
MAMPSx: A Design Framework for Rapid
Synthesis of Predictable Heterogeneous MPSoCs

Shakith Fernando1, Firew Siyoum1, Yifan He1, Akash Kumar2 and Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

2Department of Electrical & Computer Engineering, National University of Singapore, Singapore
Corresponding author email: s.fernando@tue.nl

Abstract—Heterogeneous Multiprocessor System-on-Chips
(HMPSoC) are becoming popular as a means of meeting
energy efficiency requirements of modern embedded systems.
However, as these HMPSoCs run multimedia applications as
well, they also need to meet real-time requirements. Designing
these predictable HMPSoCs is a key challenge, as the current
design methods for these platforms are either semi-automated,
non-predictable, or have limited heterogeneity.

In this paper, we propose a design framework to generate and
program HMPSoC designs in a rapid and predictable manner. It
takes the application specifications and the architecture model as
input and generates the entire HMPSoC, for FPGA prototyping,
that meets the throughput constraints. The experimental results
show that our framework can provide a conservative bound on
the worst-case throughput of the FPGA implementation. We also
present results of a case study that computes the area—power
trade-offs of an industrial vision application. The entire design
space exploration of all configurations was completed in 8 hours.
A tool-chain targeting the Xilinx Zynq FPGA is also presented.

I. INTRODUCTION

Vision applications on portable embedded systems are be-
coming ubiquitous (e.g., Google Glass [1]). However, for these
complex system to become truly ubiquitous, they need to meet
several design challenges; namely, (1) they need to meet real-
time requirements, (2) they need to be energy efficient. For
the first issue, it means that design methods need to generate
Predictable systems that can guarantee analyzed performances.
For the second issue, Heterogeneous computing becomes very
important, as the energy efficiency of hardware accelerators is
superior compared to homogeneous multiprocessors (almost
20× gain [2]). Therefore, addressing the design challenges
for predictable HMPSoCs is critical.

In order to better understand the challenges in the cur-
rent methods for the synthesis of Predictable HMPSoCs, our
experience in using Xilinx tools to generate an HMPSoC
on Xilinx Zynq [3] is described below. The Zynq FPGA
contains a Dual ARM Processor Core together with the
FPGA programmable fabric. We used a single accelerator
generated through High Level Synthesis (HLS). Even though
we managed to easily generate a RTL (Register Transfer Level)
accelerator, interfacing it with the processor was non-trivial.
A DMA (Direct Memory Access) IP (Intellectual Property)
needed to be instantiated manually for data transfer; then,
then a FIFO buffer needed to be further generated through
a different tool and integrated manually, for each buffer
size required. While it took several iterations for functional

correctness, analyzing the performance was non-trivial, due
to the lack of models of the different components, even
for such a simple non-pipelined example. Therefore, the key
challenge is automatically synthesizing an HMPSoC in a fast
and predictable manner.

In this paper, we present MAMPSx — a design framework
that takes application specifications and the architecture model
as input and automatically generates the entire HMPSoC,
together with corresponding software for processors and hard-
ware accelerators, that meets the throughput constraints (Fig-
ure 1). This work extends the previous work of MAMPS [4],
where each processing tile was limited to homogeneous gen-
eral purpose processors. Previously, a Communication Assist
(CA) for homogeneous general purpose processors [5] and for
accelerators [6] had also been introduced, but it was without
a complete framework.

��������	��
	��
��������

�������������	�����	��������	����������

Source.c

Architecture ModelApplication Model

PE 0 Accel 0

Interconnect 0

Fig. 1. MAMPSx Design Framework

Following are the key contributions of this paper:
• A complete design framework for the rapid synthesis

of predictable HMPSoCs that can be used for prototype
based Design Space Exploration (DSE). This was done by
integrating: (1) the heterogeneous architecture template,
with accelerators and different Processing Element (PE)
types (e.g., ARM); with (2) the communication assist
modules, with corresponding models of computation.

• A demonstrative, automated port of the framework tar-
geting the Xilinx Zynq ZEDboard [11].

TABLE I
COMPARING VARIOUS APPROACHES ON GENERATING PREDICTABLE HMPSOCS

Features DaedalusRT [7] System Codesigner [8] Space CoDesign [9] Corre et al. [10] MAMPS [4] MAMPSx

General

Input C code SystemC KPN and C code KPN and C code SDFG and C code SDFG and C code

Model of Computation CSDF, KPN System MoC KPN KPN SDFG SDFG

Automated DSE Yes Yes No Yes No No

Toolchain Yes Yes Yes Yes Yes Yes

FPGA Targets Virtex6 Virtex2 Zynq Virtex5 Virtex6 Zynq and Virtex6

Predictability

Predictable Yes Yes No No Yes Yes

Target Performance Property Worst Case Worst Case Average Case Average Case Worst Case Worst Case

Measurement of Target Property Analysis Analysis Simulation Simulation Analysis Analysis

Heterogeneity

Model of Architecture Template Template Template Template Template Template

Use of CA No No No No No Yes

Supported Tile Types Microblaze, Microblaze, ARM, Microblaze, Microblaze, Microblaze ARM, Microblaze,

Accelerators Accelerator Leon, Accelerators Microblaze Coprocessor Accelerator

Supported Interconnect Types FIFO FIFO Bus FIFO, Bus FIFO FIFO, NoC, Bus

Supported NI Types FSL FSL AXI FSL FSL FSL, AXI Streaming

Accelerator Support Manual IP HLS (only SystemC) Manual IP, HLS HLS No Manual IP, HLS

• A case study on how our methodology can be used for
fast design space exploration on the Xilinx Zynq hetero-
geneous platform, using an industrial vision application
for ink-jet printing.

The remainder of this paper is organized as follows. Section
II summarizes the related work on rapid synthesis flows for
predictable HMPSoCs. Section III introduces the application
and architecture models and the architecture template used
in our framework. Section IV gives the details of our design
framework. Section V describes the MAMPSx communication
model. Section VI provides the experimental results. Section
VII concludes the paper and gives a direction for future work.

II. RELATED WORK

HMPSoC synthesis methodologies are widely studied in
literature. Table I lists and compares these various approaches
that are currently relevant for predictable platform generation.
For a list of other approaches for HMPSoC synthesis, readers
may refer to [12].

The DaedalusRT [7] is an HMPSoC framework that takes
C code as input and derives a Kahn Process Network (KPN)
and a Cyclo-Static Data Flow (CSDF) model for analyzing.
These models give conservative bounds for real time perfor-
mance requirements. They use the ESPAM as a back-end to
synthesize the platform for prototyping. They only support
manually written accelerators and the user must derive both
the computation and communication models for these accel-
erators manually. The System Codesigner [8] is an HMPSoC
synthesis framework that takes SystemC as input and generates
a complete HMPSoC. They use a dataflow model called
SystemMoC written in SystemC to analyze and predict the
performance. Like our framework, they require good worst
case execution time estimates annotated to the model for
accurate prediction. They only support applications written
in SystemC and only accelerators written in SystemC can be
modeled and synthesized. Both of these flows only support
the FIFO interconnect type and do not have a CA. Therefore,
out-of-order access of data and other forms of communication

synchronizations are neither synthesizable nor analyzable in
either of these flows.

Space CoDesign Systems [13] is a recent start-up company
for electronic system level synthesis. Similarly to ours, it is a
rapid synthesis framework for HMPSoC design with support
for Zynq targets. They use cycle approximate simulation
[9] to verify whether the performance constraints can be
met. However, in our framework, we model both scheduling
and communication to analyze and predict the worst case
performance bound. Further, they only support bus-based
communication, while our framework is able to support FIFO,
bus and Network-on-Chip (NoC).

A template based synthesis framework similar to ours is de-
scribed by Corre et al. [10]. They use the Daedalus framework
as a front end to generate a homogeneous PE platform, after
which they explore the design space of functions in each PE to
accelerate using HLS. However, each of their accelerators can
only be connected as a co-processor to a single PE, which
limits the performance benefit. Their experiments show that
because of their simplified models for communication and
architecture, they may not be able to accurately predict the
performance of the generated platform.

In our framework, we support multiple types of accelerators
(manual RTL, HLS-C and HLS-SystemC) and PE types for
integration while maintaining predictability for all. As the
communication is modeled through the CA, the user only has
to provide the model of the computation for the accelerators,
We also provide a conservative upper bound of the perfor-
mance of the generated platform by analysis. Additionally, our
heterogeneous framework can support diverse PE, interconnect
and network interface types.

III. APPLICATION MODEL AND ARCHITECTURE MODEL

This section provides an overview of the application model,
and the architecture template and model, used in the proposed
design framework. These formal models are needed for the
analysis of the performances, as well as for the computation
of the required buffer sizes, when synthesizing predictable
HMPSoCs.

A. Application Graph Model
Synchronous Data Flow Graphs (SDFGs) [14] are used to

model concurrent multimedia applications with timing con-
straints. The SDFG model of an example application is shown
in Figure 2. The nodes model the tasks and are referred to as
actors, which communicate with tokens sent from one actor
to another through the edges modeling dependencies. The
example application is modeled with three actors A, B & C
and three edges D1, D2 & D3. An actor fires (executes) when
there are sufficient input tokens on all of its input edges and
sufficient buffer space on all of its output channels. Every time
an actor fires, it consumes a fixed amount of tokens from the
input edges and produces a fixed amount of tokens on the
output edges. These token amounts are referred to as rates.
The rates determine how often actors have to fire with respect
to each other. The edges may contain initial tokens, which is
indicated by a bullet point, as in Figure 2.

� �

�

�

�

�

�

�

�

�
��

��

��

Fig. 2. Example SDF Model

Definition 3.1 (SDFG): An SDFG (A, E) consists of a set
A of actors and a set E of edges. An edge e = (a1, a2, t1,
t2) represents a dependency of actor a2 on a1. When a1 fires,
it generates t1 tokens on e and when a2 fires, it consumes t2
tokens from e. Initial tokens on edges are defined as TokIn: E
→ natural numbers including 0.

Definition 3.2 (Application Graph (AG)): An AG is rep-
resented as (A, E, AP, EP) which is derived from SDFG
(A, E). AP and EP provide the resource requirements of the
actors and the edges on the platform respectively. For each
actor a ∈ A, AP provides a 3-tuple (ptypes, ET, mem), where,
ptypes represents the implementation alternatives of the actor,
ET and mem represent the execution time (in time-units) and
memory needed (in bits) on the implementation alternatives
respectively. AP provides null values for ET and mem for
unsupported implementation alternatives. For each edge e =
(a1, a2, t1, t2) ∈ E, EP provides a 1-tuple (sz), where, sz is
the size of a token (in bits).

Table II shows the values of AP and EP for actors and edges
of the example application.

TABLE II
RESOURCE REQUIREMENT OF ACTORS AND EDGES OF RUNNING

EXAMPLE

Actors ptypes GPP(ET, mem) Accel(ET, mem) Edges sz
A GPP (100, 200) (–, –) d1 512
B GPP, Accel (800, 400) (100, 400) d2 512
C GPP (50, 300) (–, –) d4 32

Throughput is an important property of multimedia applica-
tions; it describes how fast those applications are able to run,

and it is defined as the inverse of the average iteration time of
an application. The technique of analyzing throughput of the
SDFGs is described in [15].

B. Architecture Template & Model
In this section we first motivate the use of the Communica-

tion Assist module based on the C-HEAP [16] interface for our
architecture and then we describe the MAMPSx heterogeneous
architecture template. After that, we describe an example
architecture model derived from this template.

Communication Assist: The main idea behind the proposed
C-HEAP based CA is the decoupling of communication from
computation. This is done through a shared circular buffer
with only synchronization primitives. Additional data copying
is not needed. This circular buffer is shown in Figure 3 and
the synchronization primitives are listed in Table III. The
producer only needs claim space to get an empty buffer space
and release space to release the written buffer. Similarly, the
consumer only needs claim data and release data to get a full
data buffer and to release the read data buffer respectively.

��������	��

�	���
�

��	
��	�	

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����

��	
���

��	
�

��	��
�������	��

��������

��	
���	�	
�	���
�

�������	�	

Fig. 3. C-HEAP Circular Buffer

TABLE III
C-HEAP CA SYNCHRONIZATION PRIMITIVES

Synchronization Description
Primitives
Claim Space Producer claims output space by trying to move the write end pointer
Release Space Producer releases output data by moving the write start pointer
Claim Data Consumer claims input data by trying to move the read end pointer
Release Data Consumer releases the input space by moving the read start pointer

Though the CA increases processor efficiency by off-
loading PE communication tasks, the main benefit of a CA
is that it allows the independent modeling of different het-
erogeneous components on the HMPSoC (see Section V for
details). Take, for example, an accelerator connected to an
interconnect via a CA – this decouples the complex commu-
nication handshaking interactions of the network interface of
the interconnect from the accelerator computation. Additional
benefits of C-HEAP based CA include: (1) the out-of-order
data access for window type kernels; (2) a standardized
IP interface which is independent of the network interface;
and (3) a simplified accelerator design, as the focus is on
computation.

Generic MAMPSx Heterogeneous Architecture Template:
The second input to the design framework is the architecture
model derived from an architecture template (see Figure 1).
This template (Figure 4) describes the processing elements of
the architecture available in the hardware platform (Tiles) and
how these components are connected (Interconnect).

SRC Interface

Tile 1

NI

CA

Memory

Peripherals

NI

PE

M
em

o
ry

Tile 3

NI

Data CA

PEInstr.

Tile 4

Accelerator

CA

NI

Tile 5

Memory

CA

NI

Tile 6

Sink
Interface

Memory

CA

NI

Interconnect

Tile 2

Fig. 4. MAMPSx Template

As an example, the architecture platform for a vision system
is shown in Figure 4. Tile 1 and 6 show a source interface
tile (for camera inputs, e.g., Cameralink) and Sink interface
tile (for display outputs), which are commonly used in vision
systems. The use of CA allows for the decoupling of the
interface from the rest of the system for predictability. Tile
2 shows a simple tile using a processing element (PE) which
is connected to the network interface (NI), a local memory and
some optional peripherals. Tile 3 shows a similar tile which
has been extended with a CA from the PE. Tile 4 shows an
example of hardware accelerators, which are an integral part
of our template. Tile 5 is the Memory Tile and is an option
for vision applications that require large frame buffers for
processing. This can be either be an SRAM or a BRAM based
memory tile with a CA or DDR tile with a predictable memory
controller [17]. Finally, different types of interconnects (e.g.,
FIFO links, bus, and NoC) can be seamlessly integrated as
they only have to support the NI interface.

Architecture Model: From this generic architecture tem-
plate, a specific architecture platform can be modeled through
a platform graph.

Definition 3.3 (Platform Graph (PG)): A PG is represented
as (T, C) which contains a set T of tiles and a set C of
connections. A tile t ∈ T is a 9-tuple (petype, ν, m, catype,
nitype, ci, co, iω, oω), where petype ∈ PET (PET is the set
of the processing element types), ν is the frequency(in MHz),
m is the memory size (in bits), catype ∈ CAT (CAT is set
of the CA types), nitype ∈ NIT (NIT is set of the network
interface types), ci & co are the maximum number of input
and output connections supported by the NI and iω & oω are
the maximum incoming and outgoing bandwidth (in bits/time-
unit). A connection c ∈ C is a 4-tuple (ctype, L, d, N), where
ctype ∈ CT (CT is set of the interconnection types), L is
latency (in time-units) and d & N are the depth (in bits) and
width (in bits) of the interconnect respectively.

Table IV shows the values of T and C for tiles and
connections of an example architecture model for the running
example.

TABLE IV
PROPERTIES OF THE EXAMPLE PLATFORM

tile petype ν m catype nitype ci co iω oω
tile0 GPP 667 4096 HW AXI 8 8 12 12
tile1 Accel 100 800 HW AXI 8 8 12 12

connection ctype L d N
interconnect0 FIFO 3 1 32
interconnect1 FIFO 6 1 32

IV. DESIGN FRAMEWORK

In this section we present the details of the proposed design
framework. As Figure 1 shows, it consists of two main blocks.
The Analysis and Exploration block finds a mapping of the
application onto the architecture which is capable of achieving
the throughput, as required for the application. This is input
together with the original application and architecture speci-
fications to the HMPSoC Platform Generation block, which
generates an entire HMPSoC with corresponding software and
hardware modules for automated synthesis, using out-of-the-
box FPGA development software, for a FPGA prototype. As
the focus of this paper is on system level synthesis, we do
not discuss how the accelerators are generated. They can be
generated from a manual RTL library, High Level Synthesis
(HLS) [18], C-based HLS libraries (e.g., Vivado HLS OpenCV
library [3], Open-Source Accelerator Store [19]) or through
our skeleton-based accelerator generation method [20].

A. Analysis and Exploration

This stage utilizes the SDF3 [21] tool set consisting of
several tools that allow automatic mapping of an application,
described as a SDF graph, to a given platform. Buffer distribu-
tions, task mapping and static-order schedules are determined
and gathered in the mapping output of SDF3. It also provides
a worst case bound of the throughput of the application for the
given mapping. The MAMPSx virtual platform of the SDF3
tool set was modified with the new communicational model
described in Section V.

�

�

�

��

��

��

�����

�

�����

�

�

����	
����
��

����	
����
��

Fig. 5. Mapping Output of the Running Example. Omitted Port Rates are to
be Interpreted as 1.

Figure 5 shows the mapping output for the running example.
Actor A and C are mapped to tile0 and actor B is mapped to
tile1. The generated static order schedule on tile0 is (A,C)
as depicted in red. The calculated buffer sizes (1 token unit in
this example) for each channel is represented in blue.

B. HMPSoC Platform Generation

In this stage, the application and architecture models, to-
gether with the mapping output from SDF3, are used to
generate the complete HMPSoC platform. The generated
platform for the running example is shown in Figure 6.
Firstly, the tile (e.g., ARM and accelerator) and interconnect
(e.g., FIFO) components are instantiated from the specified
mapping output with the required the buffer sizes. C-HEAP
CA components are also instantiated from the template li-
brary. Secondly, software projects are generated for each tile
type. This includes the actor wrapper code with C-HEAP
primitives and the scheduler that implements the static-order
schedule from the mapping output. This is combined with a
template project that already includes an implementation of
the scheduling and communication libraries for each PE type.
Additional peripheral driver libraries (e.g., timer, storage) are
also added for execution time measurement and automated
data collection. In the case of the ARM PE tile, C-HEAP CA
circular buffers can be implemented either using the scratch-
pad memory or within the DDR memory. Caching is disabled
on the ARM PE, while the program code is placed on the
DDR memory. The ARM PE CA was implemented through
AXI DMA IP [3] while the accelerator CA implementation is
from our previous work [6].

����

���

	
��

�
���

���

��

������

	�

	�

��������

��������

	�

�������
����

��

�������

	�

�
���

�
��
�
��
�
�
�
	

�
�

��

�������	

�������������

�������������

�
���

����
������

��������

�����

����� �����

�����

Fig. 6. Generated Platform for the Running Example

Furthermore, this design framework is automated and ported
to target the Xilinx Zynq ZEDboard. Additionally, this frame-
work can easily be ported to other FPGA devices and boards.

V. MAMPSX COMMUNICATION MODEL

Here we describe the communication models used in the
proposed framework. Figure 7 shows an example of a param-
eterized dataflow model of the communication in the channel
D1 (from Figure 5) from tile0 to tile1. It consists of three
blocks: ARM PE and CA communication model for tile0,
AXI-streaming FIFO model for interconnect0 and the CA
and accelerator communication model for tile1.

The first block, which contains actors s1 − s5, models the
delay in sending the data via CA from the ARM-tile. All
actors in the block, except s3, have 0 execution time. Actor
s1 isolates the computation process of actor A from the CA
communication, i.e. once actor A completes a firing, it can
carry on with the next firing while the CA takes care of

p

l d1rs2 s3s1

s4s5

wr rd
q

q

p

nA B

p
ns − n

f

p p p f f

T ile0 Interconnect0 T ile1

2 nd
ni

Fig. 7. Parameterized Communication Model of the Channel D1 in the
Running Example. Omitted Port Rates are to be Interpreted as 1.

the output data transmission. Actor s2 performs the token
serialization, i.e., it splits each input token into f number
of 32-bit words. Actor s3 models the CA delay associated
with sending a word, which is 2208ns. Actors s4 and s5 are
acknowledgement actors. They block actors s2 and s1 from
firing before the previous token serialization and output data
transmission is completed, respectively.

The second block (actors r and l) is a latency-rate model
[22] of the AXI-Streaming FIFO (with buffer size of ni)
for transferring a 32-bit word. Similarly, NoC and other
interconnect types can be seamlessly modelled with different
parameter values. The third block (i.e. actors wr, rd and d1)
models the CA communication of the accelerator tile. Actors
wr and rd are for modeling write and read latencies of a word
and actor d1 is for the de-serialization of words that belong
to the same token [6].

VI. EXPERIMENTS

In this section we present some of the results that were
obtained by using our design framework to implement a real
application. We use an industrial vision application, called Fast
Focus on Structures (FFoS), that is used for ink-jet printing on
OLED structures as our driving case study. We initially verify
our framework by comparing the performances of the gener-
ated platforms with their analyzed performances. In addition,
we present a case study using the FFoS application; to show
how our tool can be used to efficiently explore the design space
and how it can reduce the design time. Our implementation
platform is the Xilinx Zynq Evaluation Development Board
(ZEDboard) with a XC7Z020 FPGA on-board. Xilinx ISE 14.4
was used for synthesis and implementation.

OLED
Wafer
Section

Coordinates
of Centers

Otsu Binarization

ErosionProjection

Fig. 8. FFoS Application

A. FFoS Application

FFoS is an application used, in OLED manufacturing, to
accurately detect the centers of organic materials for ink-
jet printing. As shown in Figure 8, it consists of four main
processing blocks [23]. The input image, of an OLED wafer
section, initially goes through an Otsu (histogram based image

thresholding); and then binarization, to differentiate the OLED
segment from the background. It is then eroded, to remove the
noise in the image. Finally, it is projected into a horizontal and
a vertical vector to find the centers.

The SDF model for this application is shown in Figure 9
and the corresponding actor implementation alternatives are
listed in Table V. Typically for this application, the values
of W and H are 120 and 45 respectively. All actors have
software implementations for the ARM PE type (actors Proj
and Eros have bitwise software implementations, as edges
D4 and D5 have a token size of 1bit). Caching was enabled
for this application because the program and data sections fit
within the cache size. Additionally, actors Proj, Eros and
Bin also have hardware accelerator implementations [6].

Bin

1

Eros Proj SinkCC

1

1

W: Image Width
H : Image Height
C : No. of Centers

Src

W * H

1

Otsu 1W * H

W * H W * H W * H W * H W * H W * H

D2
D3

D4D1 D5 D6

D7

Fig. 9. SDF Model of the FFoS Application

TABLE V
IMPLEMENTATION ALTERNATIVES OF ACTORS AND RESOURCE

REQUIREMENTS OF THE EDGES OF FFOS APPLICATION

Actors ptypes GPP (ET − µs) Accel(ET − µs) Edges sz(bits)
Src ARM 689.94 - D1 32
Otsu ARM 650.91 - D2 32
Bin ARM, Accel. 811.01 54.01 D3 32
Eros ARM, Accel. 3,527.36 3.66 D4 1
Proj ARM, Accel. 1,284.38 3.02 D5 1
Sink ARM 2.30 - D6 16

TABLE VI
COMPARISON OF ANALYZED THROUGHPUT WITH THROUGHPUT

OBTAINED ON FPGA

FFoS Application
Configuration Analyzed FPGA Var %

Throughput Throughput
(0,0,0) 0.144 0.144 0.00

(0,0,1) 0.054 0.060 11.68

(0,1,0) 0.236 0.254 7.70

(0,1,1) 0.066 0.076 14.71

(1,0,0) 0.164 0.166 1.52

(1,0,1) 0.056 0.058 4.09

(1,1,0) 0.388 0.405 4.51

(1,1,1) 0.074 0.086 15.72

B. Verifying the Framework

In order to verify our design framework, we automatically
and exhaustively generate all eight possible configurations
from the available implementation alternatives. A configura-
tion is defined as a 3-tuple (Projtype, Erostype, Bintype),
where each actortype has value 0 or 1; for implementations
on the ARM PE or as an accelerator, respectively. These
configurations are listed in Table VI — each with the analyzed
throughput, the FPGA prototype throughput and the variation

between them. As the maximum variation is 15.72%, our
framework provides a conservative worst case bound on the
throughput of the generated HMPSoCs. Our investigations
showed that this variation was due to memory access time
variations in the DDR RAM for the CA buffers.

C. DSE Case Study
Here we present a case study of using our design framework

to explore the design space by computing the trade-offs
between execution time, area, and power. Figure 10 (top)
shows the Pareto optimal front (blue line) of the execution time
- area trade-offs generated for all eight configurations. The four
dominated configurations (111, 011, 001 and 101) all have the
binarization actor as an accelerator. In our implementation,
binarization requires 5400 (120× 45) number of words to be
transferred to the accelerator; while for the other channels,
the required number of words are 180 (4 × 45) or less (see
Table V). Here, the communication overhead of binarization
overshadows the gain by accelerating the actor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5

A
re

a
(S

lic
e

s
)

Normalized Execution Time

000

100
010

110

001011

101

111

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 0 0.5 1 1.5 2 2.5

P
o

w
e

r(
W

)

Normalized Execution Time

011111

000

010

110

001

101

100

Fig. 10. Execution Time vs. Area Trade-offs and Execution Time vs. Power
Trade-offs

Figure 10 (bottom) shows the execution time - power
trade-offs. The power consumptions were calculated using the
XPower tool available from Xilinx [3]. It allows the calculation
of the FPGA power consumption as a function of the area
and the ARM PE power consumption as a function of the
processor’s load. Our processor’s load is defined as the total
sum of the execution times of the actors on the ARM divided
by the total execution time of the application. It is interesting
to note that the configurations 111 and 011 are Pareto points
here, due to the offloading of actors to accelerators and due
to the long waiting time of the binarization’s communication
overhead. Therefore, it is critical to model and predict the
communication overheads within HMPSoCs, such that non-
interesting points (depending on the required objective e.g.,

performance or power) can be pruned away at an early stage
of the flow.
D. Design Time

The time spent on design space exploration is an important
aspect when designing HMPSoCs. Table VII lists the design
times required by the various parts of the framework. Com-
pared to the manual design of a single configuration that took
5 days to complete, we were able to complete the entire design
space exploration of all eight configurations in 8 hours; this
includes the synthesis and implementation time. This assumes
a working knowledge of the application and experience with
the design framework.

TABLE VII
DESIGN TIME

Manual Generating Complete
Design Single Design DSE

Gathering required actor metrics - 4 hours 4 hours

Creating Application Model - 1 hour 1 hour

Generating Architecture Model - 1s 8s

Generating Mapping - 1s 8s

Platform Generation 5 days 30s 240s

FPGA Synthesis 20 mins 20 mins 160 mins

Total Time ∼ 5 days ∼ 5 hours ∼ 8 hours

VII. CONCLUSIONS

In this paper we proposed a design framework to gen-
erate predictable HMPSoC designs. Our approach takes the
description of the application and the architecture model
and produces the corresponding HMPSoC platform, which
meets the throughput constraint. The design framework is
ported to target the Xilinx Zynq ZEDBoard. A case study
is presented to find the trade-offs between area, performance
and power; for an industrial vision application to show that
our design framework allows for fast and automated design
space exploration of predictable HMPSoCs.

Currently, the ARM tile with DDR RAM is not completely
predictable; we will use a FPGA BRAM memory and a
predictable memory controller [17] with DDR RAM to make
it fully predictable in the future.

Also, we would like to develop and automate more ways of
exploring the design space of the accelerators at the Analysis
and Exploration stage. For example: (1) finding which accel-
erator actor has better performance/area efficiency; (2) trying
different parallelism of accelerator actors.

ACKNOWLEDGEMENT
We appreciate the support by the Dutch Ministry of Eco-

nomic Affairs (Pieken in de Delta) for this research work
within the Embedded Vision Architecture project.

REFERENCES

[1] (2013) Google Glass. [Online]. Available: http://www.google.com/glass/
start/how-it-feels/

[2] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B.
Taylor, and S. Swanson, “QsCores: Trading dark silicon for scalable
energy efficiency with quasi-specific cores,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2011, pp. 163–174.

[3] (2013) Xilinx. [Online]. Available: http://www.xilinx.com/
[4] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal, “Multipro-

cessor systems synthesis for multiple use-cases of multiple applications
on fpga,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 3, pp.
40:1–40:27, Jul. 2008.

[5] A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal, “CA-
MPSoC: An automated design flow for predictable multi-processor
architectures for multiple applications,” Journal of Systems Architecture,
vol. 56, no. 7, pp. 265–277, 2010.

[6] Y. He, D. She, S. Stuijk, and H. Corporaal, “Efficient communication
support in predictable heterogeneous mpsoc designs for streaming ap-
plications,” Journal of Systems Architecture (to appear), 2013.

[7] M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov, “A methodology
for automated design of hard-real-time embedded streaming systems,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2012, march 2012, pp. 941 –946.

[8] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1411–1430, 2012.

[9] B. Bailey and G. Martin, “Codesign experiences based on a virtual
platform,” in ESL Models and their Application, ser. Embedded Systems.
Springer US, 2010, pp. 273–308.

[10] Y. Corre, J.-P. Diguet, L. Lagadec, D. Heller, and D. Blouin, “Fast
template-based heterogeneous mpsoc synthesis on fpga,” in Reconfig-
urable Computing: Architectures, Tools and Applications, ser. Lecture
Notes in Computer Science, P. Brisk, J. Figueiredo Coutinho, and
P. Diniz, Eds. Springer Berlin Heidelberg, 2013, vol. 7806, pp. 154–
166.

[11] (2013) ZEDBoard. [Online]. Available: http://www.zedboard.org/
[12] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and

J. Teich, “Electronic system-level synthesis methodologies,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 10, pp. 1517 –1530, oct. 2009.

[13] (2013) Space CoDesign Systems. [Online]. Available: http://www.
spacecodesign.com/

[14] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow: Describing
signal processing algorithm for parallel computation,” in Proceedings
of the 32nd IEEE Computer Society International Conference (COMP-
CON87), 1987, pp. 310–315.

[15] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B. Theelen, and M. R. Mousavi, “Throughput analysis of
synchronous data flow graphs,” in Application of Concurrency to System
Design, 2006. ACSD 2006. Sixth International Conference on. IEEE,
2006, pp. 25–36.

[16] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá,
K. Goossens, R. Peset Llopis, and P. Lippens, “C-HEAP: A hetero-
geneous multi-processor architecture template and scalable and flexible
protocol for the design of embedded signal processing systems,” Design
Automation for Embedded Systems, vol. 7, no. 3, pp. 233–270, 2002.

[17] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
sdram memory controller,” in Proceedings of the 5th IEEE/ACM interna-
tional conference on Hardware/software codesign and system synthesis,
ser. CODES+ISSS ’07. NY, USA: ACM, 2007, pp. 251–256.

[18] P. Coussy and A. Morawiec, High-level synthesis: from algorithm to
digital circuit. Springer Verlag, 2008.

[19] (2013) Open-Source HLS Accelerator Store. [Online]. Available:
ttp://cadlab.cs.ucla.edu/accelerator store.html

[20] J. Hendriks, “High Level Synthesis: Performance analysis and code
optimization,” Master’s thesis, Eindhoven University Of Technology,
The Netherlands, 2012.

[21] S. Stuijk, “Predictable mapping of streaming applications on multipro-
cessors,” Ph.D. dissertation, Eindhoven University of Technology, The
Netherlands, 2007.

[22] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling
run-time arbitration by latency-rate servers in dataflow graphs,” in
Proceedingsof the 10th international workshop on Software & compilers
for embedded systems, ser. SCOPES ’07. NY, USA: ACM, 2007, pp.
11–22.

[23] Y. He, Z. Ye, D. She, B. Mesman, and H. Corporaal, “Feasibility analysis
of ultra high frame rate visual servoing on fpga and simd processor,” in
Advanced Concepts for Intelligent Vision Systems, 2011.

