On Composability of MPSoC Applications
Akash Kumar*, Bart Theelen*, Bart Mesman*, Henk Corporaal*!

*Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands

ABSTRACT

Mapping and analyzing multiple applications on a multi-processor system is a complex problem. Analyz-
ing the feasibility and resource utilization of all possible use-cases is often infeasible. Here we highlight
the issue of composability, i.e. being able to analyze applications in isolation while still reason about the
overall system behavior. We observe that arbitration plays an important role in this analysis. Two sim-
ple, yet commonly used arbitration mechanisms are compared, and the properties are highlighted that are
important for such composability.

1 Introduction

Typical Multi-Processor System-on-Chips (MPSoC) run multiple applications in parallel. An MPSoC-
based mobile phone may execute for example an MP3 decoder to produce music, while the user also
writes a text message concurrently to downloading a new ring tone in the background. The user
should not experience significant quality drops or delays when activating or deactivating applica-
tions. These requirements imply the allocation of the available resources (like processors, memo-
ries and busses) to provide certain guarantees. Where schedulability analysis for traditional single-
processor systems (which often support preemption) is well studied [LL73]], the theory of rate-mono-
tonic analysis and the likes do not apply for MPSoCs.

An MPSoC on which N applications may potentially run, has up to 2V possible use-cases. Hence,
evaluating the resource requirements for all use-cases is often too expensive. Instead, one would like
to analyze each application in isolation (thereby reducing the analysis time to a linear function in V)
and determine the overall performance of the system from the results for the individual applications
in combination with used scheduling policy. In the context of concurrent systems, a stronger version
of such compositionality is sometimes called composability, which states that the properties satisfied
by the individual applications should remain satisfied by their parallel compositions [Sif01]. Com-
posability could be achieved by means of virtualization, which involves reserving a (weighted) share
of the resources for each application. A disadvantage is however the waste of resources when certain
applications are inactive. This paper studies how the exponential analysis complexity for MPSoCs can be
reduced to linear complexity, without paying the overhead of complete virtualization. To this end, we assume
applications to be specified as a (Homogeneous) Synchronous Data Flow (SDF) graph [LM87], where
vertices indicate separate tasks (also called actors) of an application and edges denote dependencies
between them. In HSDF, an actor can only fire (execute) when a token (data item) is available on
all its inputs. Using (H)SDF allows analysis of properties like absence of deadlock, throughput and
memory requirements [SB00]. Assuming an MPSoC without support for preemption, we research
the impact on the composability regarding throughput. Static (fixed) order and round robin (with
skipping) schedules are compared.

2 Composability Problem

In this section we present an example which demonstrates why the resource requirements for actors
can not be simply added. Figure|1|shows an example of two applications A and B (with three actors
each) mapped on a three processor system. We assume that actors A; and B; are mapped onto the
processor P; for i = 1,2,3. Each actor takes 100 time units to execute and a dot on an edge indi-
cates the availability of an initial token. Because of the dependencies within the applications, only
one actor of A and B can be executing at a time and hence, A and B both have a throughput of
55 For determining the throughput of more complex task graphs, one could also apply the HSDF
analysis technique of the Maximum Cycle Mean (MCM) [SBO0]. The throughput of an HSDF equals

LE-mail: {a.kumar,b.d.theelen,b.mesman,h.corporaal}@tue.nl

to t Steady
State State
(a) Schedule for round-robin with skipping. (b) Schedule for round-robin w/o skipping (static order).

Figure 1: Scheduling two applications using round robin with skipping and without skipping.

the reciprocal of its MCM (being 300 time units for both A and B). We furthermore observe that

each application induces a load of on each processor and hence when running both, the maximum

achievable processor utilization is 3.

However, the assumed mapping leads to contention regarding the processors, which may result
in not being able to deliver the performance for each application individually as analyzed above.
A conservative way of determining the processor utilization is to take the worst case waiting time
for the actors into account, which can be computed based on the critical instant as defined by Liu
and Layland [LL73]. The critical instant for a task is defined as an instant at which a request for that
task will have the largest response time. Since we only have two actors mapped on each processor,
the maximum waiting time for each actor is 100 time units, and the response time for each actor is
therefore, at most 200 time units. The MCM for each graph individually is then 600 time units. The
load due to each application becomes , leading to a total of § on each processor. This forms the lower
bound on processor utilization using first-come-first-serve (FCFS) or round-robin with skipping.

Figure[I(a)|illustrates scheduling A and B when using round robin (RR) with skipping. The first
contention between application A and B occurs at ¢y, when both A; and B; are ready to execute
on P;. As shown, A wins the arbitration, while B; must wait. Another contention occurs at ¢; for
processor P3, and then for P, followed by P;. The schedule assumes that A wins every arbitration.
The schedule soon settles into a periodic regime taking 600 time units, in which A completes two
iterations and B completes only one. Hence, A will achieve a throughput of 36—0 (as desired) while the

throughput of B is only 5. In case B would have won every arbitration, the situation is reversed
and B would execute twice as many times as A. In either of the cases, the processor utilization is only
% (instead of the expected %).

Figure|I(b)|shows a schedule when using round robin without skipping, which is equivalent to a
static order schedule. Such static order schedules can be expressed in (H)SDF by adding dependen-
cies as illustrated in Figure For this schedule, both A and B take 400 time units for completing
one iteration. As a result, the throughput for both A and B equals 455, while the processor utilization
is again only 1. The throughput results are confirmed by applying the MCM technique on the HSDF
graph of the two applications together, which equals 400 time units (consider for example, the cycle
A2 — A3 — B3 — B2 — A2). The problem with applying the MCM technique is however the
requirement to consider the HSDF graph that represents all applications and the chosen static order
schedule together. When the number of applications increases, the number of possible HSDF graphs
that can be constructed to depict the whole system increases exponentially. There are, for example,
((g —)!)* unique possible static order schedules for g applications consisting of a actors each, which
may all have a different MCM. A similar complexity concerns the size of these HSDF graphs.

As can be seen the resource utilization and realized throughput of each application varies with the
scheduling mechanism chosen. In Table (1| we summarize these results. The table shows how many

Dependency Considered Scheduler used
None Intra- Inter- Static RR RR
application application | order A pref B pref
Application A 5,000 3,333 1,666 | 2500 3,333 1,666
Application B 5,000 3,333 1,666 | 2500 1,666 3,333
Total 10,000 6,666 3,333 | 5000 5,000 5,000
Processor Utilization 1 2/3 1/3 1/2 1/2 1/2

Table 1: Accounting of resource utilization: Iterations for each application for 1,000,000 time units

Property Static | Round Robin
Order | with skipping
Design time overhead |Calculating Schedules -- ++
. Memory requirement - ++
Run-time overhead Scheduﬁngci)verhead + +
. 1 Throughput ++ --
Predictability Resouic‘;cepUtilization + -
Admission criteria ++ --
New job admission Deadlock-free guarantee - ++
Reconfiguration overhead - +
. Variable Execution time - +
Dynamism Handlin - -- ++
g new use-case

Table 2: Properties of Scheduling Strategies

iterations of each applications are executed in one million time units. The first set of columns are
obtained by analyzing the applications in isolation, and not actually scheduling them. Three cases
are shown.

e None: No dependency is considered. Since each processor has a total load of 200 time units,
each application can finish 5,000 iterations.

e Intra-application: The dependency within the application is considered. The MCM of each ap-
plication is 300 time units, and can therefore, finish 3,333 iterations. It should be mentioned that
it is only because the total load on the processor is .

e Inter-application: When contention due to other applications is taken into account, we use the
worst-case estimate to arrive at the MCM of 600, thereby leading to only 1,667 iterations.

The next set of columns is obtained by scheduling applications by hand using different schedulers.
We can thus conclude that overall resource utilization can not simply be added.

3 Resource Manager

This section summarizes the properties of an arbitration strategy that makes it suitable for a resource
manager. A resource manager is a separate task running on the system that monitors and enforces
usage of resources. Admission of a new job also falls in the scope of resource manager. Table 2] shows
a summary of various performance parameters that are important for resource manager. The two
arbitration mechanisms compared in the paper are evaluated on these performance measures. (A
complete description can be found in [KMCT06].) From the table, we conclude that round-robin
with skipping satisfies most of our criteria, and is hence quite suitable for a resource manager in
an MPSoC. It however, suffers from lack of predictability since it is difficult to estimate resource
usage using analytical tools. In the next section, we describe a prototype tool flow developed that
overcomes this limitation.

4 Prototype Tool Flow

Section[2illustrated the composability problem by means of a small example (Figure 1), which could
easily be analyzed by hand. Automated analysis of bigger case studies using static order sched-
ules could be performed using existing SDF analysis tools like the one in [SGB06] (using the MCM
technique). To investigate composability for other scheduler types than static order, another tool was

needed. We therefore developed a three-phase prototype tool flow that relies on the Y-chart approach
[dKSvdWT00] and the modeling language POOSL [POQ]. The first phase concerns specifying the dif-
ferent applications (as SDF graphs), the processors of the MPSoC platform (including their scheduler
type) and the mapping. After organizing the information in an XML specification for all three parts,
a POOSL model of the complete MPSoC system is generated automatically. The generation relies on
the approach in [TGB™06] for modeling the applications, while the mapping and processors are mod-
eled according to the approach of [FdAHVC06|]. Currently, the POOSL model generation tool supports
FCFS, round-robin without skipping (static order) and round-robin with skipping as options for the
scheduler types, while existing modeling patterns for other scheduler types (such as a priority-based
scheduler with preemption) could easily be integrated as well. The second phase relies on the simula-
tor for POOSL models, which obtains estimation results for performance metrics like the application
throughput and processor utilization with a predetermined accuracy. It also allows generation of
trace files that can be used in the final phase to generate schedule diagrams like those presented in
this paper.

[IJ)siIr)lg the prototype tool flow, we investigated a few simple examples with various scheduler
types to validate the tool itself. We tried an example with three applications - A, B and C; each with
three actors, similar to the ones shown in Figure [l We set the run-time of each actor in A to be 100,
in B to be 80 and in C to be 50 time-units. Initial investigations show that round-robin with skipping
and FCFS fair better than strict round-robin. In some simulations, we also found that the example in
Figure[1jachieves only a processor utilization of 33% (and not 50%) when a static order is used. The
difference is caused by the time at which applications are introduced in the system.

5 Conclusions and Future Work

In this paper, we have introduced the composability problem and shown that combining resource
usage is non-trivial. We also summarized properties and requirements for resource arbitration for a
multi-processor based system-on-chip. Furthermore, using these requirements, we have compared
two simple arbitration mechanisms. We also developed a tool-flow to automatically analyze bigger
case studies and investigate performance of different schedulers. We would now like to evaluate
the arbitration mechanism on real MPSoC hardware implementation. An FPGA infrastructure has
already been developed in order to make architectural explorations and do quick design iterations.

References

[dKSvdW00] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer, P. Lieverse, K. A.
Vissers, and G. Essink. Yapi: application modeling for signal processing systems. In DAC "00:
Proceedings of the 37th conference on Design automation, New York, NY, USA, 2000. ACM Press.

[FAHVCO06] O. Florescu, M. de Hoon,]J. Voeten, and H. Corporaal. Probabilistic Modelling and Evaluation
of Soft Real-Time Embedded Systems. In Proceedings of Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, 2006.

[KMCT06] A. Kumar, B. Mesman, H. Corporaal,]. van Meerbergen, and Y. Ha. Global analysis of resource
arbitration for mpsoc. In Ninth Euromicro Conference on Digital System Design. Euromicro, 2006.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM, 20(1), 1973.

[LM87] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow programs for
digital signal processing. IEEE Transactions on Computers, Feb 1987.

[POO] http:/ /www.es.ele.tue.nl/poosl.

[SB0O0] S. Siram and S.S. Bhattacharyya. Embedded Multiprocessors; Scheduling and Synchronization. Mar-
cel Dekker, 2000.

[SGBO6] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF for Free. In Proceedings of the International
Conference on Application of Concurrency to System Design. IEEE Computer Society Press, 2006.

[Sif01] J. Sifakis. Modeling Real-Time Systems; Challenges and Work Directions. In Proceedings of the

First International Workshop on Embedded Software. Springer-Verlag, 2001.

[TGBT06] B.D. Theelen, M.C.W. Geilen, T. Basten, J].P.M. Voeten, S.V. Gheorghita, and S. Stuijk. A
Scenario-Aware Data Flow Model for Combined Long-Run Average and Worst-Case Perfor-
mance Analysis. In Proceedings of the International Conference on Formal Methods and Models for
Co-Design. IEEE Computer Society Press, 2006.

	Introduction
	Composability Problem
	Resource Manager
	Prototype Tool Flow
	Conclusions and Future Work

