respect to the data
obtained using the static approach. As it can be seen, MTTF-
communication energy joint optimization results in energy sav-
ings between 25% to 75% for all the applications considered
with an average 5% MTTF improvement. Thus by trading-
off MTTF, the communication energy can be minimized by
50%, if considering the average of the results obtained on the
considered benchmark applications.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a run-time engine for NoC-based many-
core architecture to adapt a pre-computed optimal application
task mapping identified at design-time using a limited set of
data to the current architecture/application status, aiming at
optimising communication energy, system lifetime or both,
depending on the requirements, under a performance con-
straint. Experiments conducted on a set of real-life applications
demonstrate that the proposed technique improves lifetime by
16% with less than 10% communication energy overhead.
When jointly optimizing reliability and energy, the proposed
approach is able to exploit the lifetime slack to minimize com-
munication energy consumption by 50%. There are however
few areas of improvement. Although the proposed approach
is configured to periodically adapt, a future extension will
consider introducing thresholds on MTTF/energy to trigger the
adaptation, thus moving to an on-demand scenario. Moreover,
a detailed study will be carried out to investigate the impact
of increasing network size on MTTF or energy, possibly
introducing additional adaptation hooks.

REFERENCES

[1] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,” in Proc. Conf. Design, Automation & Test in Europe, 2004,
pp. 234–239.

[2] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges
in nanometer technologies,” in Proc. ACM/IEEE Design Automation
Conference, 2004.

[3] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proc. Conf. Design, Automation & Test in
Europe, 2007, pp. 1659–1664.

[4] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-Aware Scheduling
and Assignment for Hard Real-Time Applications on MPSoCs,” in Proc.
Conf. Design, Automation & Test in Europe, 2008, pp. 288–293.

[5] L. Thiele, L. Schor, H. Yang, and I. Bacivarov, “Thermal-aware system
analysis and software synthesis for embedded multi-processors,” in Proc.
Design Automation Conference, 2011, pp. 268–273.

[6] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation
and scheduling for mpsoc platforms,” in Proc. Conf. Design, Automation
& Test in Europe, 2009, pp. 51–56.

[7] ——, “On task allocation and scheduling for lifetime extension of
platform-based mpsoc designs,” IEEE Trans. Parallel and Distributed
Systems, vol. 22, no. 12, pp. 2088–2099, 2011.

[8] S. Srinivasan and N. Jha, “Safety and reliability driven task allocation
in distributed systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 3, pp. 238–251, 1999.

[9] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration
energy aware task mapping for reliable multiprocessor systems,” Future
Generation Computer Systems, 2013.

[10] ——, “Reliability-driven task mapping for lifetime extension of
networks-on-chip based multiprocessor systems,” in Proc. Conference
on Design, Automation & Test in Europe, 2013, pp. 1–6.

[11] C. Chou and R. Marculescu, “FARM: Fault-aware resource manage-
ment in NoC-based multiprocessor platforms,” in Proc. Conf. Design,
Automation & Test in Europe, 2011, pp. 1–6.

[12] A. Hartman and D. Thomas, “Lifetime improvement through runtime
wear-based task mapping,” in Proc. Int. Conf. Hardware/software code-
sign and system synthesis, 2012, pp. 13–22.

[13] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing mul-
ticore reliability through wear compensation in online assignment and
scheduling,” in Proc. Conf. Design, Automation & Test in Europe, 2013,
pp. 1–6.

[14] A. Das and A. Kumar, “Fault-aware task re-mapping for throughput
constrained multimedia applications on noc-based mpsocs,” in Proc.
IEEE Int. Symp. Rapid System Prototyping, 2012, pp. 149–155.

[15] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, 1999.

[16] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic task
mapping in noc-based heterogeneous mpsocs,” in Proc. IEEE/IFIP Int.
Workshop on Rapid System Prototyping, 2007, pp. 34–40.

[17] JEDEC Solid State Technology Association and others, “Failure mech-
anisms and models for semiconductor devices,” JEDEC Publication
JEP122-B, 2003.

[18] T. Ye, L. Benini, and G. De Micheli, “Packetized on-chip interconnect
communication analysis for MPSoC,” in Proc. Conf. Design, Automation
& Test in Europe, 2003, pp. 344–349.

[19] J. Kephart and D. Chess, “The vision of autonomic computing,” IEEE
Computer, vol. 36, pp. 41–50, 2003.

[20] Accelera Systems Initiative, “http://www.accellera.org,” accessed: 2013-
05-19.

[21] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, “Noc synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 2, pp. 113–129, 2005.

[22] W. Zhao and Y. Cao, “Predictive technology model for nano-cmos design
exploration,” J. Emerg. Technol. Comput. Syst., vol. 3, no. 1, pp. 1–17,
2007.

[23] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp.
94–125, 2004.

