
Global Analysis of Resource Arbitration for MPSoC

Akash Kumar, Bart Mesman, Henk Corporaal, Jef van Meerbergen
Eindhoven University of Technology
5600MB Eindhoven, The Netherlands

Email: a.kumar@tue.nl

Ha Yajun
National University of Singapore
10 Kent Ridge Crescent, Singapore

Abstract
Modern day applications require use of multi-processor

systems for reasons of scalability and power efficiency. As
more and more applications are integrated on a single de-
vice, mapping and analyzing them on a multi-processor sys-
tem becomes a multi-dimensional problem. Each possible
set of applications that can be active simultaneously leads
to a different use-case (also referred to as scenario) that the
system has to be verified and tested for. Analyzing the fea-
sibility and resource utilization of all possible use-cases is
very demanding and often infeasible.
In this paper, we highlight the issue of composability, i.e.

being able to analyze applications in isolation while still
reason about their overall behavior. We observe that arbi-
tration plays an important role in this analysis. We compare
two simple, yet commonly used arbitration mechanisms, and
highlight the properties that are important for such analy-
sis. We conclude that none of these arbitration mechanism
is ideal for such an analysis and propose some variations to
make them more suited for the analysis.

1. Introduction
Current developments in set-top box products for me-

dia systems show a need for integrating a (potentially large)
number of applications or functions in a single device. The
consumer should not experience any significant artifacts or
delays when functions are switched on or off, or when mul-
tiple functions are executed concurrently. This places high
demands on the arbitration of available computational re-
sources as well as memory accesses. For traditional systems,
with a single general-purpose processor supporting pre-
emption, the analysis of schedulability of task deadlines is
well known [1] and widely used. In high-performancemulti-
processor embedded systems without pre-emption however,
the theory of rate-monotonic analysis and the likes do not
apply. In order to predict the timing behavior of applica-
tions running on current and future hardware platforms, an
alternative method for analysis is a necessary requirement
for containing the programming effort of these systems.
It is therefore expected in the electronic design com-

munity that future electronic systems re-use platforms that
integrate many IP-blocks and memories. These platforms
will concurrently execute many applications and (sub-)tasks.
The number of possible use-cases is enormous. For exam-
ple, in a modern television platform 60 applications are run-
ning in parallel, corresponding to an order of 260 possible

use cases. It is clearly impossible to verify the correct oper-
ation of all these situations through testing and simulation.
The product divisions in large companies currently already
report 60% to 70% of their effort being spent in verifying
potential use cases and this number will only increase in the
near future. This has motivated researchers to emphasize the
ability to analyze and predict the behavior of applications
and platforms without extensive simulations.
Since we have 2N (an exponential number) use-cases for

N number of applications, even a design time analysis is
infeasible. In addition, there is a high run-time overhead
of storing schedules of all the use-cases. We would ideally
want to analyze each sub-application in isolation, thereby
reducing the analysis time to a linear function inN , and still
reason about the overall behavior of the system.
One of the ways to achieve this, would be complete vir-

tualization. This essentially means dividing the available re-
sources with the total number of sub-tasks in the system.
The sub-task would then have exclusive access to its share of
resources. For example, if we have 100 MHz processors and
a total of 10 sub-tasks in the system, each sub-task would
get 10 MHz of processing resource. The same can be done
for communication bandwidth and memory requirements.
However, we have two kinds of problems. When fewer than
10 tasks are active, the tasks will not be able to exploit the
extra available processing power, leading to wastage. Sec-
ondly, the system would be grossly over-dimensioned when
the peak requirements of each task are taken into account,
even though these peak requirements of sub-tasks may not
overlap.
Another way to reduce the complexity would be to an-

alyze the sub-tasks in isolation with as little information
from other sub-tasks as possible and then define a com-
pose function to compute total requirement of the system.
This reduces the complexity of the analysis and still leads
to higher utilization of resources. In this paper, we study
how to reduce exponential analysis complexity to linear (or
at most polynomial) complexity, without paying the over-
head of complete virtualization. This problem is called as
composability problem.
One of the problems which arises in the above approach

is contention of resources and arbitration plays an important
role in resolving it. The overall system behavior depends on
the arbitration mechanism to a large extent. In this paper,
we also compare the suitability of two very simple, yet of-
ten used, arbitration mechanisms for such an analysis. We
will state requirements for their application in future media

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

platforms, and analyze these properties as much as possible
using SDF [2]. SDF (Synchronous Data Flow) graphs is a
class of models of computation that allows analysis of sys-
tem at design time. There are two requirements for using
these models of computation, namely the development of
good analysis tools that exploit these models, and the ability
to capture real-world behavior.
It should be emphasized that this is an investigative paper

into the composability problem and provides direction into
how research would be carried out to study it further and
provide optimal solutions. We assume the following for the
scope of this paper.

• Multiprocessor: For reasons of scalability and energy
consumption, a single high-performance processor is
not suitable for satisfying the computational demands
placed on future consumer devices.

• Non-preemptive: DSP processors and accelerator hard-
ware typically have a lot of states. As a result, the
interrupt delay is significant, whereas the typical ex-
ecution time of an actor is much smaller than a task
on a conventional general-purpose processor. The in-
terrupt delay can not easily be ignored, and interrupts
make the systemsmuch less predictable in terms of tim-
ing behavior. We do not exclude preemption for all
functions and processors, but we have to consider non-
preemption in more detail.

• Efficient arbitration: The arbitration mechanism should
be efficient, since the time required for arbitration has
to match the grain of actor executions.

The two arbitration mechanisms considered in this paper
are static order and Round Robin (with skipping).

• Static order: Actors - as defined in SDF model - are
repeatedly executed in a strict order specified by a pre-
defined list. If an actor is not ready (its input data has
not yet arrived) to execute, the processor will halt and
wait.

• Round Robin: Actors are repeatedly executed in an or-
der specified by a pre-defined list. If an actor is not
ready to execute, the arbiter will skip the actor and pro-
ceed to the next actor in the list.

In this paper, we find that none of the above arbitration
mechanisms can be applied directly to composability analy-
sis, and we provide a direction for future work that needs to
be carried out in the direction.
In the Section 2 we shall first give an overview on com-

posability. Section 3 will talk about providing guarantees in
performance and resource utilization. The properties and re-
quirements for arbitration will be discussed in Section . In
Section 5 we shall present the conclusions and a direction of
our future work. A comparison between the two arbitration
mechanisms mentioned above will be made throughout the
paper in all these sections.

2. Composability

A typical multi-processor system-on-chip application
is usually composed of more than one smaller sub-
applications. For example, a mobile phone supports various
applications that can be active at same time, such as listen-
ing to mp3 music, typing an sms and downloading some java
application in the background. Evaluating resource require-
ment for each of these cases can be quite a challenge even at
design time, let alone at run time.
We define composability as the degree to which the map-

ping and analysis of applications on the platform can be
performed in isolation. Some of the things we would like
to analyze in isolation, for example, are deadlock analy-
sis, throughput analysis and computing the static orders if
needed. Clearly, since there are more than one jobs mapped
on a multi-processor system, there is bound to be contention
for the resources. Due to this contention, the throughput an-
alyzed for a job in isolation might not be achievable when
put together in the whole system. This will be demonstrated
with the aid of an example in Section 2.2. In section 2.3 we
show that in the case of static order, the schedule complex-
ity (and therefore the program storage requirements) grows
more than linearly with the number of mapped applications.
In section 2.4 we consider the computational requirements
for computing the timing behavior, and in section 2.5 we
consider the smooth transition when a new job enters the
system. First, however, we shall provide a short introduc-
tion to the modeling used for analysis in this paper, namely
SDF in Section 2.1.

2.1. SDF Modeling
Various data flow models have been proposed in litera-

ture to model real applications. In this paper, we shall focus
on SDF - Synchronous Data Flow - model proposed by Lee
and Messerschmitt [2]. As in a typical data flow graph, a di-
rected edge represents the dependency between tasks. Tasks
also has needs some input data (or control information) be-
fore they can start and usually also produce some output
data; such information is referred to astokens. The number
of tokens consumed and produced by an actor is indicated
on the edge, as shown in Figure 1. In an actual implemen-
tation edges indicate buffers in physical memory. The edges
may also contain initial tokenswhich denote the data depen-
dencies across various iterations of the algorithm. These are
indicated by bullets on the edges.
Figure 1 shows an example of a simple SDF graph. There

are four actors in this graph. An actor can only start execu-
tion (also called firing) when the required number of tokens
are present on each of its incoming edge. As can be seen
from the graph, only A can start execution from the initial
state, since the required number of tokens are present on all
of its incoming edges. Once A has finished execution it will
produce 3 tokens on the edge to B. B can then proceed as
it has enough tokens and the produce 4 tokens on the edge
to C. Another thing to note is that since there are two initial

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

� �

��

�

�

�

� �

�

�

� 	

�

�

 ��

Figure 1. Example of a simple SDF graph

tokens on the edge fromC to A, A can again fire as soon as it
has finished the first execution, without waiting for C to ex-
ecute. Thus, at any point of time, there can be two iterations
of the graph active at any point of time.
SDF graphs allow you to analyze maximum achievable

throughput of a system by computing the MCM (Maximum
Cycle Mean) [3]. Further they can also allow us to obtain
the optimal order (i.e. the schedule) which will result in that
throughput (for a given buffer size). The only cycle in the
graph shown in Figure 1 has an execution time of 22 cycles
- A, B and C. Since there are two tokens in this cycle, the
MCM is 22/2 = 11. Further, SDF analysis also allows us
to identify if a particular graph or a schedule will result in
a deadlock. HSDF - Homogenous SDF - is a special class
of SDF in which the number of tokens consumed and pro-
duced is always equal to 1. For simplicity (and without loss
of generality), we shall consider only HSDF graph, unless
otherwise mentioned.

2.2. Composability Problem
Figure 2 shows an example of two task graphs A and B

with three actors each, mapped on a 3-processor system. Ac-
tors A1 and B1 are mapped onto P1, A2 andB2 are mapped
onto P2, and A3 and B3 are mapped onto P3. Each actor
as shown takes 100 cycles to execute and because of de-
pendency within the task graph, only one iteration of each
can be active. Thus, each task uses only 33% of each pro-
cessor node, thereby needing a maximum overall utilization
of 67%. However, due to the dependencies, the maximum
achievable processor utilization is only 50%.
Figure 2 also shows a schedule obtained when the actors

are scheduled using round robin with skipping. The first
contention between tasks A and B occur at instant t0, when
both A1 and B1 are ready to execute on P1. This arbitration
goes to A1, while B1 waits. Another contention occurs at
t1 for processor P3, and then for P2 followed by P1. The
schedule shown in the figure assumes that A wins every ar-
bitration. The schedule soon settles into a steady state of 600
cycles, in which A completes two iterations, while B com-
pletes only one. If B wins every arbitration, the situation
is reversed and B would execute twice as many times as A.
Since each processor is idle for half the number of cycles,
the utilization is only 50%. We tried many other schedules
(including preemption), some of which will be shown later,
and we could not achieve better performance.
As can be seen from the above example, simply adding

��

��

�

�

��

���	 ��

�		

�		

�		

�

�		

�		

�		

�

��

�� ��

��

�� ��

��

���
��
����

Figure 2. An example showing why composability needs
to be examined. Individually each task takes 300 cycles
to complete an iteration and requires only 33% of pro-
cessor resources. However, when another job enters in
the system, it is not possible to schedule both of them
with their optimal schedule of 300 cycles, even though
the total request for a node is only 67%.

up computational load of a processor is not realistic. Com-
posability, therefore, is not a black or white issue, since ar-
bitration can cause interference between job executions to
different degrees.

2.3. Overhead of Multiple Use-cases

A static order strategy requires one to compute the opti-
mal schedule for each of the possible combinations. As the
number of applications increases, the total number of use-
cases that have to be considered rises exponentially. For a
system with 10 possible applications in which up to 4 tasks
are allowed to be active at the same time, there are approx-
imately 400 possible combinations - and it grows exponen-
tially as we increase the number of sub-tasks simultaneously
active. Besides computing the schedule for all the use-cases
offline (design-time), one also has to be aware that they need
to be stored at run-time. As such the scalability of using
static order for scheduling multiple jobs is limited.

In round-robin scheduling on the other hand, the easiest
approachwould be to store each actor in the schedule. When
a task is not active, the actors in it are simply skipped, with-
out causing any trouble for the scheduling kernel. Thus, in
some way, a super-set i.e. set of all the actors that can be
ever active on a particular processing node, can be stored in
a list and that is the one that is used for scheduling. It should
be emphasized here that if an actor is required to be executed
multiple number of times, one can simply add more copies
of that actor in this list. The performance of this strategy as
compared to an ordered transaction strategy is discussed in
Section 3.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

�

�

� �

�

�

�

�

�

� �

�

��

��

�

�

�� 	

�
�
��

�����
�

��

��

��

��

��

��

��

��

��

�� ���� ��

��

��

��

��

��

��

(a) Graph with clockwise schedule (static) gives MCM of 11 cycles.

�

�

� �

�

�

�

�

�

� �

�

��

��

�

�

�� 	

�
�
��

�����
�

�� �� �� �� ���� �� ��

��

��

��

��

��

��

��

�� ��

��

��

�� ��

(b) Graph with anti-clockwise schedule (static) gives MCM of 10 cycles.

Figure 4. 3 individual task graphs give different MCM when scheduled differently. The respective cycles which gives this MCM
are shown in bold.

�

�

� �

�

�

�

�

�

� �

�

�� ��

��

�� ��

��
�� ��

��

Figure 3. Example of a system with 3 different tasks.

2.4. Computing Static Orders
Three task graphs - A, B and C are shown in Figure 3.

Each is an HSDF with three actors. Let us assume each ac-
tor is mapped onto one processing node. Let us also assume
that actors Ti1 are mapped onto P1, Ti2 are mapped onto P2

and Ti3 are mapped onto P3; where Ti refers to tasks A, B
and C. This contention for resources is shown by the dotted
arrows in Figure 4. Clearly, by putting these dotted arrows,
we have fixed the actor-order for each processor node. If
an optimal ordering is to be computed for the entire system
when all three tasks are active at the same time, we need
to combine different graphs into one big HSDF for com-
plete analysis. Figure 4(a) shows one such possibility when
the dotted arrows are used to combine the three task graphs.

Extra tokens have been inserted in these dotted edges to in-
dicate initial state of arbiter.
An astute reader would have noticed that this would be

only possible if each task is required to be run an equal num-
ber of times. If the rates of each task are not the same, we
need to introduce multiple copies of actors to achieve the
required ratio.
When MCM (Maximum Cycle Mean) analysis is done

for this complete graph, we obtain a mean cycle count of 11
[3]. This also gives us the ideal order for each processing
node. The bold arrows represent the edges used to compute
MCM. The schedule for the graph is also shown. One actor
of each of the tasks, namely Ti1, is ready to fire at instant t0.
We find that the graph soon settles into the periodic schedule
of 11 cycles. The period is denoted in the graph between the
time instant t1 and t2.
Figure 4(b) shows just another of the many possibilities

for ordering the actors of the complete HSDF. Interestingly,
the MCM for this graph is 10, as indicated by the bold
arrows. The corresponding schedule for the graph is also
shown. In this case, the period is longer as indicated by dif-
ference in time instants t1 and t2 i.e. 20 cycles. However,
since two iterations for each task are completed, the actual
MCM is only 10 cycles.
From arbitration point of view, if task-graphs are ana-

lyzed in isolation, there seems to be no reason to prefer task
B or C after A has finished executing on processor 1. There
is at least a delay of 6 cycles before task A needs processor 1

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 1. Table showing a deadlock condition
Node Assigned to Task waiting Reassigned in RR

P1 A B B
P2 B C C
P3 C A A

again. Also, since B and C each takes only 3 cycles, 6 cycles
are enough to finish their execution. Further both are ready
to be fired, and will not cause any delay. Thus, the local
information about a job and the tasks that need a processor
resource does not easily dictate preference of one task over
another. However, as we see in this example, executing task
C is indeed better for the overall performance. Computing
a static order relies on the global information and produces
the optimal performance.
As can be seen, there are many possibilities for construct-

ing the HSDF from individual graphs. In fact, if one tries to
combine g graphs of say a actors each, there happen to be
((g − 1)!)a unique combinations, each with a different actor
ordering. To give an example, if there are 5 graphs with 10
actors each we get 2410 or close to 6.34e13 graphs. MCM
computation of an HSDF already takes exponential time (in
the number of actors) as has been analyzed in [5]. If each
computation takes 1ms to compute, 2009 years are needed
to evaluate all the possibilities. This is only considering the
cases with equal rates for each, and only for HSDF graphs.
A typical SDF graph with different execution rates would
only make the problem even more infeasible since the trans-
formation to HSDF yields many more actor copies. An ex-
haustive search through all the graphs is, therefore, not an
option. Thus, a simpler algorithm for arbitration is needed
with lesser design overhead.

2.5. Deadlock
Deadlock avoidance and detection is an important con-

cern when tasks arrive dynamically. When static order is be-
ing used, every new use case requires a new schedule to be
loaded into the kernel. A naive reconfiguration strategy can
easily send the system into deadlock. This is demonstrated
with an example in Figure 5.
Say task A and B are running in the system on proces-

sor node 2 and 3 respectively. Further assume that the static
scheduling order for each processor currently is A, B when
only these two are active, and with a third task C, it becomes
A, B, C for each node. When C enters the system, it gets
processor 1 since that is idle. Lets see what happens to pro-
cessor 2. Task A is running on it and it is then assigned to
task B. Processor 3 is assigned to C after B is done. Thus, af-
ter each task is finished executing on its currently assigned
processor, we obtain A waiting for processor 3 that is as-
signed to task C, task B waiting for processor 1 which is
assigned to A, and task C waiting for processor 2, which is
assigned to B. This can be expressed by Table 1.
Looking at Figure 5, it is easy to understand why the sys-

tem goes into a deadlock. The figure shows the state when
each task is waiting for a resource and not able to execute.

3

3

3 3

5

1

3

1

5

A B

C

Figure 5. Deadlock situation when a new job, C arrives
in the system. A cycle A1, B1, B2, C2, C3, A3, A1 is
created without any token in it.

The tokens in the individual sub-graph show which actor is
ready to fire, and the token on the dotted edge represents
which resource is available to the task. In order for an actor
to fire, the token should be present on all its incoming edges
- in this case both on the incoming dotted edge and the solid
edge. It can be further noted that a cycle is formed without
any token in it. This is clearly a situation of deadlock [6].
This cycle is shown in Figure 5 in bold edges. It is possi-
ble to take special measure to check and prevent the system
from going into such deadlock. This, however, implies extra
overhead at both design-time and run-time. The task may
also have to wait before it can be admitted into the system.
The deadlock situation can be avoided quite easily by

having round robin strategy with skipping. When the system
enters into a deadlock, the round-robin assignment would
simply skip to the actor that is indeed ready to execute. Thus,
processors 1, 2 and 3 are reassigned to B, C and A as shown
in Table 1. In addition, a task can be inserted at any point
of time without worrying about deadlock. In this approach,
there can never be a deadlock due to dependency on process-
ing resources.

3 Performance Guarantees
Providing realistic performance guarantees is critical

when it comes to real-time tasks with deadlines. Figure 6
shows a simple example with two task graphs which share
computing resources P1 and P2. As shown in the figure,
each actor takes one cycle of resources. Figure 7 shows how
a static order would look like. Extra dashed arrows have
been added in the graph to denote arbitration of each of the
processors with relevant initial tokens. All the cycles in the
graph have an MCM of 2. Thus, every two cycles one iter-
ation of both A and B is done. The corresponding schedule
is also shown in the figure. It can be observed that the pro-
cessor utilization is 100% for both the processors, once the
periodic schedule is obtained. This implies the schedule is
optimal and can not be improved further.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Figure 6. An example with two task graphs to be sched-
uled. The actors compete for resources P1 and P2 as
shown in the figure.

� ��

� ��

�� ��

��

��

�

�

Figure 7. Computing MCM for a combined SDF. A cycle
with two tokens is shown leading to an MCM of 2.

For Round Robin with skipping, the maximum waiting
time for a particular actor, can be computed by considering
the critical instant as defined by Liu and Layland [1]. The
critical instant for a task is defined as an instant at which
a request for that task will have the largest response time.
Since the response time is equal to sum of its waiting time
and execution time, with executing time being assumed con-
stant, it can be translated as the instant at which we have the
largest waiting time. For Round Robin, it will be when an
actor is ready just after being checked by the scheduler, and
all the other actors in the list being ready. Thus, the total
waiting time is equal to the sum of processing times of all
the other actors on that particular node as given in Eqn. 1.

W (Tij) =

m∑

k=1,k �=i

ET (Tkj) (1)

Here ET (Tij) denotes the execution time of actor Tij ,
i.e. actor of task Ti mapped on processor j. Thus, we ob-
tain the maximumwaiting time for both actors of task A a11

and a12 as 1. The same has been modeled in Figure 8. This
method allows us to analyze the SDF graphs in isolation and
get an upper-bound on the waiting times of a particular ac-
tor. One of the major drawbacks of this mechanism is that
the bound is often pessimistic as can be seen from this exam-
ple. Analyzing task A in isolation - but including the waiting
times as shown in Figure 8 - on processors P1 and P2 re-
sults in an MCM of 4 cycles. This, as seen from the static
schedule in Figure 7, is not a realistic case.
In some cases, however, this happens to be indeed the

1 1A1 1Wait
P2

Wait
P1

Figure 8. Modeling waiting times using SDF. Extra actors
have been added for Task A to model the waiting times
due to resource conflicts on both the processor nodes.

realistic bound. We now revisit the example shown in Figure
2 before. The worst-case waiting time for each actor is 100
cycles as well, as computed from Equation 1. The schedule
(as mentioned earlier) is an extreme case in which A wins
every arbitration, when both A and B are ready at the same
time. (We can also assume that A finished a cycle too early,
thereby winning arbitration every time.) Thus, while a cycle
of A takes only 300 cycles (the minimum possible, since it
does not have to wait), a cycle of B takes 600 cycles (the
maximum possible including the waiting time).
An interesting thing that can be observed from this exam-

ple that the starting state does not always have an effect on
the steady-state. Even if we let B start first, the same peri-
odic schedule is obtained (assuming of course that A wins
the arbitration).
There can be other approaches to remove such possible

bias. It is trivial to see that a Round Robin approach with-
out skipping would actually in this case give equal rates of
execution to A and B in the long run. A static-order which
gives priority to A and B alternately for processors that have
a conflict will also help solve the situation as shown in Fig-
ure 9. In this schedule, we find that one iteration of both A
and B takes only 400 cycles.

��

��

��

���� ��

���

���

���

�

���

���

���

	

��

�

	

���
��

����

Figure 9. An example showing a static order strategy. The
same is obtained for round robin without skipping.

Interestingly, in either of the cases (Figures 2 and 9) the
processor utilization comes out to be the same. Processor
utilization is defined as the time during which the processor
node is doing some computation as compared to the total

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

time available. In Figure 2 each processor is active for ex-
actly half the time in the periodic schedule. Therefore, the
utilization for each processor node is 0.5. The same goes
for Figure 9, in which each node is active for 200 cycles out
of 400 cycles. Alternatively, we can also compute processor
utilization using Equation 2.

U(Pj) =

m∑

k=1

ET (Tkj)

Tk

(2)

Here Tk refers to the period of task k. In schedule shown
in Figure 2, the period for task A and B is 300 and 600 cy-
cles respectively. Utilization for each processor is therefore,
100/300 + 100/600 = 0.5. For schedule in Figure 9, the pe-
riod for each task is 400 cycles. We therefore obtain the
utilization as 100/400 + 100/400 = 0.5.
The problem of composability becomes most obvious in

this example. We have two tasks each with an MCM of
300 cycles, each requiring only a-third of each processor re-
sources, thereby giving a total of 67% of processor utiliza-
tion. In spite of this, we are unable to find any schedule that
can ensure that each task completes one iteration in only 300
cycles. Even if we allow pre-emption, achieving a processor
utilization of more than 50% is not possible.

3.1. Estimating Resources
It is quite useful to be able to estimate resource require-

ment early in the design phase. Design managers often have
to negotiate with the product divisions for the overall re-
sources needed for the system. These estimates are mostly
on a higher level, and the managers usually like to adopt a
’spread-sheet’ approach for computing it. As we shall see, it
is often not possible to use this view. We show how different
approaches lead to differing estimates.
Consider again the example as shown in Figure 2. There

could be many ways to consider how many resources we
have available, and how much of it can be utilized. Table
2 shows how different estimating strategies can lead to dif-
ferent results. Some of the methods give a false indication
of processing power, and are not achievable. For example,
in the second column the execution time of only the actor is
considered. This is a very naive approach and would be the
easiest to estimate. It assumes that all the processing power
that is available for each node is shared between the two
processes equally. Each actor takes 100 cycles of processing
power, and there are two actors on each node. Therefore, in
a time period of 1 million cycles, we should be able to run
each actor 5,000 times assuming uniform distribution of re-
source, thereby running each task 5,000 times as well. This,
however, is not achievable in practice due to intra-task de-
pendency. When, this intra-task dependency is taken into
account, we see that the maximum number of iterations for
each task can only be 3,333, since each iteration will take at
least 300 cycles and only one iteration of each task can be
active at any point in time (only one initial token is present).

Table 2. Accounting of resource utilization: Iterations for
each task for 1,000,000 cycles
Task Only Indiv. WC Analysis Static RR RR

actors graph (both graphs) A pref B pref

Task A 5,000 3,333 1,666 2,500 3,333 1,667
Task B 5,000 3,334 1,667 2,500 1,667 3,333
Total 10,000 6,667 3,333 5,000 5,000 5,000

The next case is to take the worst-case waiting time for a
strategy like round robin into account and estimate the num-
ber of iterations possible. As mentioned in Equation 1, we
get a worst case execution time for one iteration of the task
as 600 cycles. The next column gives the number of exe-
cutions as obtained by a static order schedule. The next two
columns show the iterations for a round robin strategy which
favors A and B respectively. Interestingly, the total number
of iterations for a static and for a round-robin with skipping
and of static order happen to be same. The distribution in
the round robin (with skipping) case however, is more un-
predictable so its hard to guarantee the number of individual
iterations, while in the static order it is deterministic.

3.2. Suitability for Resource Management
With the increasing dynamism in modern applications,

the need for a separate task to monitor and direct the usage
of resources has arisen. Such a resource manager is respon-
sible for just that. It controls the access to resources - both
critical and non-critical, and enforces their usage. Clearly,
admission of a new job also falls in the scope of resource
manager. When a new job arrives in the system and needs
resources, the resource manager checks the current state of
the system and decides whether it has enough resources to
accommodate it. It also enforces a specified resource budget
for a task to ensure it only uses what was requested.
Predictability of an arbitration mechanism is one of the

most important criteria when it comes to suitability for such
a task. Computing static orders is certainly more predictable
than using a round robin strategy for scheduling tasks. Given
a particular use case, the resource manager would like to
know the exact usage of resources before and after accom-
modating the new job. A round robin mechanism can not
provide such guarantees. However, as mentioned earlier this
guarantee comes at a high design and run-time cost.
A round robin strategy allows for more dynamism in the

overall system since specific use cases do not have to be con-
sidered. Further, deadlock issues do not have to considered
in this strategy either. Any new job in the system can be
added when it arrives, unlike in a static order when dead-
lock has to be specifically avoided by extra heuristics in the
system.

4. Arbitration Requirements
Table 3 shows a summary of various performance pa-

rameters that we have considered in this paper. The static
scheduling clearly has a higher design-time overhead of
computing the optimal order for each use-case. The run-

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 3. Summary of all the performance parameters

Properties
Static RR with
Sched. skipping

Design time overhead Computing order - - ++

Run-time overhead
Memory reqmt. - ++
Scheduler + +

Predictability
Throughput ++ - -
Resource Utilization + -

New job admission
Admission criteria ++ - -
Deadlock - ++
Reconfigurability - +

Dynamism
Variable Exec. time - +
New Use-case - - ++

time scheduler needed for both schedulers is quite simple,
since only a simple check is needed to see when the actor is
active and fire. The memory requirement for static schedul-
ing is however, higher than that for a round-robin mecha-
nism, since all the use-case orders need to be stored. The
static order certainly scores better than round-robin when it
comes to predictability of throughput and resource utiliza-
tion. Static-order approach is also better when it comes to
admitting a new job in the system since the resource usage
prior and after admitting the job are known at design time.
Therefore, a decision whether to accept it or not is easier
to make. However, extra measures are needed to reconfig-
ure the system properly so that the system does not go into
deadlock as mentioned earlier in Section 2.5.
A round-robin approach is able to handle dynamism bet-

ter than static order since orders are computed based on the
worst-case execution time. When the run-time varies signif-
icantly, a static order is not able to benefit from early termi-
nation of a process. The biggest disadvantage of static order,
however, lies in the fact that any change in the design, e.g.
adding a use-case to the system or a new processor node, can
not be accommodated at run-time.
From this summary, we conclude that round-robin satis-

fies most of our criteria. and is hence quite suitable for a
resource manager in an MPSoC. However, a resource man-
ager also needs a mechanism to enforce a time-budget on the
available resources for each application separately, to ensure
that they do not exceed the resource allocated for it. Such en-
forcing mechanism suffers from a dilemma of wasting pro-
cessing resources while waiting for an actor. For example,
if an actor Tij has used all of its allocated resources and
Tkj is next in queue. Tkj , however, is not yet ready while
Tij needs more of resource Pj . Deciding whether to wait
for Tkj or let Tij execute is non-trivial. Ideally speaking
we would like to be able to look into the future and know
when the actor would be ready to use its available resource.
Since we are dealing with multi-processor system, this im-
plies looking into the state of other nodes, which involves
huge overhead and is often infeasible.
Secondly, assigning priorities to the actors scheduled on a

node can also be a possible extension to round-robin, to limit
the waiting time for an actor. This could perhaps help us
analyze the performance in round-robin better and thereby

allow us to provide more realistic guarantees for resource
requirement and utilization.
Another approachmight be to use a budget-basedmethod

where an actor is given some credits which decrements de-
pending on how much resources it uses. When the credits
fall below a certain number or become negative, the actor
is flagged off and not allowed to execute. The credits can
be handed out by the resource manager and decremented by
individual processing nodes. The initial credit limit - budget
- and the decrement sets the grain of control. This, however,
denotes a higher run-time overhead.
The above methods are primarily using round-robin as a

base and introducing techniques to improve predictability.
We could also start from the static-order approach and intro-
duce measures to reduce the design-time overhead and the
ability to handle dynamism more gracefully.

5. Conclusions and Future Work
In this paper, we have introduced the composability prob-

lem and shown that combining resource usage is non-trivial.
We also introduced properties and requirements for resource
arbitration for a multi-processor based system-on-chip. Fur-
thermore, using these requirements, we have compared two
simple arbitration mechanisms. We observe that round-
robin has a lower run-time and design-time overhead, and
also handles dynamism in the tasks more efficiently. When
a new job arrives in the system, round-robin has little over-
head for reconfiguration. It however, suffers, heavily from
the lack of performance predictability in the design - one of
the most important requirements for a resource manager in
an MPSoC. We would like to use round-robin as the basic
arbitration mechanism and build upon it in order to realize a
resource manager. This implies firstly, a better performance
estimate and secondly, a mechanism for the resource man-
ager to impose specified utilization or time-budget. Further,
we would like to evaluate the arbitration mechanism on real
hardware implementation. An FPGA infrastructure has al-
ready been developed in order to make architectural explo-
rations and do quick design iterations.

References
[1] C. L. Liu and James W. Layland; Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment, Journal
of the ACM, Vol. 20, No. 1, 1973.

[2] E. A. Lee and D. G. Messerschmitt; Static scheduling of
synchronous dataflow programs for digital signal processing,
IEEE Transactions on Computers, Feb. 1987.

[3] S Sriram and S. S. Bhattacharya; Embedded Multiprocessors:
Scheduling and Synchronization, Marcel Dekker Inc 2000.

[4] Rob Hoes; Predictable Dynamic Behavior in NoC-based
Multiprocessor Systems-on-Chip, Masters Thesis, 2004.
http://www.es.ele.tue.nl/epicurus/publications.php.

[5] A. Dasdan; Experimental analysis of the fastest optimum cy-
cle ratio and mean algorithm, ACM Transactions on Design
Automation of Electronic Systems, 2004.

[6] R. M. Karp et al; Properties of a model for parallel computa-
tions, determinacy, termination, and queueing, SIAM Journal
of Applied Mathematics, 14(6):1390–1411, Nov. 1966.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

