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Abstract—A primary design optimization objective for multi-
core embedded systems is to minimize the energy consumption
of applications while satisfying their performance requirement.
A system-level approach to this problem is to scale the frequency
of the processing cores based on the readings obtained from the
hardware performance monitors. However, performance monitor
readings contain uncertainty, which becomes prominent when
applications are executed in a multicore environment. This un-
certainty can be attributed to factors such as cache contention and
DRAM access time, that are very difficult to predict dynamically.
We demonstrate that such uncertainty can be controlled to make
better decision on the processor frequency in order to minimize
energy consumption. To achieve this, we propose a multinomial
logistic regression model, which combines probabilistic inter-
pretation with maximum likelihood (ML) estimation to classify
an incoming workload, at run-time, into a finite set of classes.
Every workload class corresponds to a frequency pre-determined
using an appropriate training set and results in minimum energy
consumption. The classifier incorporates (1) uncertainty with
arbitrary probability distribution to estimate the actual frame
workload; and (2) the frequency switching overhead, neither of
which are considered in any of the existing approaches. The
classified frequency is applied on the processing cores to execute
the workload. The proposed approach is engineered into an
embedded multicore system and is validated with a set of standard
multimedia applications. Results demonstrate that the proposed
approach minimizes energy consumption by an average 20% as
compared to the existing techniques.

I. INTRODUCTION

Multimedia applications, such as video encoding and de-
coding, are characterized by different execution phases, which
are defined as a group of consecutive frames. The average
workload of the frames comprising a phase (inter) varies
significantly across the different phases; however, the workload
variation within each phase (intra) is relatively low. Proactive
energy management involves predicting these dynamic work-
loads apriori to determine the most appropriate frequency for
every phase such that performance constraint is satisfied while
minimizing the energy consumption [1]. Studies have been
conducted recently to use machine learning to determine the
minimum frequency through continuous feedback from the
hardware performance monitoring unit (PMU) [2]–[10]. These
approaches suffer from the following limitations.

First, some of the practical aspects of multicore systems
are ignored in the existing works. Specifically, the CPU cycle
count for a frame, obtained by reading the PMU registers
at run-time, is assumed to be a true indicator of the frame
workload. However, as we show in this paper, the PMU register
readings contain a certain amount of uncertainty, influenced by
factors such as cache contention, DRAM access, etc., that can
have a significant impact on energy savings. This uncertainty
is difficult to estimate at run-time due to the unpredictability
associated with these factors, especially for multicore systems
with a realistic assumption of concurrently executing routine
applications. Thus, although workload estimation based on
CPU cycle count leads to energy savings using DVFS, a sig-
nificant improvement is possible by estimating the uncertainty
as we show in this paper. Second, the existing approaches do
not consider voltage and frequency switching overhead, which
is significant in modern multicore systems. Last, the classical
workload predication-based energy minimization techniques
work in an ad hoc manner by predicting the workload and
deciding the frequency based on this predicted workload. On

the other hand, workload history-based statistical classification
approaches determine the probability that a sudden spike
(positive or negative) in the workload is due to a change in
the phase of the workload, that needs to be processed at a
different frequency. Thus, instead of acting instantaneously, the
classifier evaluates the probability distribution of the different
classes based on the workload change and the most probable
frequency is selected such that the scaling leads to energy
reduction for future workloads. However, these classifiers
require characterization using training data, forming them to
be part of a supervised learning algorithm. Modern multicore
operating systems, such as Linux and Android, also support
dynamic frequency scaling during application execution. The
default and the most popular ondemand power governor [11]
uses the current workload to determine the voltage-frequency
value to process the future workload (a reactive approach).
As we show in this paper, the energy reduction using the
ondemand power governor can be outperformed using a naive
predictive heuristic.

To address the above limitations, we propose a multinomial
logistic regression-based classification technique, that classi-
fies the workload at run-time, into a fixed set of classes.
To accomplish this, the classifier determines the probability
distribution of these classes that changes with the input sample
(i.e., a window of prior frame workloads). The parameters
of the classifier are determined using maximum likelihood
estimation using a training set. The maximum likelihood esti-
mation incorporates the uncertainty associated with unmodeled
factors, with arbitrary probability distributions, and determines
the frequency considering the frequency switching overhead.

Contributions: Following are our key contributions:

• a frame-history based statistical workload classifica-
tion approach for dynamic energy minimization;

• incorporating the unmodeled factors with arbitrary
probability distribution in frame processing; and

• considering frequency switching overhead for energy
optimization.

The proposed approach is engineered on a multicore
embedded platform running Linux. Experiments conducted
with multimedia applications demonstrate that the proposed
approach minimizes energy consumption by an average 20%
with no degradation of performance.

To the best of our knowledge, this is the first work that
models the unpredictability in estimating the frame workload,
to accurately predict the frequency of operation. The rest of
this paper is organized as follows. An overview of the related
works is provided in Section II. This is followed by the un-
certainty in workload estimation in Section III and the design
methodology in Section IV. The background on classification
and its integration in the overall methodology are provided
in Sections V and VI, respectively. Results are discussed in
Section VII and the paper is concluded in Section VIII.

II. RELATED WORKS

Dynamic energy minimization has attracted significant
attention both in industry and in academia [12]. Continuous
frequency adjustment technique is proposed in [1] based on
predicted workload, which is formulated as an initial value
problem (IVP). The technique in [2]–[5] uses online learning to
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Fig. 1: CPU cycle count from consecutive runs.

select the most appropriate frequency for the processing cores
based on the workload characteristic of a given application.
A workload characteristics aware thread scheduler is proposed
in [6] based on dynamic workload characterization. In [7],
a supervised learning in the form of a Bayesian classifier
for energy management is proposed. This framework learns
to predict the system performance from the occupancy state
of the global service queue. The predicted performance is
then used to select the frequency from a pre-computed policy
table. In [8], [9], a multinominal logistic regression classifier is
built using a large volume of performance counters by offline
workload characterization. This classifier is queried at run-time
for a given application to predict the workload, and select the
frequency and thread packing such that performance is maxi-
mized under a given power cap. A workload aware approach
is proposed in [10] based on control theoretic principles. Our
proposed approach differs from these techniques by addressing
the three limitations discussed in Section I. Specifically, the
input features of the proposed classifier is composed of the
CPU cycle counts of a window of prior frames to determine
the probability distribution of switching workload class, rather
than an ad-hoc optimization using the CPU statistics of the
current frame only. Moreover, by introducing the modified
maximum likelihood estimation for parameter fitting, the un-
certainty in workload estimation and voltage and frequency
switching overhead are both minimized.

III. UNCERTAINTY IN WORKLOAD ESTIMATION

For energy optimization, the minimum frequency for an
application is determined based on the CPU cycle count
(henceforth referred to as workload) read from the PMU
registers. The underlying assumption is that the CPU cycle
count corresponds to frame processing only. In modern sys-
tems, there are a number of applications that continue to
operate in the background. Some of these applications are user
controlled such as web page rendering, email checking and
virus scanning. There are also system-related applications that
are routinely executed on the processing cores. Some of these
applications are beyond the knowledge of the users and cannot
be forcefully exited. As a result, the PMU register readings are
not a true indicator of the actual frame workload. This can be
easily verified by executing the same video multiple times and
recording the CPU cycle count for every run. This is shown in
Figure 1 for three consecutive runs (shown in red, green and
blue) without any change in the operating environment (i.e.
with the same set of background applications).

As can be seen, the PMU readings differ across the three
observations. The PMU readings for the observation plotted
in green are higher than the other two readings at around
3,800 frames; the readings for the observation shown in red are
higher at around 5400 frames; and the readings for observation
shown in blue are higher at around 4,200 frames. Thus,
although the workload trends are the same, all the PMU
readings vary across the three runs with variations as high
as 60% for some of the frames. Clearly, the observed readings
from the PMU registers for a frame contain uncertainty that
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Fig. 2: Proposed approach.

needs to be estimated in order to accurately determine the min-
imum frequency. This problem is more severe in a multicore
environment due to the unpredictability associated with some
of the factors such as cache contention or external memory
access time. These unmodeled factors do not follow a known
probability distribution. To estimate the impact of workload
uncertainty on the frequency value, let w̃ and w denote the
observed and the actual frame workloads, respectively, with
w̃ = w+e, where e is the workload uncertainty. The observed
and the required workload frequencies are related according to

frequired

fobserved

=
w̃ − e

w̃
≤ 1 (1)

Clearly, estimating the uncertainty in the observed workload
leads to further scope for energy improvement. Thus, the
problem we are addressing is as follows. Given the workload
obtained from the PMU registers at run-time, how to estimate
the workload uncertainty (e), being agnostic of its probability
distribution, such that the voltage-frequency value correspond-
ing to the actual workload w can be applied on the system.

IV. DESIGN METHODOLOGY

Figure 2a and 2b shows respectively the adaptive energy
minimization approach and the classification-based design
methodology based on this approach. An overview is provided
on the interaction of the different blocks of this methodology.
Application: Typically, multimedia applications are character-
ized with a performance constraint specified as frames per
second, reciprocal of which gives the timing constraint for
processing a frame. The application source code is annotated
to include this timing requirement.
Operating System: The operating system is responsible for
coordinating the application execution on the hardware. After
processing every frame of an application, the operating system
stalls execution and triggers the classifier, which predicts the
class for the next frame. This class is translated to a frequency
value for the CPU cores. The operating system applies this
frequency on the CPU cores using the cpufreq utility.
Hardware: The hardware consists of processing cores with a
performance monitoring unit to record performance statistics.
Of the different performance statistics available, we focus on
CPU cycle count. After processing every frame, the PMU read-
ings are collected using the perfmon utility. Subsequently, the
readings are reset to allow recording for the next frame. Finally,
before the start of the next frame, the frequency value set by
the operating system is first converted to a corresponding CPU
clock divider setting and is then written into appropriate CPU
registers. The frequency is scaled to execute the next frame.

V. BACKGROUND ON CLASSIFICATION

Statistical classification is the process of identifying a class
(from a set of discrete classes) for a new observation, based
on a training set of observations, whose class is known apri-
ori [13]. In this work we focus on a discriminative classifier –
logistic regression applied to a multinomial variable [14]. This
type of classifier predicts the probability distribution over a set
of classes from a sample input to learn a direct mapping from
the input sample to the output class. The logistic regression
based classification is composed of two steps – modeling to
estimate the probability distribution of the different classes for
a given input, and parameter fitting to estimate the parameters
of the logistic regression model. These are described next.
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A. Multinomial Logistic Regression Model

Assumptions:
A1 : There are K discrete frequencies supported by the
hardware. The incoming workload is assigned to one of
these values, depending on which frequency results in the
least energy consumption while satisfying the performance
requirement. This is same as classifying into one of K classes.
A2 : The class of the next video frame is predicted based on
the workloads of the N previous frames. These are identified
by X = (x1 x2 · · · xN) ∈ R

1×N , where xi is the workload
of the ith previous frame.
A3 : The workload class is denoted by the variable y ∈
[1, 2, · · · ,K] and the logistic regression model is represented
by the hypothesis hθ, with parameter θ ∈ R

(K−1)×N .

It can be shown that for a given input feature set X , the
logistic regression model outputs hθ(X) given by

hθ(X) =

⎡
⎢⎢⎢⎢⎣

p1
p2

.

.

.
pK−1

⎤
⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝ e

(
θ(1)

T ·X
)

∑K
j=1

e

(
θ(j)

T ·X
) · · · e

(
θ(K−1)T ·X

)

∑K
j=1

e

(
θ(j)

T ·X
)

⎞
⎟⎟⎟⎠ (2)

The output class y is given by

y = argmax
l

{pl ∀ l ∈ [1, 2, · · · , K]} (3)

B. Maximum Likelihood Estimation

We consider a training set of M samples generated in-
dependently and identically. For each of these samples, the
input feature X and the output class y are known apriori
and the input-output pairs are identified as (X(i), y(i)) ∀i ∈
[1, 2, · · · ,M ]. The maximum likelihood estimation is a tech-
nique to estimate the parameters (θ in our case) of a model by
maximizing the likelihood of the joint probability distribution
of the different observations. This is given by

�(θ) = ln (L(θ)) =

M∑
i=1

K∑
l=1

I(y
(i)

= l) · ln

⎛
⎜⎜⎜⎜⎜⎝

e

(
θ(l)

T ·X(i)
)

∑K
j=1

e

(
θ(j)

T ·X(i)
)

⎞
⎟⎟⎟⎟⎟⎠ (4)

C. Uncertainty Interpretation

First we define two new terms – observed class and actual
class. The observed class (denoted by ỹ) is the class perceived
at the output of the logistic regression model corresponding
to input X and includes the uncertainty. Let the variable y
denote the actual class as before. Using the basic principles of
probability theory, the probability of the observed class is

P (ỹ = i | X) =

K∑
r=1

P (ỹ = i | y = r) · P (y = r | X) =

K∑
r=1

γi,r · pr (5)

where γi,r is the probability that the actual class r is flipped to
the observed class i. Using this probability and the definition
of the likelihood function, the log likelihood function is1

�(θ, γ) =

M∑
i=1

K∑
l=1

I(ỹ
(i)

= l) ln

⎛
⎝ K∑

r=1

γl,r · pr

⎞
⎠ (6)

Finally, the output of the hypothesis is modified as

hθ(X) =
[(∑K

r=1 γ1,r · pr

)
· · ·

(∑K
r=1 γK−1,r · pr

)]T
(7)

VI. IMPLEMENTATION DETAILS

As mentioned in Section V, there are two components
of the logistic regression based classification approach –
multinomial logistic regression model and parameter fitting
using maximum likelihood estimation. The multinomial lo-
gistic regression model works at run-time and is used to
classify workloads with uncertainty for energy minimization.
The maximum likelihood estimation works on training set to

1The derivation steps are omitted for space limitation.

ALGORITHM 1: Training set preparation (video processing
demonstration).

Input: Video database vDB, set of K voltage-frequency pairs
{(Vj , Fj) ∀j ∈ [1, 2, · · · , K]}, timing constraint for frame
processing tc and frame window N

Output: Training set database tsDB
1 Initialize arrays t.clear(), n.clear() and s.clear();
2 for i = 1 to Nv do
3 curr_video = vDB(i);

// Learning section of the algorithm
4 for j = 1 to K do
5 cpufreq-set -f Fj ;
6 for w = 1 to #(curr_video.frame) do
7 perf-event.start(n(w),CPU_CYCLES);
8 start_time = current_time();
9 process(curr_video.frame(w));

10 t(j, w) = current_time() - start_time;
11 perf-event.stop();
12 end
13 end
14 for w = 1 to #(curr_video.frame) do
15 s(w) = minimum j ∈ [1, 2, · · · , K] | t(j, w) ≤ tc;
16 end

// Generating input output pairs
17 tsDB.push(process-class(n, s, t, tc, N));
18 end

ALGORITHM 2: Process workload class.

Input: Workload array n, class array s, time array t, timing constraint tc and
frame window N

Output: Input-output pairs (X(i), y(i)) stored in Γ
1 Initialize np.clear(), nt.clear() and Γ.clear();
// process class to minimize voltage and frequency

switching overhead
2 for i = 1 : Nd : |n| do
3 for l = 1 to K do
4 nt(l) = 0;
5 for j = 1 to Nd do
6 nt(l) = nt(l) + t(l, i + j − 1);
7 end
8 end
9 p = minimum l ∈ [1, · · · , K] | nt(l) ≤ N · tc;

10 for j = i to i + Nd do
11 ns(j) = p;
12 end
13 end

// generate input-output pairs
14 for i = 1 to |s| do
15 X = [s(i − 1) s(i − 2) · · · s(i − N)];
16 y = ns(i);
17 Γ.push(X, y)
18 end

determine the parameters of the model in order to improve
the efficiency of the probabilistic classification. A point to be
noted here is that, the parameter fitting process is a one-time
overhead and can be performed both offline (at design-time)
or online (at run-time). Different components of the proposed
adaptive energy minimization approach are described next.

A. Training Set Preparation

Algorithm 1 provides the pseudo-code of this step. For this
purpose, a set of Nv video sequences with different resolutions
are used. For each supported frequency, the hardware is set to
operate at this frequency using cpufreq-set. Every video
frame of the current video (curr_video) is processed at
this frequency (lines 6 - 12). The performance monitoring tool
perfmon [15] is used to record the CPU cycle count. This
value is stored in the array n. The time needed for processing
the frame is recorded in an array t corresponding to the
selected frequency (line 10). Finally, a class (i.e., a frequency
index) is assigned corresponding to every frame (lines 14 -
16). This class is the minimum frequency such that the timing
constraint is satisfied. This class is stored in the array s.

The class thus obtained is processed in the
process-class routine to minimize the overhead of
the frequency switching (line 17). The pseudo-code of this
routine is provided in Algorithm 2. The algorithm consists of
two sections – class processing (lines 2 - 13) and generation
of the input-output training pairs (lines 14 - 18). To minimize
the switching overhead, the algorithm works on a window of
Nd frames where no class change is allowed. A constant class
is decided for every window based on the timing requirement.
This is determined as follows. Every frames of a window is
assigned to K classes, one at a time, to determine the total
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ALGORITHM 3: Iterative parameter estimation.

Input: Training set database tsDB, number of voltage-frequency levels K,
frame window N , maximum number of iterations maxIter and
parameter convergence criteria pconv

Output: Parameters of the logistic regression model (θ, γ)
1 Initialize numIter = 1 and θ = γ = 0;
2 while numIter ≤ maxIter do
3 pchange = ∞;
4 while pchange ≥ pconv do
5 p1 = θ and p2 = γ;
6 for u = 1 to K do
7 for v = 1 to N do
8 θ(u)

v = θ(u)
v + α · ∇

θ
(u)
v

;

9 Update the flip probabilities using Equation 10;
10 end
11 end
12 pchange =

|�(p1,p2)−�(θ,γ)|
�(p1,p2)

;

13 end
14 mDB.push(�(θ, γ)) and pDB.push(θ, γ);
15 numIter + +;
16 Randomly select the values of θ and γ;
17 end
18 Find i ∈ [1, 2, · · · , |mDB|] such that mDB(i) is maximum;
19 Return pDB(i);

time taken (lines 4 - 7). The time taken for the workload
at a particular class is fetched from the timing array t. The
total time taken by the frame window executed with a class
is recorded in an array nt. The minimum value of the class
that satisfies the timing requirement is selected (line 9).
Finally, the class for the frames of the window is selected
as this minimum class value (lines 10 - 12). This process is

repeated � |n|
Nd

� times to determine the class of all the frames
of the video sequence. Two important points to note from this
section of the algorithm are: by selecting the minimum class
for a workload that satisfies the timing requirement (line 9),
the algorithm assigns class to workload in order to minimize
energy consumption; and by selecting a constant class for a
window of Nd frames, the algorithm minimizes the frequency
scaling overhead. Next, the N previous workloads are stored
in the vector X (line 15). These workloads are indicated as
s(i − j) ∀ j ∈ [1, 2, · · · , N ], with s(a) = 0 ∀ a < 1. The
current class ns(i) is assigned to the output variable y. The
input-output pair (X, y) is stored in the database Γ, which is
returned after processing all frames.
B. Parameter Fixing

The parameter fixing step is to estimate the parameter θ of
the logistic regression model by maximizing the likelihood of
the probability distribution. The gradient of the log likelihood
function (Equation 6) is given by

∇
θ
(u)
v

=
∂�(θ)

∂θ
(u)
v

=

M∑
i=1

K∑
l=1

I
(
ỹ(i) = l

)
∑K

r=1 γl,r · pr

K∑
r=1

(
γl,r · Γ(θ)

)
where (8)

Γ(θ) =
I(u = r)

∑K
j=1 g(j, i) − g(u, i)(∑K
j=1

g(j, i)
)2 x

(i)
v g(r, i) and g(i, j) = e

(
θ(i)

T ·X(j)
)

(9)

We use the steepest gradient ascent rule for the parameter

(θ) update and is given by θ
(u)
v = θ

(u)
v + α · ∇

θ
(u)
v

, where
0 ≤ α ≤ 1 is the step size (also referred to as learning rate
in machine learning terminology). Thus, the gradient ascent
technique takes a step α in the direction of the steepest increase
of the function �(θ). The flip probabilities due to uncertainty
is determined using multiplicative update [16],

γj,l =

γj,l
∑M

i=1
I(ỹ(i)=l∑K
r=1 γl,r·pr

· g(j,i)∑K
r=1 g(r,i)

∑K
l=1

[
γj,l

∑M
i=1

I(ỹ(i)=l∑K
r=1 γl,r·pr

· g(j,i)∑K
r=1 g(r,i)

] (10)

Algorithm 3 shows the pseudo-code to determine the parame-
ters of the logistic regression model. The algorithm starts from
a value of θ and γ (line 1). It then updates every component of
θ and γ using the iterative approach shown in lines 4 - 13. For
this, a convergence criteria pconv is used At every iteration
(lines 4 - 13), the old values of the parameters are first stored
in temporary variables p1 and p2. The parameters are then
updated according to Equations 10 (line 8, 9). The change in
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Fig. 3: Energy variation due to workload uncertainty: H.264
case study.

the function value using these new parameters is determined
(line 12). If this change is greater than pconv, the section is
repeated using the updated value of the parameters. Once all
the components of the parameters θ and γ are determined, the
parameters θ and γ and the value of the log likelihood function
�(θ, γ) are stored in pDB and mDB, respectively. In this work
we consider maxIter different random starting points for the
parameters. For each of these starting points, the parameter
determination procedure (lines 2 - 17) is repeated. The θ and
γ corresponding to the maximum value of the log likelihood
function �(θ, γ) are selected and returned.

VII. RESULTS

The proposed run-time approach is validated on Texas
Instrument’s PandaBoard featuring ARM A9 cores and Intel
quad-core system running Linux. The proposed approach is
compared with one representative approach from each category
of related works – the reinforcement learning-based technique
of [4], the prediction-based DVFS technique of [1] and the
multinomial logistic regression-based technique of [9].

A. Impact of Workload Uncertainty: H.264 Case Study

To signify the impact of the workload uncertainty on the
energy consumption, an experiment is conducted using two 30
sec video sequences – “ducks” and “sta launch” [17]. The
H.264 decoder application is restricted to execute on only
one core using the cpu-affinity feature of the operating
system. Further, we let all other routine applications execute
freely on any cores. The videos are decoded ten times each and
the energy optimization for each run is performed according
to [1]. The energy values are normalized with respect to that
obtained using the mean workload of the ten readings. These
results are shown in Figure 3 corresponding to the label Single
Core. The minimum energy, maximum energy, the energy
median value (as red line) and the 80% energy distribution
(as blue box) for the runs are shown as box plots for both
the videos. Further, the percentage difference between the
minimum and the maximum energy of the ten runs (referred as
energy variation) is reported on top of each box. Next, the same
experiment is repeated, but now allowing the H.264 decoder
application to run on two and four cores of the system. The
results are also plotted in Figure 3 for these two cases.

As seen from the figure, when the H.264 decoder runs on
single core, there is an energy variation of 3.5% and 6.7%
for the two videos respectively. It is to be noted that, even
though the H.264 application executes on one core, some of
the threads from other routine applications are also scheduled
on this core by the operating system. Thus, there is an amount
of uncertainty in the observed CPU cycle count. Hence, the
voltage-frequency value obtained based on this observed CPU
cycle count is not optimal, implying that there is a performance
slack that enables the operating system to schedule more
threads on this core. When the H.264 application is allowed
to execute on two cores, the percentage variation for the two
videos increases to 9.6% and 11.1%, respectively. This is
because, as the application uses more cores, there are more
cache conflicts due to other background threads, increasing
the workload uncertainty. Finally, when all the four cores are
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TABLE I: Energy consumption (Joules)

Videos Ondemand Predictive Q-Learning MLR
Proposed

[11] [1] [4] [9] no DO, no WN DO, no WN DO, WN

FFT 32.7 29.0 27.6 20.2 19.8 19.6 16.9

gsm 18.8 14.3 15.5 10.8 10.6 10.5 8.8

web render 26.6 26.6 24.5 21.5 21.5 21.1 20.2

H.264 23.7 23.7 20.2 18.5 18.2 17.9 15.4

sobel 69.3 61.4 63.2 41.4 30.7 29.7 28.3

basicmath 82.6 82.6 60.2 42.4 40.9 40.0 37.3

used by the H.264 decoder, the energy variation increases to
14%. It can thus be concluded that, workload uncertainty can
result in as high as 14% variation in the energy results, clearly
motivating our approach.

B. Energy Savings in the Proposed Approach

Table I reports the energy savings achieved using the
proposed approach in comparison with Linux’s Ondemand
governor [11] and three of the existing approaches. Results for
the proposed approach are provided for three configurations:

No DO, No WN: In this configuration, the proposed approach
performs no optimization for DVFS overhead (DO) and does
not incorporate the workload uncertainty (WN). To disable the
DVFS overhead optimization, we let Nd = 1 and to ignore the
workload uncertainty, we let the class switching probabilities
as 0 i.e., γi,j = 0 ∀ i 	= j and 1 for i = j. Line 9 of
Algorithm 3 needs to be disabled for this purpose.
DO, No WN: In this configuration, the proposed approach
performs optimization for DVFS overhead with Nd = 8, while
not optimizing for the workload uncertainty. The choice of Nd
is evaluated later in Section VII-C.
DO, WN: In this configuration, the proposed approach per-
forms both these optimization simultaneously.

There are few trends to follow from this table. First,
the energy optimization using workload prediction [1] is, in
general, better than the linux ondemand approach (column 2 vs
column 3). This is due to different optimization strategies for
these two techniques. In ondemand, the frequency is increased
(or decreased) based on the CPU utilization. On the other hand,
predictive approaches determine the minimum frequency value
based on performance. On average, the predictive approach
improves energy consumption by 7% as compared to the
Linux’s ondemand governor. Second, Q-Learning improves
energy consumption further by 15% with respect to the
predictive approach (column 3 vs column 4). This energy
reduction is because the Q-Learning algorithm learns the most
appropriate frequency for a given workload. However, this
algorithm is usually characterized by exploration phase, where
different frequencies are explored to learn the appropriate
value. In this phase, the algorithm may select a frequency
that increases the energy consumption. Once the algorithm
reaches the exploitation phase, the energy benefits become
more prominent. For some application such as sobel, the Q-
Learning algorithm spent most of the time in the exploration
phase and therefore, the energy consumption is higher than
that of the predictive approach.

Third, the logistic regression based approach of [9]
achieves the best result among all the existing techniques by
lowering energy consumption by an average 26% as compared
to the Q-Learning approach (column 4 vs column 5). This
improvement can be attributed to the fact that by offline
workload characterization, the exploration phase of the Q-
Learning algorithm is avoided in [9] i.e., the approach provides
the optimal result from the first frame itself. The proposed
approach without DVFS overhead and workload uncertainty
optimization achieves 8% lower energy on average as com-
pared to that of [9] (column 5 vs column 6). Although, the
fundamental model for both the techniques are the same, the
improvement in the proposed technique is due to the difference
in workload prediction techniques – last frame statistics for
[9] and window of past frame’s CPU cycle counts for the
proposed approach. When the proposed technique is applied to
optimize for DVFS switching overhead (i.e., column 7), there
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Fig. 4: Impact of the DVFS window Nd.

is an improvement in the energy consumption by an average
3% (column 6 vs column 7). This improvement is due to the
use of a fixed frequency for a window of Nd frames rather
than changing the frequency for individual frames. Finally,
the results using the proposed approach with both the features
enabled i.e., the DVFS overhead and workload uncertainty, is
reported in column 8. The improvement with respect to DVFS
optimization alone (i.e., column 7 vs column 8) is 11%, while
that with respect to no features enabled (column 6 vs column
8) is 13%. These results indicate that the proposed technique
minimizes the workload uncertainty effectively. Finally, the
improvement using the proposed technique with respect to
the existing logistic regression technique of [9] is on average
20%. To summarize, there are three aspects that contribute to
the 20% improvement in the proposed approach – workload
uncertainty (achieving 11% improvement), frame history-based
workload prediction (achieving 8% improvement) and DVFS
overhead optimization (achieving 3% improvement). It is to be
noted that, the user is provided with the flexibility to enable or
disable any of the additional features of the proposed approach.

C. Impact of Design Parameters

There are three design choices for the proposed logistic
regression model – the DVFS window Nd, the prediction frame
window N and the number of training samples M .

1) DVFS Window: Figure 4 plots the variation of the
normalized energy obtained by varying the DVFS window
Nd for the same six applications. Nd = 1 implies no DVFS
optimization. The energy values for each video are normalized
with respect to the minimum energy values obtained for the
corresponding video with Nd varying from 1 to 15. The general
trend that can be seen from this figure is that, as the DVFS
window size increases, there is first a decrease in the energy
consumption and then the energy consumption increases. This
decrease is due to the reduction of the frequency switching
overhead. However, as the size of the window increases further,
the approach enforces the same voltage-frequency value for a
large number of frames, reducing the opportunity of energy
reduction using DVFS. The minimum energy point differs for
different applications. We chose Nd = 8 as this gives the best
result for all applications.

2) Prediction Frame Window: The prediction frame win-
dow N is the window of past frames that are used to predict
the next frame. It is the size of the input vector X in
Section V. Figure 5 plots the impact of varying the size
of N on the workload misprediction for six applications.
Workload misprediction is defined as the difference between
the actual workload and the predicted workload. Thus, lower
the workload misprediction, the more accurate the estimation
(and hence better). The above figure plots the root mean
square (rms) of the workload misprediction as the value of
N is increased. The rms values are normalized with respect
to the rms value obtained using N = 1 i.e., predicting the
next frame using the last frame only. As can be seen, for
some applications (FFT, gsm and web render), the rms of
the workload misprediction at N = 10 is very close (average
6%) to the rms value obtained with N = 1. This is because,
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Fig. 5: Impact of the prediction frame window N .
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Fig. 6: Impact of the number of training samples M .

these applications are characterized with workloads that vary
little with time (static workload), and therefore there is no
significant improvement in considering a window of past
frames as compared to using the last frame statistics only. This
justifies our previous observation that the proposed technique
is only 1% better than that of the existing technique of [9]
for these applications. On the other hand for for applications
with dynamic workload, the average decrease in the rms of
the workload misprediction is 47% for N = 10. This implies
that for these applications, it is essential to consider a window
of past frame statistics in order to predict the future frames.
Although not shown in this figure, beyond N = 10, there is
very little improvement in the misprediction (less than 0.01%),
suggesting that 10 previous frames are sufficient to accurately
predict the next frame for all applications.

3) Training Samples: The number of training samples (or
X, y pairs) determines the quality of workload class prediction
using the logistic regression model. Figure 6 plots the root
mean square of the workload prediction error as the size of
M is varied from 100 to 1000. The workload misprediction
values obtained using the proposed approach are normalized
with respect to the misprediction for M = 100. As can be seen,
the workload misprediction decreases with an increase in the
number of training samples. This is expected because, as the
number of training samples increases, there is higher proba-
bility that the model encounters different workload scenarios
that help the model to learn better and predict the application
workload accurately (decrease in workload misprediction).
However, beyond 600 input-output pairs, there are no change
in the misprediction values. Further, a higher M implies higher
model development time (refer to Section VII-D).

D. Execution Time of the Proposed Approach

The execution time of the approach is calculated as follows.
The training set preparation time is dependent on the size
of the training videos used and the number of frequencies
supported on the hardware. The wall clock time recorded
for the training set preparation was 20.5 minutes. Figure 7
plots the execution time of the parameter fitting step of the
proposed algorithm for different values of the frame window
N and the sample size M . As can be seen, with an increase in
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Fig. 7: Execution time for different N and M .

the number of samples, the execution time increases. Finally,
the run-time overhead of the multinomial logistic regression
based approach is computed as follows: the class prediction
for the next workload frame takes an average 0.7ms; fetching
the voltage-frequency value corresponding to each class takes
an average 0.5μs; and the time taken by the operating system
to set the voltage-frequency value on the cores (i.e., the time
for the cpufreq-set command) is on average 0.5ms. These
numbers are collected based on the average of 1000 runs. Thus,
the overall run-time overhead for DVFS is 1.2ms.

VIII. CONCLUSIONS

In this paper we proposed an adaptive approach for energy
minimization of multimedia applications on a multicore sys-
tem. Fundamental to this approach is a multinomial logistic re-
gression based workload classification technique that classifies
the incoming video workloads in the presence of uncertainty
into a discrete set of classes. Every class is associated with a
voltage-frequency value pre-determined using an appropriate
training set and results in minimum energy consumption.
The proposed approach is engineered on a multicore system
running Linux. Experiments conducted with multimedia ap-
plications demonstrate that the proposed approach minimizes
energy consumption by an average 20% with no performance
degradation.
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