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Modern embedded systems need to support multiple time-constrained multimedia applications that often
employ Multiprocessor-Systems-on-Chip (MPSoCs). Such systems need to be optimized for resource usage
and energy consumption. It is well understood that a design-time approach cannot provide timing guaran-
tees for all the applications due to its inability to cater for dynamism in applications. However, a run-time ap-
proach consumes large computation requirements at run-time and hence may not lend well for constrained
aware mapping.

In this paper, we present a hybrid approach for efficient mapping of applications in such systems. For
each application to be supported in the system, the approach performs extensive design-space exploration
(DSE) at design-time to derive multiple design points representing throughput and energy consumption at
different resource combinations. One of these points is selected at run-time efficiently depending upon the
desired throughput while optimizing for the energy consumption and resource usage. While most of the
existing DSE strategies consider a fixed multiprocessor platform architecture, our DSE considers a generic
architecture making DSE results applicable to any target platform. All the compute intensive analysis is
performed during DSE which leaves for minimum computation at run-time. The approach is capable of
handling dynamism in applications by considering their run-time aspects and provides timing guarantees.

The presented approach is used to carry out a DSE case study for models of real-life multimedia ap-
plications: H.263 decoder, H.263 encoder, MPEG-4 decoder, JPEG decoder, sample rate converter and MP3
decoder. At run-time, the design-points are used to map the applications on a heterogeneous MPSoC. Exper-
imental results reveal that the proposed approach provides faster DSE, better design points and efficient
run-time mapping when compared to other approaches. In particular, we show that DSE is faster by 83%
and run-time mapping is accelerated by 93% for some cases. Further, we study scalability of the approach
by considering applications with large number of tasks.
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1. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoCs) consist of multiple processing elements
(PEs) connected by a communication infrastructure. Heterogeneous MPSoCs contain
different type of PEs. The distinct features of the different type of PEs can be exploited
in order to achieve high computation performance and energy efficiency. Modern em-
bedded systems are based on MPSoCs to meet high performance demands, for example,
ST Nomadik, NXP Nexperia [Kim et al. 2008] and IBM Cell [Kistler et al. 2006].

Modern embedded systems (e.g., smart phones, PDAs, tablet PCs) often support a
number of multimedia applications concurrently and this number is increasing faster
than ever. For example, a smart phone might be used to view an image using a JPEG
decoder over the internet and at the same time to listen to music using an MP3 de-
coder. Users expect that all applications running in the system should satisfy their
timing (throughput) constraints and have a robust behavior [Gangwal et al. 2005].
Thus, the supported applications should have a predictable timing nature that de-
pends upon the system resource usages. Synchronous Dataflow Graphs (SDFGs) can
be used to model time-constraint multimedia applications and provide predictability
[Lee and Messerschmitt 1987]. The timing is often analyzed at design-time that is
incapable of handling run-time aspects such as supporting a new application.

To support a new application in the system at run-time, the application tasks need to
be mapped onto the system resources such that the throughput constrained is satisfied
and energy consumption & resource usage are optimized. The timing nature depends
upon how the mapping is performed. Most of the existing mapping strategies are based
on either design-time analysis [Palermo et al. 2005] [Stuijk et al. 2007] [Ascia et al.
2007] or on run-time mapping [Ykman-Couvreur et al. 2006], [Moreira et al. 2007],
[Nollet et al. 2008], [Carvalho and Moraes 2008], [Singh et al. 2009]. The design-time
strategies are unable to handle dynamism in applications incurred at run-time as they
are applicable only to predefined set of applications with static behavior. However, the
run-time strategies cannot guarantee for schedulability, i.e., meeting the strict timing
deadlines due to lack of any prior analysis and limited compute power at run-time.
Thus, there is a need to devise a hybrid strategy that should perform compute intensive
analysis at design-time and should use the analyzed results at run-time to overcome
the above mentioned problems. While there are some efforts in the hybrid strategy
direction [Schranzhofer et al. 2010] [Ykman-Couvreur et al. 2011] [Yang et al. 2002],
their analysis results are not optimized from throughput point of view. Further, they
are applicable for the analyzed platform only. The strategy in [Singh et al. 2011] does
consider a generic platform and provides throughput-optimized analysis results, but
they are limited to homogeneous platforms and do not consider energy consumption.

We present a hybrid strategy for heterogeneous platforms containing different type of
processing tiles. A processing tile essentially contains a processor, for example, general
purpose processor (GPP), digital signal processor (DSP), accelerator, reconfigurable
hardware (RH) etc. along with other elements, e.g., memory. The RH can be configured
as a processor. The processor type determines the tile type. The presented strategy
considers energy consumption as well.

The presented hybrid strategy has several new design challenges. First, the design
space to be explored becomes p-dimensional with 1 number of tile types, whereas it
is linear (1-dimensional) for the homogeneous case. Fig. 1 shows the number of pos-
sible design points (mappings) at different tile-combinations for an application with
five tasks when each task can be mapped on two types of tiles. The five tasks can use a
maximum of 5 tiles at a time. If we take the number of tiles of 2" type as zero, then we
get the 1-dimensional (homogeneous) design space shown by the blue color bars in Fig.
1. We get a total of 52 such mappings. For 14 tasks, a total of 190,899,322 mappings are
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Fig. 1. Number of mappings at different combination of used tiles.

obtained, which will take approximately 220 days in evaluation if we assume 100 mil-
lisecond (ms) to evaluate one mapping. Thus, evaluation of all the possible mappings
is not always feasible. The strategy proposed in [Singh et al. 2011] adopts a pruning
technique to discard evaluation of inefficient mappings and performs the evaluation
in a limited time. Therefore, the presented strategy adopts the technique proposed in
[Singh et al. 2011] for homogeneous tiles mappings evaluations. In Figure 1, we con-
sider two types of tiles and get a total of 454 design points in the 2-dimensional design
space. For 14 tasks, more than 20 billion mappings are obtained, which is going to take
many years in evaluation. The number of mappings increases exponentially with the
number of tile types and in turn the evaluation time. Therefore, the presented strat-
egy has challenge to finish the evaluation within a limited time without missing the
efficient mappings when the number of tasks and tile types is increased.

Another challenge in heterogeneous platforms is to avoid time consuming evalua-
tion of mappings using non-supported tile-combinations in case all tasks cannot be
supported on all the tile types. The next challenge is the accurate measurement of en-
ergy consumption for all the mappings to be evaluated. The presented hybrid strategy
has also the challenge to find the Pareto-optimal points at different tile-combinations
from a large number of design points and in selecting the best one at run-time depend-
ing upon the different types of available tiles.

Key Contributions. In this article, the aforementioned challenges have been ad-

dressed through the presented hybrid strategy by providing the following main con-
tributions:

— A design-time DSE strategy for a generic MPSoC platform computing throughput
and energy consumption at different resource combination. The platform may contain
different type of processors such as GPPs, DSPs, accelerators etc.

— An optimization technique to accelerate the DSE when the maximum number of tiles
in the platform is known in advance.

— A memory optimization technique based on Pareto algebra to be applied on the avail-
able design points to keep only Pareto-optimal points, reducing the evaluation over-
head at run-time.

— An efficient run-time strategy to select the best point from the Pareto-optimal points
subject to the desired throughput while optimizing for energy consumption and re-
source usage at run-time.

Existing design-time DSE strategies are applicable only to a fixed architecture plat-
form, do not scale well with the number of tiles in the platform and do not always
provide the largest throughput mapping. These strategies perform optimization for
some performance metrics like energy, resource optimization etc. and in turn map
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Fig. 2. Analyze once & run everywhere demonstration.

the potentially parallel executing tasks on the same tile, forcing their execution in
sequence. This often reduces the available parallelism, thereby reduced throughput.
Further, the number of evaluated mappings by existing DSE strategies depends upon
the number of tiles in the platform. The number of evaluated mappings determines
the exploration time. Thus, the existing DSE strategies require a lot of time in explo-
ration for advanced available commercial platforms containing hundreds of tiles [Van-
gal et al. 2007] [TILE-Gx100 2009], and even more time for anticipated MPSoCs con-
taining thousands of tiles [Borkar 2007]. Existing run-time mapping strategies start
mapping without any previous analysis of the application and thus do not perform
well.

Our design-time DSE strategy considers a generic multiprocessor platform that con-
tains tiles depending upon the number of tasks and their implementation alternatives
provided in the applications. Implementation alternatives of a task determine the pro-
cessor types onto which it can be supported such as on a GPP, DSP and on a RH block.
The number of used tiles in a mapping is referred to as tile count. At each tile count, our
technique analyzes a number of mappings at different processing resource combina-
tions and stores the best mapping in terms of throughput and energy consumption for
each combination.Our run-time strategy selects one of the stored mapping depending
upon the desired throughput without performing any computation to evaluate map-
pings and thus performs fast run-time mapping.

The considered generic platform during design-time DSE contains tiles that are sep-
arated by a fixed distance from each other, referred to as hop_distance in this work. A
real-life platform might have tiles at varying distance from each other, for example, a
2x2 grid of tiles platform has a few tiles separated by a hop_distance of 1 while oth-
ers at hop_distance of 2. The DSE is performed by considering maximum separation
between the tiles in the future expected target platform. The DSE results can be used
for any target platform as long as i) the target platform tile types are subset of the
analyzed tile types and ii) the maximum distance between the chosen target platform
tiles for mapping is less than or equal to the maximum separation for which the DSE
was performed. Thus, no additional design-time analysis is needed in case of such dif-
ferent target platforms. This approach is analogous to analyze once & run everywhere,
which is similar to Java’s write-once-run-everywhere capability. Fig. 2 shows a demon-
stration for three type of tiles (GPP, RH, ACC) analyzed during DSE with maximum
separation between the tiles as 3 hop (hop_distance). The analyzed results will be ap-
plicable to the three shown target platforms as their tile types and max hop_distance
are subset of the tile types and maximum separation considered during DSE.

The rest of the article is organized as follows. Section 2 reviews the related work in
the direction of design-time DSE and run-time mapping. Section 3 introduces multi-
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processor and application model used in this work. The hybrid mapping flow that first
performs design-time analysis of applications and then map the applications on a mul-
tiprocessor platform at run-time is presented in Section 4. The experimental results to
evaluate our methodology are presented in Section 5. Section 6 concludes the article
and provides directions for future work.

2. RELATED WORK

Most of the design-time DSE strategies reported in literature provide a single map-
ping for the application and some are presented in [Moreira et al. 2007], [Ahn et al.
2008], [Keinert et al. 2009], [Liu et al. 2008], [Bonfietti et al. 2009] and [Stuijk et al.
2007]. They perform DSE in view of some optimization parameters such as computa-
tional performance and energy, and the optimization is very time consuming. These
strategies target fixed MPSoC platforms and do not provide mapping having optimal
throughput and energy consumption in some cases. Further, they are unable to handle
dynamism in resource availability and throughput requirement at run-time. In con-
trast, our DSE strategy is applied to a generic MPSoC platform and generates a set of
mappings with different resource requirements, throughput and energy consumption,
which helps to handle dynamism at run-time.

Design-time DSE strategies that generate multiple mappings for the application
have recently been reported in [Mariani et al. 2010], [Stuijk et al. 2010], [Giovanni
et al. 2010], [Zamora et al. 2007], [Angiolini et al. 2006] and [Lukasiewycz et al. 2008].
The generated mappings can be used to handle dynamism in resource availability and
throughput requirement at run-time but these approaches have several drawbacks
such as applicable only to fixed platform, dont provide optimal mappings in some cases,
evaluate large number of mappings for relatively larger platforms including some du-
plicate mappings and do not scale well with the platform size. The duplicate mappings
just differ in placement of tasks on different tiles with the same tasks to tiles bind-
ing and provide the same performance. Further, the time consuming DSE needs to
be repeated with any changes in the platform. In [Jia et al. 2010], the exploration is
performed for multiple platforms. The applicability of generated mappings is limited
to the set of explored platforms. In contrast, our strategy considers a generic plat-
form that contains tiles depending upon the tasks and their implementation alterna-
tives provided in the application and provides the mappings having largest throughput
and minimum energy consumption at different processing resource combinations. The
mappings generated by our approach are applicable to any target platform so long the
target platform tile types and maximum separation between the tiles are subset of the
tile types and maximum separation considered during DSE. Thus, repetition of the
DSE for a new platform is avoided. The generation of duplicate mappings is avoided
by not considering a bigger platform than required.

There has been quite some research in multiple applications DSE. Some researchers
focus on scenario based approach where multiple application mapping scenarios are
explored at design-time in order to handle dynamism in number of active applications
at run-time [van Stralen and Pimentel 2010], [Stuijk et al. 2010], [Palermo et al. 2008].
A scenario contains a set of simultaneously active applications. The scenarios have also
been referred to as use-cases [Kumar et al. 2008], [Benini et al. 2008]. The scenario
based approaches are not scalable as the number of scenarios increases exponentially
with the number of applications, which might become intractable. In order to support
multiple active applications at run-time, the applications can be mapped one after
another. We map the applications one after another and thus avoid the overhead of
handling large number of use-cases.

To map the application tasks on the platform tiles at run-time, one can start the
mapping with or without previously analyzed results. Most of the work presented in
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Table |. Comparison of various approaches for performing design-time analysis and then run-time mapping

Reference Platform Applicability Mappings Evaluation Run-time
[Mariani et al. 2010] Fixed Homogeneous Multiple = Non-scalable Yes
[Stuijk et al. 2010] Fixed Homogeneous Multiple  Non-scalable No
[Giovanni et al. 2010] Fixed Homogeneous Multiple Non-scalable No
[Ykman-Couvreur et al. 2011] Fixed Homogeneous Multiple  Non-scalable Yes
[Singh et al. 2011] Generic Homogeneous Multiple Scalable Yes
[Yang et al. 2002] Fixed Heterogeneous  Multiple  Non-scalable Yes
[Angiolini et al. 2006] Fixed Heterogeneous  Multiple  Non-scalable No
[Zamora et al. 2007] Fixed Heterogeneous  Multiple  Non-scalable No
[Lukasiewycz et al. 2008] Fixed Heterogeneous Multiple = Non-scalable No
[Schranzhofer et al. 2010] Fixed Heterogeneous Single Non-scalable Yes
[Jia et al. 2010] Flexible  Heterogeneous  Multiple = Non-scalable No
Our strategy Generic  Heterogeneous  Multiple Scalable Yes

literature start mapping without any previous analysis and thus cannot guarantee
for schedulability and strict timing deadlines due to limited computational resources
at run-time [Singh et al. 2010], [Carvalho and Moraes 2008], [Ykman-Couvreur et al.
2006], [Nollet et al. 2008], [Moreira et al. 2007]. A few strategies using design-time
analysis results are presented in [Schranzhofer et al. 2010], [Ykman-Couvreur et al.
2011], [Yang et al. 2002] and [Singh et al. 2011]. In [Schranzhofer et al. 2010], analysis
result includes only a single mapping having minimum average power consumption,
so, the mapping may not be optimized from throughput point of view. In [Ykman-
Couvreur et al. 2011] and [Yang et al. 2002], analysis results include multiple map-
pings having trade-off in terms of target power consumption and performance. The
results do not include mappings satisfying the constraints in case of limited resources.
At run-time, this case forces the application to be put into a relaxed application set and
it is not mapped immediately, which may result in missing the strict timing deadline.
The analysis results by the strategies in [Schranzhofer et al. 2010], [Ykman-Couvreur
et al. 2011] and [Yang et al. 2002] are applicable to a fixed platform only. In [Singh et al.
2011], analysis results include mappings optimized from throughput point of view for
the limited resources case but are applicable to homogeneous platforms and do not
include energy consumption. Our presented strategy considers energy consumption
and heterogeneous platforms. At run-time, the strategy efficiently uses the analyzed
results and always tries to provide timing guarantee.

Table I shows a comparison of the approaches reported in literature which consider
design-time analysis and then analyzed results for run-time mapping, and where our
approach is different. As can be seen, most of the existing approaches perform design-
time analysis on fixed or flexible (multiple) platforms, are not scalable (Non-scalable)
with application & platform size, and evaluate mappings that are applicable only to
fixed homogeneous, fixed heterogeneous or a set of heterogeneous (Flexible heteroge-
neous) platforms. However, in our approach, design-time analysis considers a generic
platform and is scalable while providing multiple mappings that are applicable to any
platform (Generic). Our strategy has support for run-time mapping that uses design-
time analysis results.

3. PRELIMINARIES

This section covers some preliminaries necessary to explain our proposed hybrid map-
ping flow. We describe the hardware platform and the application model with the un-
derlying assumptions and terminology.

3.1. Multiprocessor Platform Model

The multiprocessor platform model used in this work is a tile-based architecture as
shown in an example platform of Fig. 3, where an interconnection network is used to
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Fig. 3. Example multiprocessor platform.

Table II. Properties of the example platform

co iw ow pwr connection
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8 12 12 4.60 | ci4, c23, C41, C32
8 12 12 460

8 12 12 330

tile  ptype m
1 GPP 1000000
to RH 1000000
t3 RH 1000000
tg DSP 1000000

00 0o 00 | Q.
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connect the tiles. The platform has four tiles ¢, o, t3 & t4. End-to-end connections
(c) with fixed latency between tiles are used to connect the tiles. Each connection may
have a different latency, so the latency of connections through a network-on-chip (NoC)
can be taken into account [Grecu et al. 2005], i.e., any type of interconnection network
can be modeled so long as the latencies between tiles are provided. Each tile contains
a processor (for example, general purpose processor (GPP), digital signal processor
(DSP) or reconfigurable hardware (RH) as shown in Fig. 3), a local memory (M) and a
network interface (NI) containing set of communication buffers that are accessed both
by the interconnect and the local processor.

Definition 3.1 (Platform Graph (PG)). A PG is represented as (7,C,L), which con-
tains a set T of tiles, a set C of connections and a latency function L that pro-
vides latency (in time-units) of a connection (L(c)). A tile t € T is a 7-tuple
(Ptype,m, Ci,co,iw,0w,pwr), where, py,,e. € PT (PT is set of processor types), m is the mem-
ory size (in bits), ci & co are the maximum number of input and output connections
supported by the NI, iw & ow are the maximum incoming and outgoing bandwidth (in
bits/time-unit) and pwr is the power consumption (in milliwatts) of the processor type
Ptype-

Table II shows the values of all the elements in the example platform graph (Fig. 3).
Multiprocessor systems such as StepNP [Paulin et al. 2004], PROPHID [Leijten et al.
1997] and Eclipse [Rutten et al. 2002] fit nicely into this platform model.

In Fig. 3, the latencies of end-to-end connections are modeled according to a 2-D
mesh network in order to model a mesh interconnection network. The latency of a
connection depends upon the distance between the connecting tiles and this distance
is referred to as hop_distance. In Fig. 3, tiles ¢; & t¢» are at hop distance of 1 (just
adjacent) and t; & ¢4 at hop distance of 2 as communications are via tile ¢2 (1 hop in
X-direction to reach tile t5 and then 1 hop in Y-direction to reach tile t4). The latencies
of connections are modeled according to the hop_distance as can be seen in Table II.
The application edges can get mapped onto the connections between tiles. Each such
edge occupies one connection between the tiles at its full bandwidth and the occupied
connection always serves only the assigned edge. Therefore, the latency between tiles
remains constant. Examples of such NoCs are circuit-switched networks AEthereal
[Goossens et al. 2005] and Spatial Division Multiplexing (SDM) [Yang et al. 2010]
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which provide guaranteed throughput that imply constant latency. However, latency
will not be constant in a packet-switched network as it depends upon the traffic present
in the network. In such cases, a reasonable upper bound can be calculated using traffic
patterns. To incorporate that two tiles are at higher hops, we change the latency of the
connections between the tiles according to the hops. This incorporation helps in finding
mappings when the tiles are further apart in the actual platform.

3.2. Application Model

The Synchronous Dataflow Graphs (SDFGs) [Lee and Messerschmitt 1987] are used to
model concurrent multimedia applications with timing constraints. The SDFG model
of H.263 decoder is shown in Fig. 4. The nodes model the tasks and are referred to
as actors, which communicate with tokens sent from one actor to another through the
edges modeling dependencies. The H.263 decoder is modeled with four actors vld, ig,
idet & mec and four edges d1, d2, d3 & d4. An actor fires (executes) when there are
sufficient input tokens on all of its input edges and sufficient buffer space on all of its
output channels. Every time an actor fires, it consumes a fixed amount of tokens from
the input edges and produces a fixed amount of tokens on the output edges. These
token amounts are referred to as rates. The rates determine how often actors have to
fire with respect to each other. The edges may contain initial tokens indicated by a
bullet point as in Fig. 4.

Definition 3.2 (SDFG). An SDFG (A,E) consists of a set A of actors and a set E of
edges. An edge e = (ay,as,tk1,tks) represents a dependency of actor as on a;. When a;
fires, it generates tk; tokens on e and when a, fires, it consumes tk; tokens from e.
Initial tokens on edges are defined as TokIn : E — natural numbers including 0.

Analysis techniques to calculate throughput and storage requirements for an SDFG
already exist [Ghamarian et al. 2006]. Throughput is an important constraint for mul-
timedia applications and defined as the inverse of the long term period, i.e., the av-
erage time needed for one iteration of the application. An iteration is defined as the
minimum non-zero execution such that the original state of the SDFG is obtained. For
example, in Fig. 4, period of H.263 decoder is = ExecTime(vid) + 2376.ExecTime(iq)
+ 2376.ExecTime(idct) + ExecTime(mc), where ExecTime is execution time. It should
be noted that actors iq and idct have to execute 2376 times in one iteration and the
number of executions for each actor is referred to as repetition vector of the actor. The
above mentioned period is just for demonstration and does not include network and
memory access delays. An SDFG with a throughput of 100 Hz takes 10 ms to complete
one iteration.

For modeling an application, resource requirements of the actors and edges are
clearly specified. The application model also specifies a throughput-constraint that
must be satisfied when the application is mapped onto the platform.

Definition 3.3 (Application Graph (AG)). An AG is represented as (A,E,APEP)
which is derived from SDFG (A,E). AP and EP provide resource requirement of ac-
tors and edges on the platform, respectively. For each actor a € A, AP provides a
tuple (ET,;mem) for each implementation alternative (€ piypcs), where, piypes repre-
sents the implementation alternatives of the actor, ET and mem represent the exe-
cution time (in time-units) and memory needed (in bits) on the implementation alter-
native, respectively. AP provides null values for ET and mem for unsupported imple-
mentation alternatives. For each edge e = (ay,ao,tki,thke) € E, EP provides a 5-tuple
(sz,mreq;, mreqgr.,mreqqst,w), where, sz is size of a token (in bits), mreg; is the memory
(in tokens) needed when a; and a, are allocated to the same tile, mreqs,.. and mreqqs; is
the memory (in tokens) needed in source and destination tile respectively and w is the
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Fig. 4. SDFG model of an H.263 decoder.

Table Ill. Resource requirement of actors and edges of H.263 decoder

actors Dtypes GPP(ET,mem) ACC(ET,mem) RH(ET,mem) | edges sz mreqe  Mmreqsre  Mreqdsy W
vld GPPACC (26018,10848) (13009,10848) (=) dy 512 2376 2376 1 5
iq GPPACC (559,400) (450,400) (=) da 512 1 1 1 5
idct GPP (486,400) (=) (=-) ds3 512 2376 1 2376 5
mc GPPRH (10958,8000) (=) (5479,8000) dy 1216512 3 1 1 5
26018

vld

d

iq

d

idct

» Time

Fig. 5. Execution trace of H.263 decoder.

bandwidth (in bits/time-unit) needed when a; and as are allocated to different tiles.
The throughput constraint of the AG is represented as 7.

Table III represents the values of AP and EP for actors and edges of H.263 de-
coder application. Execution pattern of the H.263 decoder (consisting of 4 actors)
mapped on a 4-tile MPSoC platform such that each actor is mapped on a different
GPP (ARM7TDMI processor) tile, is shown in Fig. 5. It is clearly seen that actors iq
and idct have potential to execute in parallel. It has been observed that when the ex-
isting strategies are applied to perform design-time analysis for the H.263 decoder on
a 3-tile platform, in some cases, the best produced mapping contains actors iqg and
idct on the same tile while optimizing for some performance metrics such as power
and resource usage. For example, the strategy in [Stuijk et al. 2007] maps actors ig
and idct on the same tile while optimizing for load balancing on the three used tiles
for the application. This forces execution of actors iq and idct sequentially, resulting
in reduced throughput. However, our approach finds the best mapping which has the
maximum throughput where actors iqg and idct are not allocated on the same tile, but
sequentially executing actors like vld and iq on the same tile. Mapping the connected
and sequentially executing actors on the same tile results in reduced communication
overhead between the actors, which may maximize the throughput even on smaller
tile counts.

4. HYBRID MAPPING STRATEGY

This section details our hybrid mapping strategy. The strategy is presented in Fig. 6. It
has two main steps: 1) analysis of applications at design-time (Design-time Analysis),
and 2) mapping of the applications on a platform by using the analysis results (Optimal
Mappings with Throughput & Energy) with the help of a platform manager (Run-time
Manager) at run-time.
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Fig. 6. Hybrid mapping strategy.

4.1. Design-time Analysis

The Design-time Analysis step evaluates a number of mappings for each application
to be supported onto a hardware platform. The applications are evaluated one after
another. The evaluation considers finding different mappings and their throughput &
energy consumption. For each mapping, actors (A) and edges (E) of the application
graph AG are bound to tiles (T') and connections (C) between two tiles or the memory
inside a tile in the platform graph PG. This binding gives a resource allocation for the
application graph AG on the platform graph PG with the following constraints for each
tilet e T

(1) (memory imposed by actors and edges bound on ) < (memory (m) on t),

(2) (allocated input connections on #) < (maximum input connections ci on #),

(3) (allocated output connections on ¢) < (maximum output connections co on #),
(4) (allocated incoming bandwidth on #) < (maximum incoming bandwidth iw on %),
(5) (allocated outgoing bandwidth on #) < (maximum outgoing bandwidth ow on ).

Throughput & Energy Consumption Computation. The throughput for a mapping is com-
puted by taking the resource allocations into account. First, static-order schedule for
each tile is constructed that orders the execution of bound actors. A list-scheduler
is used to construct the static-order schedules for all the tiles at once. Then, all the
binding and scheduling decisions are modeled in a graph called binding-aware SDFG.
Finally, throughput is computed by self-timed state-space exploration of the binding-
aware SDFG [Ghamarian et al. 2006].

The energy consumption for a mapping is computed as sum of the communication
and computation energy for all the tasks for one iteration of the application. Communi-
cation energy is required to transfer data from source tile to destination tile through a
connection when actors mapped on the two tiles need to communicate with each other.
The communication energy is estimated as product of the number of bits to be trans-
ferred, number of hops to be traversed between the two tiles and energy required to
transfer one bit through one hop, for each edge (e¢) mapped to a connection (conn) from
equation 1. The transferred bits through a connection are calculated as the product
of the number of tokens to be transferred and the token size for the edge mapped on
the connection. The number of tokens for an edge (e) is computed as the product of
repetition vector of source (or destination) actor and source (or destination) port rate
of the edge from equation 2. The energy required to transfer one bit through one hop is
denoted as Er;;; [Palma et al. 2005] [Hu and Marculescu 2004]. Computation energy
is required to process the transferred token on the destination tile after it is received
and able to fire (execute) the mapped actor. The computation energy for each actor (a)
mapped to tile (t) is estimated as product of the number of executions of actor a, execu-
tion time and power consumption on tile ¢ from equation 3. Total energy consumption
is measured as sum of communication and computation energy.

Ecomm = Z[(e — nrTokens) x (e — tokenSize) x hopCount X Epp;t] (1)
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Fig. 7. Design-time DSE flow.

e = nrTokens = repVectorle — srcActor] x (e — srcPortRate) (2)

Ecomp = Z[repVector[a] x (a — execTime(t — procType)) x procPower] 3)

The total energy consumption does not include static energy. In our approach, we
focus on mapping of applications on the architecture after it is designed. So, we cannot
do much with the static energy and focus only on dynamic energy consumption that
can be optimized.

The Design-time Analysis for an application (Appln. Graph) first performs design
space exploration (DSE) to obtain design points that contain mappings and their corre-
sponding throughput and energy consumption (Mappings with Throughput & Energy).
Then, an optimization on the explored design points to get only the Pareto-optimal
design points (Optimal Mappings with Throughput & Energy) providing through and
energy consumption at different resource combinations (Fig. 6). The DSE flow is pre-
sented in Fig. 7.

The presented DSE flow first considers a suitable platform graph (7,C,L) that can
cover all the possible mappings for the application graph (A,E,AP,EP) to be analyzed
currently. A platform containing n tiles of each implementation alternative provided in
the application is considered, where n is the number of actors in the application. This
platform is capable of covering all the potential mappings. Considering any bigger
platform wouldn’t provide better performance as the considered one can exploit all
the parallelism present in the application. However, all the parallelism might not be
exploited if a small size platform is considered where concurrent executing tasks will
get mapped on the same tile.

Initially, the considered platform contains tiles with separation between them
as one hop_distance (hop_distance = 1), which provides a minimum fixed latency
for all the connections between the tiles. The DSE flow is repeated by consider-
ing a similar platform that contains tiles with separation of one hop_distance more
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Algorithm 1: GPP Tiles Mappings Evaluation at Reduced Tile Count

Input: Best mapping o using (p + 1) GPP tiles.

Output: Mappings using p GPP tiles.

Select p + 1 GPP tiles (€ T) containing actor(s);

for each unique pair of selected tiles do
Move actor(s) from one GPP tile to another to generate a new mapping 3;
Compute throughput and energyConsumption of 3;
Add B with its throughput and energyConsumption to set M;

end

(hop_distance++) between them, i.e., with increased latency for connections, till the
hop _distance reaches to max_hop _distance (one of the input to the DSE flow). The de-
signers can choose an appropriate value of max_hop _distance depending upon the ex-
pected hardware platform at run-time, where, maximum separation between the tiles
can be up to max_hop _distance. For a higher value of max_hop_distance, the design-
time DSE evaluates larger number of mappings. This requires more evaluation time
but the applicability of mappings get increased. For example, evaluated mappings with
max_hop _distance value of 6 are applicable to any platform where maximum separa-
tion between the tiles is less than or equal to 6 hops such as mesh of 2x2, 2x3, 3x3
and 4x4 tiles platforms. However, when platforms are very large (say 10x10), it is
unrealistic to expect tasks of an application to be mapped on extreme ends of the plat-
form. The maximum hop distance in such cases is the maximum separation of the tiles
on which various tasks of an application are mapped.

By considering varying values of hop_distance, we get mappings where each edge
of the application is mapped to a connection at hop_distance of one (to account for
minimum latency) to max_hop_distance (to account for maximum latency). This facil-
itates us to cater for the run-time aspects when the available tiles are at different
hop_distances. A strategy to find the best mapping in such run-time scenarios is pre-
sented in Section 4.2. We have considered generic tile architecture so any type of in-
terconnection network can be modeled. The main steps of the DSE flow (highlighted in
Fig. 7) and optimization technique are described subsequently.

4.1.1. Evaluating Homogeneous Tiles Mappings. The mappings using only GPP tiles are
generated by using the DSE strategy proposed in [Singh et al. 2011]. This strategy
discards evaluation of inefficient mappings (providing less throughput) and performs
faster evaluation without missing the efficient mappings. Therefore, the same strat-
egy has been adopted to generate homogeneous tiles mappings. For each generated
mapping, the strategy in [Singh et al. 2011] computes throughput only, whereas the
presented strategy computes energy consumption as well. The strategy first evaluates
1_actor-to-1_GPP_tile mapping where n actors of the application are mapped onto n
GPP tiles so that each GPP tile contains exactly one actor and the edges are mapped
onto connections. Then, mappings at reduced tile count (p = n — 1), i.e. mappings using
(n — 1) GPP tiles are evaluated by Algorithm 1. The algorithm takes the best mapping
using (p+ 1) GPP tiles as input and evaluates mappings using p GPP tiles. First, (p+1)
GPP tiles containing actor(s) are selected. Then, for each pair of selected tiles, all the
actors from one GPP tile are moved to another to generate a new mapping. Each gener-
ated mapping is added to a mapping set M after computing its throughput and energy
consumption. For the selected (p + 1) GPP tiles, the algorithm finds (p + 1)-choose-2
((*+1)C,) unique pairs and thus evaluates the same number of mappings using p GPP
tiles, where 0 < p < n.

Out of all the evaluated mappings using p GPP tiles, the maximum throughput
mapping is selected as the best mapping to evaluate mappings at further reduced tile
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Algorithm 2: Heterogeneous Tile-Combinations Mappings Evaluation

Input: GPP Tiles Mappings M.
Output: Heterogeneous tile-combinations mappings to be added to set M.
for tileCount = n (number of actors in the AG); tileCount >= 1; tileCount — — do
Select maximum throughput mapping v using tileCount GPP tiles from set M;
maxNrTileTypesUsed = 1// only GPP tiles used;
repeat
Initialize the mapping set S,i.e., S={};
for each GPP tile t (€ T) in the current mapping v do
for each implementation alternative  (e.g., DSP, ACC, RH tiles) do
if ¢t contains actor(s) € A and all have their implementation alternatives as  then
Move actor(s) to a x having no previous actor to generate a new mapping 9;
Compute throughput and energyConsumption of d;
Add ¢ with its throughput and energyConsumption to set S and to global set M;
Move actor(s) back on the initial tile ¢ to reset ~;
end
end

end

Select maximum throughput mapping from set S and assign as current mapping ~;
maxNrTileTypesUsed + +;

until maxz NrTileTypesUsed < tileCount;

end

count, i.e. mappings using (p — 1) GPP tiles by following the steps of Algorithm 1. The
same process is repeated until the tile count reduces to one. Thus, all the mappings
using different number of GPP tiles get stored into the mapping set M. We have as-
sumed that GPP implementation alternative is available for all the actors. However,
this assumption can easily be removed by allocating the actors to their first available
implementation alternatives.

4.1.2. Evaluating Heterogeneous Tiles Mappings. The heterogeneous tile-combinations
mappings are evaluated by using the GPP tiles mappings (1) obtained in the pre-
vious step. Such mappings are possible only when implementation alternatives other
than GPP tiles are also available. The mappings are evaluated by following the steps in
Algorithm 2 and added to M. At each tile count (tileCount), the maximum throughput
mapping using GPP tiles is selected to generate mappings at different processing tile-
combinations. This type of selection facilitates for evaluation efficient mappings (pro-
viding maximum throughput) at heterogeneous tiles as well. For the selected mapping,
the actors on each GPP tile are moved to another tile type (implementation alterna-
tive) in order to generate a new mapping provided all the actors on the GPP tile can
be supported on the other tile type. The actors moving condition avoids the evalua-
tion of mappings using non-supported tile-combinations. The generated mapping with
its throughput and energy consumption is added to set M and temporary set S. The
mappings at next possible tile-combinations are evaluated by selecting the maximum
throughput mapping from the temporary set S. By selecting the maximum through-
put mapping at different places in the algorithm, evaluation of inefficient mappings is
discarded. The gain in evaluation time is described in experiments (Section 5).

4.1.3. Selecting and Storing Best Mappings at Each Processing Resource Combination. At each
possible processing tile-combination, we get a number of mappings. This step selects
the maximum throughput mapping and minimum energy consumption mapping at
each tile-combination, and stores them into the mappings with throughput & energy
database (MTED) (Fig. 7). In cases when both the maximum throughput and min-
imum energy consumption mapping are the same, only one mapping is stored. The
stored mappings are sorted by number of tiles used by them in increasing order. The
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number of used tiles are referred to as tile count. At each tile count, the mappings
get stored in increasing order of heterogeneity as explained in Algorithm 2. Increasing
heterogeneity implies use of more number of tile types.

Storing the mappings in such order facilitates for run-time selection from lower
tile count to higher tile count and in increasing order of heterogeneity at each tile
count. The run-time approach finds a throughput-satisfying mapping using the min-
imum number of tiles (tile count) and having minimum energy consumption. While
evaluating mappings by Algorithm 2, it might be possible that all the possible tile-
combinations are not covered because of the pruning consideration to speed up the
exploration. In such cases, at run-time we need to look for a combination that is subset
of the covered combination. The run-time algorithm is described later in Section 4.2.

4.1.4. Optimization. Amongst the stored mappings in the database MTED, it might be
possible that some of them are sub-optimal. The sub-optimal mappings require more
number of processing processing tiles as compared to others and have less through-
put (performance) and higher energy consumption. For example, for an application,
a mapping requiring 3 GPP & 1 ACC tiles might have less throughput and high en-
ergy consumption as compared to a mapping requiring only 2 GPP & 1 ACC tiles. The
former mapping is sub-optimal and it has to cater for larger communication overhead
without much gain in parallel processing and thus provides less throughput and con-
sumes high energy. There is no point in keeping such sub-optimal mappings. So, we
perform an optimization on MTED to discard all such mappings in order to store only
Pareto-optimal mappings as Optimal Mappings with Throughput & Energy (OMTED)
(Fig. 6).

The concepts of Pareto algebra has been used to find the Pareto-optimal mappings
[Geilen et al. 2005]. In optimization, we compare throughput and energy consump-
tion of mappings requiring higher number of tiles to ones requiring lower number of
tiles. If throughput of a mapping using higher number of tiles is the same or smaller
than the throughput of a mapping using lower number of tiles, energy consumption
in latter mapping is the same or lower than the former mapping and processing tiles
in the latter mapping are a subset of processing tiles in the former mapping, then the
former mapping is discarded. The same process is performed for each processing tile-
combination to discard all the sub-optimal mappings. The optimization result includes
Pareto-optimal mappings and each such mapping is better than another in terms of
throughput, energy consumption or resource usage. Keeping only the optimal map-
pings reduces memory requirement to store them and overhead in selecting the best
mapping since the run-time mapping strategy needs to select from a relatively smaller
set of mappings.

Design-time Analysis: Complexity

The design-time analysis complexity in terms of number of actors n, number of imple-
mentation alternatives y and max_hop_distance 4 has been computed. The worst-case
complexity (C) is determined by the total number of evaluated mappings (M) in the
DSE flow (Fig. 7) when all the actors have ;. implementation alternatives. For a given
value of n, u and A, the total number of mappings evaluated over the DSE loops is cal-
culated by Equation 4. The number of homogeneous and heterogeneous tiles mappings
are evaluated by Equation 5 and 6, respectively.

C = h x [nrHomogeneousTilesM appings + nrHeterogeneousTiles M appings] (4)

n—1 n—1 2 3
" TilesMappi ] (p+1) -1 PPy _, mon
nrHomogeneousT'ilesM appings + pzl( Cs) + I; >t 5 +— (5)
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nrHeterogeneousTilesM appings = (u — 1) Z {p+lp-1)+pP-2)+..+2+1}
p=1

:(u_l)i<”;+§)=(u—1)(%3+%2+%n)

p=1

(6)

Thus, the total number of mappings can be calculated as follows.

5-n n®  n? 2n\] un®  (p—1)n*  (2u—3)n
(7

In Equation 5, ?*1C, is the number of unique pair of GPP tiles at tile count of
p+ 1. Each pair forms a mapping using p GPP tiles. Heterogeneous tiles mappings are
possible only when any actor has more than one implementation alternative, i.e. 1 > 1.
So, Equation 6 is valid for 1 > 1. At each tile count p, heterogeneous tiles mappings are
evaluated by selecting the best mapping using p GPP tiles. Total number of mappings
can be calculated from Equation 7, which has complexity of O(hun3). The existing
strategies evaluate more number of mappings as compared to our strategy and thus
have complexity of higher orders. The mappings evaluated by existing strategies are
discussed in Section 5 and compared with our strategy.

C=hx 1+n

Design-time Analysis for a Given Platform Size

The DSE strategy presented in Fig. 7 considers a generic MPSoC platform and the gen-
erated mappings are applicable to any target MPSoC platform. For a given platform
(PG) containing smaller number of tiles than the number of actors in the application
(AG), the mappings with more number of tiles than present in the given platform will
never be used. Such mappings have been referred to as infeasible mappings for the
given platform. The DSE process can be speeded up by discarding the evaluation of
such infeasible mappings.

Evaluation of infeasible mappings are discarded by extending the DSE flow pre-
sented in Fig. 7. The number of tiles (nrTiles) in the given platform is taken as one
additional input to the DSE flow. Homogeneous tiles mappings are evaluated in the
similar manner. While evaluating heterogeneous tile-combinations mappings, Algo-
rithm 2 is modified to start the mappings evaluation starting from tile count value of
nrTiles in order to discard evaluation of infeasible mappings. All the mappings using a
maximum of nrTiles tiles are then selected and stored, which will be applicable to the
given platform.

4.2. Run-time Mapping

The Design-time Analysis step performs all the compute intensive analysis and thus
leaving for minimum computation at run-time. Run-time mapping of throughput-
constrained multimedia applications onto a platform is handled by the Run-time Man-
ager (Fig. 6). Out of many available processors in the platform, one of them is used
as manager processor that is responsible for actor mapping, actor scheduling, plat-
form resource control and configuration control. The resources status is updated at
run-time when an actor is loaded in the platform in order to provide the manager
processor with accurate knowledge of resource occupancy which is required for tak-
ing the mapping decision based on available resources at run-time. Run-time manager
(RTM) maps the applications on the platform one after another, i.e. after accomplish-
ing mapping for one application, it goes on to map the next application till all the
applications are mapped. The sequential mapping is scalable because we need not to
worry about the large number of scenarios containing different simultaneously active
applications as described in Section 2. The strategy adopted by the RTM to map an
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Algorithm 3: Run-time mapping strategy

Input: Application AG, Required throughput 7, Platform PG, Optimized mapping database OMTED.
Output: The best mapping satisfying the throughput-constraint .
Maz_Tiles Used = nrActors(AG); Tiles_Available = nrAvailTiles(PG); Max_Tiles_Iter = 0; tile_count = 1;
if Tiles_Available > 0 then
Maz_ Tiles_Iter = min(Max_Tiles_Used, Tiles_Available);
repeat
for each mapping ¢ using tile_count tiles in OMTED do
Select closest available tile_count tiles used by ¢ in PG;
hop-mazx = findMaximumHop(selected tiles);
thr Mapping = Find(OMTED, AG, tile_count, ¢, hop-max);
if 7 < thr M apping then
M apping_list = Find all throughput satisfying mappings using the same resource
combination as of ¢ from OMTED:;
Select the mapping having minimum energyConsumption from Mapping_list and exit;
end

end
tile_count++;
until tile_count < Max_Tiles_Iter;
No mapping found,;
else
| Application can’t be supported, i.e., no mapping found;
end

application is presented in Algorithm 3. The strategy takes the application, its desired
throughput, platform with updated resources’ status and the optimized mapping stor-
age OMTED as input and selects the best mapping from the OMTED depending upon
the desired throughput and available platform tiles. The selected best mapping satis-
fies the throughput requirement, uses minimum resources and has minimum energy
consumption. The platform is then configured based on the actors to tiles allocations
provided in the selected mapping.

The RTM first finds the maximum number of tiles that might get used
(Mazx_Tiles . Used) by the application and then the number of available tiles
(Tiles_Available) in the platform. A mapping satisfying the throughput constraint of
the application (r < thrMapping) and having minimum energyConsumption is se-
lected from the OMTED by iterating from tile count one to Max_Tiles_Iter. Maximum
tiles iteration value Max_Tiles_Iter is calculated as minimum of Tiles_Available &
Mazx_Tiles_Used in order to restrict unnecessary search in the OMTED. For each map-
ping using tile_count tiles, first, the RTM selects closest available tiles in the platform,
then finds maximum hop_distance (hop_max) between the selected tiles, and finally,
throughput of the mapping (thrMapping) to be checked against the throughput con-
straint 7. As soon as a throughput satlsfymg mapping ¢ is found (r < thr M apping), all
the throughput satisfying mapplngs using the same resource combination as of ¢ are
found and added into a mapping list (Mapping_list). Thereafter, the mapping having
minimum energy consumption is selected from the mapping list and the platform is
configured based on the selected mapping. If a throughput satisfying mapping is not
found then the application cannot be supported on the platform with the available re-
sources. In such case, the application mapping may be tried with relaxed throughput
requirement in order to support it on the platform.

Throughput computation for a mapping takes much more time than the time to
find the mapping, i.e. tasks to tiles allocations. Our RTM just selects the best map-
ping without involving throughput computation at run-time and thus accelerates the
run-time mapping process. Further, the selected throughput satisfying mapping uses
minimum number of tiles as search is performed from lower tile count to higher tile
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Fig. 8. Design Space Exploration for an application modeled with 3 actors al, a2 and a3.

count. The selected mapping has minimum energy consumption as well. Therefore, the
RTM performs effective and efficient mapping.

Hybrid Mapping Flow: Example Demonstration

The hybrid mapping flow has been applied onto applications to demonstrate how the
flow first performs design-time analysis, and then maps the required applications onto
a platform at run-time.

Design-time Analysis. The DSE step of design-time analysis evaluates multiple map-
pings for an application. Let us consider an application modeled with 3 actors (al, a2
and a3) having implementation alternatives GPP, DSP and ACC tiles for each of them.
The DSE flow first considers a platform containing 3 tiles of each implementation al-
ternative, and then evaluates mappings using GPP tiles followed by mappings using
combinations of GPP, DSP and ACC tiles. The GPP, DSP and ACC tiles are represented
in different shades as shown in Fig. 8.

Mappings using only GPP tiles are evaluated by the method described in Section
4.1.1. First, 1_actor-to-1_GPP_tile mapping is evaluated where each GPP tile contains
exactly one actor as shown in Fig. 8 (top-left mapping). Only the used tiles of the
mapping are shown. The edges are mapped on connections between the tiles which we
have not shown as we want to focus only on the number of mappings that depends
upon placement of the actors. Here, for each mapping, the tiles are shown as linearly
arranged as we just want to illustrate the DSE flow, whereas in the actual flow the
separation between the tiles can be any fixed value of hop_distance. Next, mappings
at a reduced tile count, i.e., mappings using 2 GPP tiles are evaluated by Algorithm
1. The algorithm finds 3 (3C,) unique pair of tiles containing actor(s) from 1_actor-to-
1_GPP_tile mapping as shown in Fig. 8. The maximum throughput mapping at each tile
count is selected and forwarded to evaluate mappings at reduced tile count. We have
considered the highlighted mapping as the maximum throughput one so the same
is forwarded. We get 1 mapping using one GPP tile. The flow evaluates a total of 5
mappings, which is the same as the ones calculated from equation 5, i.e., [1 + (3° -

3)/61.
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Available DSP Tile

Available ACC Tile

H.263 decoder mapping

Example application mapping

Fig. 9. Run-time mapping of H.263 decoder (4 actors) and the example application (3 actors al, a2 and a3).

Mappings using combination of GPP, DSP and ACC tiles are evaluated by Algorithm
2 described in Section 4.1.2. At each tile count, Algorithm 2 takes maximum through-
put mapping using GPP tiles as input and evaluates mappings using combination of
tiles as shown in Fig. 8. Each task is moved from GPP tile to DSP and ACC tiles to
generate mappings. The maximum throughput mapping (highlighted one) is selected
and forwarded to evaluate mappings at further tile-combinations by moving only the
tasks of GPP tiles to DSP and ACC tiles. The same process is repeated until all the
tasks of GPP tiles are moved to DSP or ACC tiles. The algorithm evaluates a total of
20 mappings, which is the same as the ones calculated from equation 6 by putting n
and u equal to 3.

Similarly, DSE can be demonstrated for multimedia applications H.263 decoder,
H.263 encoder, JPEG decoder and MP3 decoder modeled with 4, 5, 6 and 14 actors,
respectively. Let us assume that the target platform on which the applications need
to be mapped is a 4x4 grid of tiles as shown in Fig. 9. For this platform, the value of
max_hop_distance is 6, so the DSE is repeated 6 times by considering platform tiles
separated by hop_distance of 1 to 6.

Run-time Mapping. The run-time mapping of the analyzed applications on the target
platform is handled by the Algorithm 3. The applications are mapped one after an-
other. For each application, the strategy selects the best mapping from the OMTED
subject to desired throughput and available platform tiles. Let H.263 encoder, JPEG
decoder and MP3 decoder be already mapped on the platform using the tiles shown as
busy (Fig. 9). Run-time mapping of H.263 decoder (Fig. 4) and DSE demonstrated ap-
plication (modeled with 3 actors al, a2 and a3) on the available tiles is shown in Fig. 9.
Let us assume that for H.263 decoder and the demonstrated application, throughput
satisfying mappings using 3 and 2 tiles respectively are found which uses different tile
type combinations.

The four actors vid, iq, idct & mc of H.263 decoder (Fig. 4) are mapped onto the 3
closest available tiles ¢o, t5 & ¢ based on the allocations provided in its found mapping
as shown in Fig. 9. In the found mapping, all the edges are separated by a hop_distance
of 2. So, mapping the actors on the available tiles as shown in Fig. 9 will satisfy the
throughput constraint for sure as some edges will be mapped at lower hop_distances
(lower latencies). Edges are mapped on the connections between the tiles. Similarly,
three actors al, a2 & a3 of the demonstrated application are mapped onto 2 closest
available tiles t3 & t4 based on its found mapping, as shown in Fig. 9.
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5. PERFORMANCE EVALUATION

The proposed hybrid mapping strategy has been implemented as an extension of the
publicly available SDF? tool set [Stuijk et al. 2006]. As a benchmark to evaluate the
run-time and quality of the strategy, models of real-life multimedia applications H.263
decoder (4 actors), H.263 encoder (5 actors), MPEG-4 decoder (5 actors), JPEG de-
coder (6 actors), sample rate converter (6 actors), MP3 decoder (14 actors) and models
of synthetic applications containing varying number of actors have been considered.
Experiments are performed on a Core 2 Duo processor at 3.16 GHz.

The same generic platform graph is considered to evaluate the different strate-
gies for an application. In the platform, the number of tiles and their types depend
upon the number of actors and their implementation alternatives provided in the ap-
plication. We consider tile-based architecture but any other type of architecture can
also be considered based on the known latencies between the tiles as discussed ear-
lier. For an actor, the implementation alternative could be GPP, DSP, accelerator, RH
etc. ARM7TDMI [Segars 1997] and Texas Instruments TMS320C6412 [TMS 2010] are
used as GPP and DSP respectively. The accelerator for each actor is different as it is
customized for a specific task to be performed by the actor. The RH can be configured
to support actors according to their requirement and as an accelerator. The consid-
ered applications contain some common actors and we have considered the same RH
for an actor. The common actors video length decoding (vld) [Cho et al. 1999], inverse
quantization (iq) [Hentati et al. 2011], inverse discrete cosine transform (idct) [Sung
et al. 20061, motion compensation (mc), motion estimation (me) and Deblocking [Ren
and Kehtarnavaz 2007] are considered to have RH as one of their implementation al-
ternatives. While performing simulation, execution time and power consumption are
considered based on the actors mapping on different types of tiles.

Particularly, we present results obtained from our design-time analysis flow referred
to as heuristic analysis (HDSE) flow and compare them to that of the flow presented
in [Stuijk et al. 2007], [Stuijk et al. 2010] and an exhaustive analysis (EDSE) flow. The
EDSE flow has been adopted in [Yang et al. 2002]. We implemented the flow in [Stuijk
et al. 2007], [Stuijk et al. 2010] and EDSE flow with steps similar to our flow in order
to make a fair comparison. The flow in [Stuijk et al. 2007] performs exploration aiming
at load balancing on used tiles. The flow in [Stuijk et al. 2010] is applied to scenarios,
where each scenario contains a different version of the same application. The different
versions model different behavior of an application at different times. We consider
a single scenario, i.e., a single version of the application that has always the same
behavior. So, mappings obtained with this flow can be fairly compared with the HDSE
flow. The flow in [Yang et al. 2002] performs exploration aiming at power consumption
reduction of the tiles. We have compared HDSE flow with above mentioned flows as
they also perform exploration to evaluate mappings providing different throughput
values and we target throughput aware run-time mapping. The results from our run-
time technique are compared to that of run-time techniques presented in [Carvalho
and Moraes 2008] and [Singh et al. 2010].

A number of experiments have been performed for extensive evaluation of our pro-
posed strategy. First, design-time HDSE results are presented to show that how the
explored results are stored and used at run-time. Then, the number of mappings eval-
uated by EDSE (e.g., [Yang et al. 2002]), [Stuijk et al. 2010] and HDSE flows are com-
puted and compared to show that the HDSE flow is faster and provides high quality
mappings. All the DSE flows have also been applied on 100 randomly generated appli-
cations to show the quality of mappings and speed-up obtained by [Stuijk et al. 2010]
and HDSE flows over the EDSE. Next, multimedia applications DSE is performed for
given platforms in order to compare the exploration time and best mapping through-
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Table IV. DSE results for H.263 decoder

Tile Tile Best mappings’ throughput (x 10~ /time-units) & energy consumption (x 10~ 3m.J)
Count Combinations nrMaps nrBestMaps hop_0 hop_1 hop_2 hop_3 hop 4
4 4ARM 1 1 X 28,655 & 393 28,616 & 515 28,578 & 638 28,540 & 761
3ARM & 1RH 4 1 X 29,170 & 301 29,130 & 424 29,090 & 547 29,050 & 670
2ARM & 2RH 3 2 X 29,170 & 249 29,130 & 372 29,090 & 495 29,051 & 618
X 29,612 & 268 29,571 & 390 29,530 & 513 29,489 & 636
1ARM & 3RH 2 1 X 29,612 & 216 29,571 & 369 29,530 & 461 29,489 & 584
4RH 1 1 X 29,612 & 194 29,571 & 317 29,530 & 439 29,489 & 562
3 3ARM 6 1 X 62,669 & 352 62,665 & 434 62,661 & 515 62,657 & 597
2ARM & 1RH 3 1 X 67,387 & 227 67,382 & 309 67,378 & 390 67,373 & 472
1ARM & 2RH 2 2 X 67,387 & 175 67,383 & 257 67,378 & 338 67,374 & 420
X 69,970 & 205 69,965 & 287 69,960 & 369 69,956 & 450
3RH 1 1 X 69,970 & 153 69,965 & 235 69,960 & 317 69,956 & 398
2 2ARM 3 1 X 91,585 & 311 91,583 & 352 91,580 & 393 91,578 & 434
1ARM & 1RH 2 1 X 123,230 & 164 123,228 & 205 123,227 & 246 123,226 & 287
2RH 1 1 X 123,230 & 112 123,228 & 153 123,227 & 194 123,226 & 235
1 IARM 1 1 73,961 & 270 X X X X
1RH 1 1 106,204 & 71 X X X X

put by different DSE flows. Thereafter, run-time mapping results are presented to
show the efficiency of our run-time technique over the existing techniques.

5.1. Design-time Analysis

Table IV shows the design-time HDSE results for the H.263 decoder (4 actors) at
max_hop_distance of 4 when each actor has two implementation alternatives ARM and
RH. The DSE flow runs 4 times from hop_distance of 1 (hop_1) to 4 (hop_4). For each
run, the numbers of evaluated and best mappings at different tile-combinations are
shown as nrMaps and nrBestMaps respectively. A total of 31 mappings are evaluated,
which is the same as calculated from equation 7 with n and i as 4 and 2 respectively. At
each tile-combinations, the best mappings (nrBestMaps) are chosen from the evaluated
mappings (nrMaps). The best mappings excel in throughput or energy consumption.
In case of throughput-energy trade-offs, more than one best mappings may need to be
stored. At each hop, the best mappings’ throughput & energy consumption is shown.
When all the actors are mapped on a single tile, the hop_distance is referred to as
hop_0, denoted as x. Similar DSE results have been obtained for other multimedia ap-
plications. The results can easily be extended for higher hops by taking a large value of
max_hop_distance, which can cater for larger future target platforms. At run-time, one
can select a mapping having maximum throughput and minimum energy consumption
depending upon the available tiles and maximum hop_distance between them.

The Pareto-optimal mappings are highlighted in Table IV. These mappings require
less number of tiles and provide the same or better performance (throughput and en-
ergy consumption). It can be seen in Table IV that the mappings using 3 or 4 tiles have
worse performance than mappings using only 2 tiles. This is because of larger commu-
nication overhead while using more number of tiles and not gaining much in parallel
processing. Similar optimization results have been obtained for other multimedia ap-
plications. For applications with larger number of tasks, it has been observed that the
performance increases with the number of used tiles by the mappings and saturates
after some fixed number of used tiles.

We have applied an exhaustive analysis (EDSE, e.g., [Yang et al. 2002]), the flow
in [Stuijk et al. 2010] and the HDSE flow to find the number of mapping to be eval-
uated by them. The EDSE flow evaluates all the possible mappings at different tile-
combinations. The number of mappings evaluated by EDSE flow increases exponen-
tially with the number of actors. Further, the number of mappings increases even more
when the implementation alternatives of actors, i.e. number of tile types on which the
actors can be supported get increased. For n actors having nrTileTypes implementa-
tion alternatives for each of them, the EDSE flow considers a platform containing n
tiles of each implementation alternative and uses a maximum of n tiles in mappings
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Table V. Number of mappings by Exhaustive DSE (EDSE), [Stuijk et al. 2010] DSE and Heuristic DSE (HDSE) at
different number of actors (nrActors) and their available implementation alternatives (nrTileTypes)

EDSE Flow [Stuijk et al. 2010] Flow HDSE Flow
nrTileTypes nrTileTypes nrTileTypes
nrActors 1 2 3 1 2 3 1 2 3

1 1 2 3 1 2 3 1 2 3
2 2 6 12 6 20 42 2 6 10
3 5 22 57 39 102 180 5 15 25
4 15 94 309 100 132 372 11 31 51
5 52 454 1,866 180 410 615 21 56 91
6 203 2,430 12,351 282 612 918 36 92 148
7 877 14,214 88,563 406 854 1281 57 141 225
8 4,140 89,918 681,870 552 1136 1704 85 205 325
9 21,147 610,182 5,597,643 720 1458 2187 121 286 451
10 115,975 4,412,798 48,718,569 910 1820 2730 166 386 606
14 190,899,322  20,732,504,062 461,101,962,108 | 1834 3668 5502 456 1,016 1,576

to be evaluated. The total number of mappings are calculated as the number of ways
placing n labeled balls into n unlabeled (but nrTileTypes-colored) boxes, where balls
and boxes represent tasks and tiles respectively [OEI 2012]. The number of mappings
by the DSE flow in [Stuijk et al. 2010] are limited by X times the number of actors
times the number of tiles, where X is the maximum number of partial bindings that is
carried over to the next iteration for evaluating the mappings. The HDSE flow consid-
ers pruning where maximum throughput mapping is selected for further evaluation
and thus limits the number of mappings to be evaluated.

Table V shows the number of mappings evaluated by the EDSE (e.g., [Yang et al.
2002]), [Stuijk et al. 2010] and HDSE flow as the number of actors (nrActors) increases
at different number of available implementation alternatives (nrTileTypes) for each of
the actor. At nrTileTypes equal to 1, the number of mappings evaluated by the EDSE
at increasing values of nrActors follows bell numbers which represents the number
of ways of placing nrActors labeled balls into nrActors indistinguishable boxes [OEI
2012]. The number of mappings by [Stuijk et al. 2010] flow is shown for X equal to 10.
The number of mappings increases with the value of X and it may lead to an explo-
sion in the number of mappings. The number of mappings evaluated by HDSE follows
Equation 7. For nrActors and nrTileTypes equal to 14 and 3 respectively, the EDSE
evaluates 461,101,962,108 mappings. In evaluation of such a large number mappings,
it is going to take many years even if we assume few milliseconds for a single mapping.
Thus, EDSE is not scalable and evaluation is not always feasible.

The HDSE has been employed to speed-up the exploration process while providing
almost the same quality of mappings as of EDSE. The flow in [Stuijk et al. 2010] also
speeds up the exploration process over the EDSE but the quality of mappings is re-
duced. Fig. 10 shows the quality (throughput) of the best mapping using 3 tiles for 100
random applications when EDSE, [Stuijk et al. 2010] flow and HDSE are employed.
The applications are modeled as SDFGs with 4, 5, 6 and 7 actors having their imple-
mentation alternatives as ARM and RH tiles generated randomly. The tiles are as-
sumed to be separated by a fixed hop_distance. The best mapping throughput obtained
by HDSE and [Stuijk et al. 2010] flow is normalized with respect to (w.r.t.) EDSE. The
normalized throughput values are plotted after sorting them in descending order for
each flow. It has been observed that loss in quality of mappings by HDSE is more when
the number of actors increases and the same best mappings are obtained for more than
80% of the applications. The [Stuijk et al. 2010] flow provides mappings having even
less quality than those of HDSE and the same best mappings are obtained only for
about 20% of the applications. Similar behavior is obtained at other resource combi-
nations. For the applications where we don’t get the same quality of mappings, the
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Fig. 11. Speed up obtained by HDSE and [Stuijk et al. 2010] flow over EDSE for 100 random applications.

variation in quality by HDSE is only 10%, whereas it varies largely by [Stuijk et al.
2010] flow as shown in Fig. 10.

Fig. 11 shows the speed-up obtained by HDSE and [Stuijk et al. 2010] flow over
the EDSE for the same set of applications. The applications are sorted by the num-
ber of actors within them. A couple of observations can be made from Fig. 11. First,
HDSE is faster over the EDSE and [Stuijk et al. 2010] flow for all the applications.
Second, as the number of actors increases in the applications, the speed-up obtained
by [Stuijk et al. 2010] flow increases because the difference in number of evaluated
mappings by EDSE and [Stuijk et al. 2010] flow gets increased as shown in Table V.
The HDSE shows further speed-up as it evaluates even lower number of mappings.
Third, [Stuijk et al. 2010] flow is slower than EDSE for some of the applications as
it evaluates more mappings (including some duplicates) than EDSE. Thus, we get
speeded exploration providing almost the same quality of mappings when employing
the HDSE. We have applied DSE flows on multimedia applications H.263 decoder (4
actors), H.263 encoder (5 actors) and JPEG decoder (6 actors) too. It has been observed
that for H.263 decoder/encoder the best mapping at different tile-combinations is the
same by EDSE and HDSE, whereas for JPEG decoder, HDSE misses best mapping at
few tile-combinations.

Design Space Exploration for a Given Platform. We performed multimedia applications
DSE for given platforms that may contain any arbitrary number of tiles. Table VI
shows the DSE results for multimedia applications H.263 decoder, H.263 encoder and
sample rate converter for platforms containing 1x2, 2x2, 3x3 and 4x4 grid of tiles.
For each platform, exploration time (milliseconds) and the best mapping throughput (x
10~ '?/time-units) has been tabulated when the exploration approaches of [Stuijk et al.
2010], EDSE and HDSE are employed. The different platform tiles are ARM tiles. The
number of evaluated mappings by the approach of [Stuijk et al. 2010] depends upon the
number of tiles present in the platform. So, for larger platforms (containing more num-
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Table VI. Multimedia applications DSE at different platforms for exploration time (seconds) and best mappings’
throughput (x 10~8/time-units) & energy consumption (x 10~3m.J)

Exploration Time (seconds) Best mappings’ throughput & energy consumption
Application | Platform | [Stuijk et al. 2010] EDSE HDSE | [Stuijk et al. 2010] EDSE & HDSE

1x2 7.24 4.73 2.89 7.40 & 270 9.16 & 311
H.263 2x2 11.47 9.47 5.78 7.40 & 270 9.16 & 311
decoder 3x3 19.01 18.95 11.57 7.40 & 270 9.16 & 311
(4 actors) 4x4 24.73 28.44 17.35 7.40 & 270 9.16 & 311
1x2 10.57 18.55 5.81 0.54 & 4520 0.79 & 4261
H.263 2x2 21.91 37.12 11.63 0.54 & 4520 0.79 & 4261
encoder 3x3 38.65 74.15 23.26 0.54 & 4520 0.79 & 4261
(5 actors) 4x4 45.37 111.36  34.89 0.54 & 4520 0.79 & 4261

Ix2 59.41 111.58 19.78 410.00 & 4.87 410.00 & 4.87

sample rate 2x2 118.84 202.34  38.57 410.00 & 4.87 410.00 & 4.87

converter 3x3 236.77 426.72  78.16 410.00 & 4.87 410.00 & 4.87

(6 actors) 4x4 356.63 632.56 107.82 410.00 & 4.87 410.00 & 4.87

ber of tiles), the approach of [Stuijk et al. 2010] evaluates higher number of mappings
and thus shows increased exploration time as shown in the Table VI. The approach
evaluates some duplicate mappings which differ in only placement of actors on differ-
ent tiles providing the same throughput. So, in some cases, it evaluates more number
of mappings (including duplicates) than the EDSE and thus takes more time than the
EDSE as shown in Table VI. The EDSE flow evaluates all the possible mappings with-
out any duplicate ones and the HDSE flow performs pruning to discard evaluation of
inefficient mappings. The EDSE and HDSE flows are executed in the similar manner.
Larger platforms are covered by executing the flow repeatedly by considering higher
separation (hop_distance) between the tiles. For 1x2, 2x2, 3x3 and 4x4 platforms,
maximum hop_distance between the tiles is 1, 2, 4 and 6 respectively, so the flow is re-
peated maximum hop_distance times by increasing the delay of connections according
to the hop_distance. In each execution of the flow, for H.263 decoder (4 actors), H.263
encoder (5 actors) and sample rate converter (6 actors), the EDSE flow evaluates a to-
tal of 15, 52 and 203 mappings, whereas the HDSE flow evaluates a total of 11, 21 and
36 mappings respectively, as discussed earlier in Table V. Table VI shows the explo-
ration time for complete execution of the EDSE and HDSE flow. The difference in the
number of explored mappings by EDSE and HDSE flows increases with the number
of actors in the application and thus the percentage savings (difference) in the explo-
ration time. Further, the evaluation by EDSE is not feasible within a reasonable time
for applications with larger number of tasks, whereas HDSE converges fast. For ex-
ample, HDSE evaluates 456 mappings for MP3 decoder (14 actors) in single iteration
and it takes close to 103167 milliseconds, whereas EDSE need to evaluate 190,899,322
mappings (Table V) which will take more than a year that is unacceptable.

It can be observed from Table VI that the HDSE flow does not miss the best through-
put mapping despite requiring much lower time for exploration. On an average, for
H.263 decoder, H.263 encoder and sample rate converter, exploration time of the HDSE
flow is lowered by 39%, 35% and 68% as compared to [Stuijk et al. 2010] flow, and by
38%, 68% and 83% as compared to EDSE flow respectively. The best mapping through-
put for H.263 decoder, H.263 encoder and sample rate converter is improved by 23%,
37% and 38% respectively over the approach of [Stuijk et al. 2010].

Fig. 12 shows the throughput for the best mappings for multimedia applications
where different number of ARM tiles is used for HDSE flow, the flow presented in
[Stuijk et al. 2007] and [Stuijk et al. 2010]. The throughput at each tile count (number
of used tiles by the mappings) has been normalized with respect to (w.r.t.) the HDSE
flow. It can be observed that the HDSE flow always provides better quality (through-
put) of mappings at all the tile counts. For each application, the same best mapping is
obtained by all the flows at platforms containing one (1tile) and the same number of
tiles as the number of actors.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:24 A. K. Singh et al.
2 12
3 O HDSE Flow @ [Stuijk et al. 2007] Flow B [Stuijk et al. 2010] Flow
(&)
k) 1
=
S
g o8 HIHIHIHIH I I U e e e
o
®
Sz o6 (I S = = = = S S S S S S S S S S S S S S = = =)
25
= =
M‘O—
Sw 04 HIEHIEHI8B SN RN BEAE BEAY BEAN BN BEON BEGE BEAY BEQ) WY SO0 BEAN BEUY BEGN BEAL BEQL BEA) BEQL BEQ) BN BB
23
=T
s 02
H 8188|2882/ 8|2|8 2|88l 28882 L|BElB L BL
- E|E B LB BB BB B E|R|O|IB| B E|R|R|B|E|R|BE|R|E|B|E|S
Q < o o~ wn < [a2} o~ (X} wn < m o~ < m ~ — o (o)} o0 ~ o wn < o o~
E H.263 decoder | MPEG-4 decoder JPEG decoder MP3 decoder
E (4 actors) (5 actors) (6 actors) (14 actors)

Fig. 12. The best mapping throughput comparison at different platforms for different applications.

We also performed DSE of multimedia applications for given platforms containing
different types of tiles such as GPP, DSP and RH tiles. For a given platform containing
5 GPP and 5 RH tiles, the HDSE flow explores a total of 56 mappings for H.263 encoder
(5 actors) when each actor has implementation alternatives GPP and RH tiles. The
exploration took a run-time of 35,178 ms. For given platforms of 2 GPP & 1 RH tiles
and 1 GPP & 1 RH tiles, the HDSE flow takes tile count values of 3 and 2 respectively,
and evaluates 31 and 25 mappings in a run-time of 19,683 and 15,825 ms, respectively.
For given platforms containing tiles which are subset of total available implementation
alternatives of actors in the application, HDSE flow discards evaluation of infeasible
mappings requiring more tiles than available. Thus, DSE process gets speeded up in
the case of smaller platforms.

5.2. Run-time Mapping

The results obtained from our run-time strategy have been compared with existing
run-time strategies Nearest Neighbor (NN) proposed in [Carvalho and Moraes 2008]
and Communication-aware Nearest Neighbor (CNN) proposed in [Singh et al. 2010].
The NN and CNN start mapping an application without any previous analysis and
perform the required analysis at run-time. The NN strategy tries to map the com-
municating actors on the neighboring tiles, whereas CNN strategy tries to map the
maximum communicating pairs of actors on the same tile and then throughput and
energy consumption for the mapping is computed at run-time. Throughput computa-
tion for a mapping takes much more time than the time to find the mapping. These
strategies need to find a new mapping and then to calculate throughput and energy
consumption for the same in case throughput-constraint is not fulfilled with the cur-
rent mapping. Such strategies take time firstly in finding a mapping and secondly in
computing throughput and energy consumption for the mapping at run-time, whereas
our strategy just selects the best mapping satisfying the throughput-constraint from
the optimized mappings database. The selected mapping is used to configure the actors
on the platform tiles. So, in our run-time strategy, the total time consists of selection
and placement time only. Table VII shows the time required (in milliseconds) to map
throughput-constrained multimedia applications on a 4 x4 MPSoC platform when NN,
CNN and our run-time mapping strategy is employed. On average, our run-time strat-
egy is faster by about 93% as compared to CNN that requires less time than NN.

Penalty for Overestimation of hop_distances. Our flow evaluates mappings by assuming
that all the platform tiles are separated by some fixed hop_distance. However, in real
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Table VII. Time required (in ms) to map the applications
by different run-time mapping strategies

NN CNN Our Run-time

H.263 decoder  27.98 27.96 2.47
H.263 encoder 29.98 29.97 2.84
JPEG decoder 35.74 35.32 3.21
MP3 decoder  771.87 771.83 3.93

situations, it is quite possible that not all available tiles at run-time are at the same
hop_distance. Thus, our flow enforces a penalty for estimating higher hop_distances. At
run-time, we look for a throughput satisfying mapping from the explored design-time
mappings which contains tiles separated by maximum possible hop_distance between
the available tiles. So, by mapping the actors on the available tiles based on the found
mapping will definitely satisfy the throughput constraint since latency of some connec-
tions will be smaller as compared to ones considered during analysis. To map H.263
decoder on 4 ARM tiles, when all edges are mapped at a hop_distance of 2, i.e., tiles
containing actors are separated by 2 hops, then throughput is 2.86168 x 10~ (1/time-
units) (Table IV) and when 2 edges are mapped at hop_distance of 1 and remaining
edges at hop_distance of 2, then throughput is 2.86343 x 106 (1/time-units). The two
throughput values vary only by 0.0006% and thus very less penalty in overestimating
hop_distances. Thus, the stored results from our design-time analysis are acceptable
to be used for run-time mapping. Further, we always get better throughput than the
stored one as actors are mapped on available tiles, making the approach suitable for
real-time.

6. CONCLUSIONS

It has been observed that most of the existing mapping strategies perform mapping
either at design-time or at run-time without any previous analysis of the applications.
A design-time strategy is incapable of handling dynamism in applications and a run-
time approach can miss the timing deadline due to large computation requirements.
This paper describes a hybrid mapping strategy for efficient mapping of throughput-
constrained applications on MPSoC platforms. The hybrid strategy first performs ex-
tensive design-time analysis of the applications providing multiple design points. This
is followed by a run-time mapping strategy to select the best point from the many
available points subject to available resources and desired throughput in order to map
an application. The best selected point satisfies the throughput constraint and has
minimum energy consumption and resource usage.

Our flow considers a generic MPSoC platform while performing design-time analy-
sis, so the generated design points are applicable to any MPSoC. The analysis strat-
egy is scalable with the number of application tasks and platform tiles. During the
design-time analysis, an optimization is performed on the design points to discard
sub-optimal points that results in reduced memory requirement to store them and
facilitates for faster run-time selection. Our design-time analysis is very fast and pro-
vides better quality of solutions when compared to other approaches. Our run-time
mapping strategy is very efficient as it uses the design-time analysis results in con-
trast to the conventional run-time approaches where the time consuming analysis is
performed at run-time.

In future, we plan to develop more efficient run-time mapping strategies. We also
plan to incorporate task migration to further optimize throughput and energy con-
sumption at run-time by migrating tasks from one processor type to another processor

type.
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