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Abstract—Volume image registration is a basic component
of medical image processing which traditionally requires long
computation time. In this paper, we propose five Correlation
Ratio based schemes that explore the design space for Graph-
ics Processing Unit (GPU) acceleration. Through comparisons
among these five schemes, we present the trade-off between
benefits and overheads of introducing shadow histograms on
various storage (shared memory, global memory) by different
level execution units (thread, warp, thread block). Compared
to Mutual Information based methods, these Correlation Ratio
based methods require less resources for shadow histograms,
a faster storage therefore could be exploited to achieve better
performance which is shown in our experiments. Particularly, the
fifth scheme completely avoids updating conflicts of histogram
calculation, leading to a substantial performance improvement
(over 18x speedup) over the native FLIRT version. It reduces the
registration time from over 100s to less than 6s for two typical
256x256x160 3D images.

I. INTRODUCTION

Image registration, the process of generating a transforma-
tion that finds the best alignment between two images [1],
is one of the fundamental components encountered in many
medical image processing applications [2]. Among various
medical registration tools, FMRIB’s Linear Image Registration
Tool (FLIRT) [3], [4] is reported to be effective and robust [5].
FLIRT exploits several similarity functions, among which the
default is Correlation Ratio (CR) [6]. Based on information
theory, CR exhibits comparative robustness and stability as the
Mutual Information (MI) methods [7], [4]. It is also reported
that CR is slightly more accurate and easier to compute than
MI [4].

Since NVIDIA published Compute Unified Device Archi-
tecture (CUDA) in 2007, the graphic processing unit (GPU)
has shown its strength in many areas, especially the domain
of image processing including image registration due to the
inherently massive data parallelism [8]. However, an efficient
GPU implementation for multimodality image registration still
remains a difficult task since expensive atomic operations
are heavily utilized for histogram calculation, which usually
turns into a performance bottleneck [9]. Although several
approaches are proposed [10], [11], [12], [9], most of them
are specifically targeted for MI and still cannot resolve this
bottleneck effectively.

In this paper, we discover that, compared to MI, the CR
based similarity functions are more suitable for a SIMD plat-
form. We thus explore the design space of CR and propose five
CR-based similarity function schemes. The FLIRT registration

framework is implemented to embed these similarity functions
to construct a complete registration routine. We show the trade-
off between benefits and overheads for introducing local sub-
histograms (or shadow histograms) on different storage (shared
memory, global memory) by different execution units (thread,
warp, thread block). It is highlighted that, in the fifth scheme,
the updating conflicts of histogram calculation are completely
eliminated, leading to significant performance improvement.
Our best scheme achieves over 18x speedup compared to the
native FLIRT version, which reduces the registration time from
over 100s to less than 6s for typical 256x256x160 3D images.
Hence the contributions of this paper are:

• Five CR based registration schemes for GPU. This
is the first time, to the best of our knowledge, that
the CR method is reported to be employed for image
registration on GPUs. Experiment results show that
CR outperforms MI on both speed and accuracy.

• A design that completely eliminates the updating
conflicts, which has not yet been realized by existing
works. This highlights the significant advantage of CR
over MI on the GPU platforms.

• The trade-off between benefits of exploiting shadow
histograms and its concomitant overhead based on
comparisons among different schemes.

• An effective implementation of the FLIRT framework
specialized for GPUs which can be used for assess-
ment of other similarity functions.

The rest of the paper is organized as follows. Section
2 introduces the background of image registration, FLIRT
framework and histogram calculation. Section 3 presents the
proposed schemes to implement the CR similarity function.
Section 4 compares these schemes through real experiments.
Section 5 discusses the related considerations. Section 6 re-
views related works and the conclusion is drawn at last.

II. BACKGROUND

In this section, we first briefly describe the meaning of
image registration, the process of FLIRT framework and the
definition of Correlation Ratio. We then present histogram
calculation and explain why conflicts exist.

A. Image Registration

Image registration is the process of determining a transfor-
mation that maps points from one image (source image) to their



homologous points from another image (reference image). It
is generally formalized as an optimization problem in which a
cost function is defined. The cost function measures similarity
degree between the two images. Therefore, the process of
optimization is actually to search for a transform that minimize
the cost function (or maximize similarity):

Minimize (f)
where f = cost function(A,B),

A = reference image,

B = Transform(source image),
return Transform

In this paper, we only consider affine registration meaning that
the “Transform” is affine transform. Thus,

B = M × source image+ b

M is a 3× 3 matrix. b is a vector. The 3× 4 matrix [M b]
is defined as a transform matrix.

During the search process, various searching strategies
are utilized to promote the possibility of obtaining the most
optimum transform and reduce searching time. These make up
the searching framework.

B. FLIRT Framework

FLIRT algorithm [3], [4] is one of the searching frame-
works. It is composed of four stages – each stage targeting
on a specific resolution, from 8mm, 4mm, 2mm to 1mm
progressively. A stage contains a series of local search and four
spaces may be covered by them: rotation, translation, scale and
skew. Each space is three dimensional (X, Y, Z). Therefore, if
one dimension is represented by one degree of freedom (DOF),
at maximum a 12 DOF search can be performed.

The primary stage first executes a rotation space searching
with a stride of 60 degrees, thus 6x6x6 times to cover the
whole space (360 degrees for all X, Y, Z dimensions). For each
checkpoint, a 4 DOF local search is done. Then another rota-
tion space search with a finer stride of 18 degrees is performed.
This time, 8000 trials are required. However, unlike the coarse
searching, for every checkpoint, we only evaluate that specific
spot instead of starting a complete local search. Afterwards,
three transformation matrices generating the minimum cost are
selected to execute a 7 DOF full search. The obtained matrices
are marked as candidates for the next stage.

In the second stage with 4mm resolution, a 7 DOF search is
applied to the three candidates together with their 30 neighbors
(for each candidate, two perturbations on each rotation dimen-
sion with 9 degree deviation, four perturbations on scaling with
zoom in and zoom out by a factor of 0.1 and 0.2). The best
transformation is found out as input for the next stage.

After that, in the 2mm stage, 7 DOF, 9 DOF and 12 DOF
local searches are performed alternately, further approaching
the optimum transform.

Finally, in the 1mm stage, the expected global optimal is
obtained after going through a 12 DOF local search. This
transform matrix is believed to generate the minimum value
for the cost function.

C. Correlation Ratio Definition

The Correlation Ratio (CR) [6] of two variables X & Y is
a measurement of functional dependence between them, which
is defined as:

η(Y |X) =
V ar[E(Y |X)]
V ar(Y )

= 1− V ar[Y − E(Y |X)]
V ar(Y )

(1)

and can be measured as:

η(Y |X) = 1− 1
Nσ2

∑
i

Niσ
2
i (2)

in which

σ2 =
1
N
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ω∈Ω
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1
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σ2
i =

1
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1
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Y (ω)

Here Ω denotes the images’ overlapping region, N is the
number of voxels in Ω. Consider the histogram of X , Ωi =
ω ∈ BIN(i), Ni is the number of voxels in Ωi. The value
of CR is between 0 (no functional dependence) and 1 (fully
deterministic dependence). Defined as a ratio, CR is invariant
to the scaling of Y or Y (ω). Meanwhile, CR is asymmetrical
by definition, meaning that normally η(Y |X) 6= η(X|Y ).

Compared to MI, the computation of CR does not require
2D-histogram calculation, which makes it more suitable for
GPU streaming processors with very limited shared memory.
Meanwhile, the computation complexity of CR is O(nx),
better than O(nxny) for MI. Furthermore, CR can generate
comparatively accurate result while showing better robustness
at low resolutions [6] and less sensitive on subsampling [13].
These features are especially meaningful to a multi-resolution
framework like FLIRT.

D. Histogram Calculation

The calculation of CR requires the values of Ni,∑
ω∈Ωi

Y (ω)2 and
∑

ω∈Ωi
Y (ω) for each Bin i, which is a

histogram calculation process shown in List 1.

1 vo id histogram ( i n t ∗bins , f l o a t ∗image ){
2 f o r ( i n t i dx= t i d ; idx<imageSize ; i dx ++){
3 bin = ca lcB in ( image [ idx ] ) ;
4 va l = ca lcVa l ( idx , image ) ;
5 h [ b in ]++ ;
6 y1 [ b in ]+= va l ;
7 y2 [ b in ]+= va l∗va l ;
8 }
9 }

Listing 1: Histogram Calculation

For a single thread, histogram calculation is straightfor-
ward. As shown in List 1, the thread simply goes through
all the voxels of an image, updating the target counters
respectively. However, to run on a SIMD machine like GPU,
several threads may attempt to update the same counter simul-
taneously, leading to inconsistent results. Therefore, atomic
operations are utilized to sequentialize these access. This
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Fig. 1: Algorithm Framework. The vertical arrows indicate module execution sequences.
Dashed horizontal arrows implies module hierarchy. The dashed circle means the
righthand modules are called by the lefthand module repeatedly.

preserves correctness, but drastically enlarges the operation
latency and usually aggravates to be the main bottleneck of the
application. The notion of conflicts is to describe the scenario
that multiple threads updating the same memory location.

Histogram conflicts are generally tackled by replication
[14], which is the method of allocating local copies of his-
togram counters so as to reduce the number of transactions
to shared resources. We name these local copies as shadow
histogram in this paper.

III. ALGORITHM

The skeleton of our algorithm is illustrated in Figure 1.
As can be seen, for every FLIRT stage, a half-sampling
procedure is required to generate the images of that resolution.
If the source image and reference image are not initially in
the same resolution, an additional normalization is performed
beforehand. After that, some preparation work are done in the
“init volume” phase, mainly the allocation and configuration
for GPU. For example, copying images to texture memory
and allocating histogram counters. Additional preprocessing
followes if necessary. For each local search, depending on
search logic, the transform matrix is tuned before transferring
to the GPU constant memory. Then histogram calculation is
executed and CR is computed.

From the definition of CR, it seems that both η(Y |X) and
η(X|Y ) can be selected as the measure. In our schemes, we
choose η(source image|reference image) because of two
reasons:

• Normally, the size of reference image is smaller than
or equal to the size of source image. In such cases,
choosing reference image as X can reduce the number
of voxels that has to be processed during histogram
calculation.

• The reference image is generally fixed, for example
a template image. Thus by taking reference image as
X , it is possible to reuse the preprocessing outcome
from “init volume” module for new source images.

The calculation procedure is illustrated in Figure 2. The
reference image is first converted into a “transformed reference
image” after applying the transform matrix to all of its voxels.
Then the similarity between source image and the “transformed
reference image” are measured.

In the remaining part, we present the proposed schemes
respectively.

reference image

transformed reference im
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source image
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overlapping region

A
,
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Fig. 2: Voxel Mapping. Voxel A(x, y, z) from the reference image is mapped to A’(x’,
y’, z’) in the “transformed reference image” by applying the transform matrix to (x, y,
z). A and A’ have identical intensity value but different coordinates. Then we measure
the similarity between A’ and the point from source image with the same coordinate (x’,
y’, z’). Note that we only consider the voxels inside the overlapping region. Thus voxel
B is neglected during this computation.

A. First Scheme: Atomic Updating on Global Memory

The code segment is shown in List 2. Three counter arrays
h, y1, y2 are allocated on global memory, mapping to N ,∑

ω∈Ω Y (ω)2 and
∑

ω∈Ω Y (ω), respectively. Each counter
targets a bin. During execution, from the current position in
reference image, a thread executes the transformation indicated
by the transform matrix and obtains the homologous coordinate
in “transformed reference image”. Using this coordinate, the
voxel is fetched from source image. The thread then calcu-
lates the bin this voxel belongs to and updates the counters
accordingly.

1 global s t a t i c vo id calcCRKernel ( f l o a t ∗y1 ,
2 f l o a t ∗y2 , f l o a t ∗h){
3 const i n t threads=blockDim . x∗gridDim . x ;
4 const i n t t i d =b lock Idx . x∗blockDim . x+ th read Idx . x ;
5

6 f o r ( i n t i dx= t i d ; idx<r e fS i ze ; i dx +=threads ){
7 f l o a t x = idx % r e f s i z e . x ;
8 f l o a t y = ( idx / r e f s i z e . x ) % r e f s i z e . y ;
9 f l o a t z = ( idx / r e f s i z e . x ) / r e f s i z e . y ;

10 f l o a t 3 srcCorr = t rans form ( x , y , z ) ;
11

12 i f ( ins ideRegion ( srcCorr ) ){
13 i n t b in = f l o o r ( ref Img [ idx ] ) / b inWidth ;
14 f l o a t weight = calWeight ( ) ;
15 f l o a t srcVox = tex3D ( srcImg , srcCorr ) ;
16 atomicAdd ( &h [ b in ] , weight ) ;
17 i f ( srcVox>0){
18 atomicAdd (&y1 [ b in ] , weight∗srcVox ) ;
19 atomicAdd (&y2 [ b in ] , weight∗srcVox
20 ∗srcVox ) ;
21 }
22 }
23 }
24 }

Listing 2: Scheme 1 Kernel Code Segment

Note that the statement in line 17 improves the performance
noticeably since for this scheme, atomic updates are the bottle-
neck and most of the intensities from the image background are
zero. Meanwhile, the reference image voxels are only retrieved
if the mapped coordinates fall in the overlapping region. This
trick will not break the coalescing access pattern but may save
L2 bandwidth if L1 cache is disabled. This is just our case
because every thread maps to a unique voxel and there is
little data reuse. It also applies to DRAM when all mapped
coordinates are out of overlapping region for threads from the
same warp. The weight function in line 14 is employed for
smoothing which will be discussed later.

The first scheme is a direct implementation of the his-
togram calculation taking advantage of the hardware-based
atomic primitives of GPU global memory.



B. Second Scheme: Per-thread Shadow Histogram on Global
Memory

The bottleneck for the primary scheme is the conflicts of
atomic updates. Intuitively, we can allocate extra counters to
mitigate its degree. Imagine that if each thread is equiped with
a private copy of shadow histogram, there will be no conflicts
theoretically. This is our second scheme: every thread updates
its local shadow counters which are aggregated afterwards.
This scheme will consume huge space, therefore cannot fit
into shared memory. Some existing proposals attempted to
get around this pitfall by assigning less storage for each bin
through bit-shifting operations [15], but such schemes strictly
limit the magnitude of bin size and the bits utilized for a
bin. For our scenario, however, each bin requires three float
counters (12 bytes), hence the overall consumption is far
overloaded for the on-device shared memory.

The shadow bins or counter arrays prevent the possible
updating collisions. However, due to enormous global memory
usage and excessive non-coalescing access, performance of the
data cache and TLB are extremely low. Meanwhile, the final
merging is mostly meaningless since many bins are zero. It
also incurs considerable overhead.

C. Third Scheme: Blockwise Atomic Updating on Shared
Memory

Shared memory is exploited in the third scheme in view of
its fast speed for both native and atomic access. Involved from
the first scheme, we allocate one shadow histogram for each
thread block on shared memory and integrate them afterwards.
Consequently, the possible conflicts are separated into intra-
block conflicts and inter-block conflicts.

Intra-block conflicts occur among threads of the same
block, which are resolved by shared memory atomic oper-
ations. Inter-block conflicts, on the other hand, take place
between thread blocks on global memory. Two alternative
methods can be deployed to resolve the inter-block conflicts.
One is through global memory atomic operations, marked as
scheme 3a. The other is through merging on global memory,
marked as scheme 3b. We will compare these two schemes in
the experiments.

D. Fourth Scheme: Warpwise Atomic Updating on Shared
Memory

The fourth scheme also takes advantage of shared memory.
However, in this scheme, we assume that collisions are still
significant for threads inside a block. Thus, instead of allocat-
ing shadow counters per thread block, we assign one copy for
each warp. In this way, the possible conflicts are divided into
intra-warp conflicts and inter-warp conflicts. A final merging
is still desired. Comparatively, this scheme further alleviates
conflicts but requires more shared memory space and merging
efforts.

E. Fifth Scheme: Conflict Free

Previous schemes explore design space from various as-
pects. However, none of them entirely resolve the conflicts
problem despite trying different ways to mitigate the degree
(actually there is no conflict in scheme 2, however at the

Fig. 3: Execution Procedure. Thread block n traverses from position marked by Block[n]
start index. After several iterations, it terminates at the primary element owned by the next
block. During this term, each thread handles one element and calculates the corresponding
Ni, Y (ωi)

2 and Y (ωi). After all the rotations are accomplished, the threads submit
their local accumulated values to shared memory followed by a block-wise reduction.

expense of enrolling huge global memory access overhead).
Motivated by this, we propose our last scheme.

1) Pre-Processing: In this scheme, an extra pre-sorting
on the reference image is required, which takes place in the
module of “other pre-processing” shown in Figure 1. A new
array Vindex is constructed with initial values as a sequential
number series (0,1,2,...). Then Vindex is sorted, using reference
image intensities Iref as the sorting keys. After that, Iref

is in order. For arbitrary element of Iref with index i, we
could obtain its original index Vindex(i), thus its primary
coordinate. In this way, we gather the voxels with the same
intensity together and distribute them continuously while still
conserving the coordinate information.

The sorting process is performed on GPU part to reduce
data transfer. Sorting algorithm on GPU are generally radix
sort [16] or bitonic sort [17]. In this work we utilize the
thrust library [18] for simplicity and high performance. After
sorting, Iref is then transferred back to the host part and a
routine is employed to traverse the array and record the starting
and ending positions for each thread block. It is possible that
the block volume is equal to the preestablished bin number,
which is the ideal scenario. However, the severe unbalancing
of workload for different thread blocks prevents us from doing
so. Based on our own experience, for a typical MRI image,
due to the large background area, the primary bin can take up
as much as 77% of all voxels, meaning that most of processors
may be idle for quite a long time. Therefore, we set a threshold
to limit the workload for each thread block.

It is important to note that, unlike other conflict-free
schemes with pre-sorting [11], the preprocessing and sorting
stage in our scheme is executed only once for each resolution
stage provided that the bin size unchanged. Yet, the sorted
data can be reused by the cost function for thousands of times
within that stage. Further, if the reference image is invariant,
such sorting results can even be reused for registration of other
source images. This is a good property for use in the case of
multiple image registration.

2) Cost Function: From the pre-processing phase, we know
the starting and ending positions for every thread block. Inside
the cost function kernel, a thread block will go over the
partition of Iref it is in charge of. As all the elements for
the whole thread block belong to a unique bin, three registers
are sufficient for the counters. They are then stored and merged
on shared memory after a block-scope synchronization.

This procedure and code segment are illustrated in Figure
3. Compared to former schemes, the advantages of scheme 5
are:



• During the whole life, a thread only works on a unique
bin. Therefore, it has an extremely low demand for
storage. In fact, 12 bytes are sufficient, which can be
easily fulfilled by the fastest memory – registers.

• All threads from a thread block target on the same
bin. So they can be rapidly aggregated through a
series of reduction operations on shared memory after
accomplishing their own jobs. Besides, one thread
only consumes 4 bytes of shared memory. Compared
to scheme 3a, scheme 3b and scheme 4, it is more
likely that a streaming processor can accommodate
extra thread blocks when shared memory size is the
limitation.

• All the conflicts are resolved through shadow counters
and merging. However, unlike scheme 2, most of
them are processed by fast register access and shared
memory access.

IV. EXPERIMENTS

In this section, we compare the proposed schemes under
influence of two factors and evaluate the overall performance
for the whole application. Several observations are made and
discussed through comparisons.

A. Experiment Settings

System configuration for testing is listed in Table I. Com-
piler optimization level is “-O2”. The L1 cache is disabled
through compiler option “-ptxas -dlcm=cg”. The interpolation
method is the nearest point method for stage 1 and stage 2, but
trilinear for the remaining stages. Texture addressing model is
wrapping for all three spatial axes.

The experiment dataset is from OASIS database [19]. We
use 11 MR1 images indexed from OA 0001 to OA 0012
except OA 0008 (due to unavailability) for registration. The
test plan is that we register the last 10 images to the first
one (listed in Table II). Note that, while in this experiment
the source images and reference image are of the same size,
generally they could have distinct dimension sizes or pixel
dimension sizes.

The proposed CR-based schemes are also compared with
several existing MI-based approaches (see Section 6): Shams’
per-warp method [11], sort-and-count method [20], Chens’
method [12], Vetters’ method [9] and the native CPU im-
plementation (denote as MI Sham 1, MI Sham 2, MI Chen,
MI Vetter and MI cpu, respectively). (In fact, Sham et al.
also propose a per-thread scheme in [11]. However, this
method is similar to scheme 2 and the acceleration technique
is only feasible for small numbers of bins; it is therefore
excluded from the results). We replace the software simulated
atomic operations with their hardware based counterparts in
these approaches since some of them are based on the older
generation GPUs.

B. Cost Function Evaluation

First, we concentrate on the cost functions and evaluate
two factors that may influence the performance:

TABLE I: System Configuration

CPU Intel i7 870(x8) @2.93GHz
Memory 2 x 8G DDR3
Operating System Linux 2.6.32 - CentOS 6
gcc gcc 4.4.6
GPU Nvidia Tesla C2075
Compute Capacity 2.0
CUDA Cores 14(SM) x 32
GPU Clock Rate 1147 MHz
Global Memory Throughput 144 GB/s
CUDA Driver/Runtime Verison CUDA 5.0

TABLE II: Test Image Information

Reference Image Source Image
Name OA 0001 OA 0002 to 12 (except 08)
dim 1-4 256x256x160x1 256x256x160x1
pixdim 1-4 (1,1,1,0) mm (1,1,1,0) mm
datatype 4 Bytes 4 Bytes
filetype ANALYZE-7.5 ANALYZE-7.5
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Fig. 4: Variation of execution time with the number of thread blocks. Only scheme 2 is
strong correlated.

• Number of thread blocks. If less number of thread
blocks are allocated, the remaining ones have to do
more jobs. This parameter may make a difference on
resource usage but will not actually affect conflicts.

• Number of histogram bins. This factor may greatly
impact the volume of resources required and the
degree of conflicts.

Figure 4 illustrates the variation of execution time with the
number of thread blocks from 64 to 2048 for scheme 1 to
scheme 4. The curves of scheme 5, MI Chen and MI Vetter
are not listed because the number of thread blocks for these
approaches depend on the number of bins. The test images are
OA 02 and OA 01. The number of bins is 256.

For scheme 2, the curve terminating at 1024 is due to the
huge global memory consumption since in that scheme, we
allocate shadow counter arrays for every GPU thread. From
the figure, we can learn that only scheme 2 has a strong
correlation with the number of thread blocks. This is because
for other CR-based schemes, the bottleneck is the conflicts
instead of global memory access.

Figure 5 shows how execution time varies with the number
of bins required. The number of thread blocks is 1024 for
scheme 2 and the maximum (since the thread block size is 256
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and image size is 256x256x160, at maximum 256x160 thread
blocks are allocated) for scheme 3a, scheme 3b, scheme 4,
MI Sham 1 and MI Sham 2.

For scheme 1, the curve drops substantially at the be-
ginning phase from 8 to 32. After that, additional bins do
not help to alleviate the conflicts further. The curve for
scheme 2 keeps increasing because scheme 2 avoids the pos-
sible conflicts at the expense of consuming excessive mem-
ory resources according to the number of bins. Scheme 3a,
scheme 3b and scheme 4 seems insensitive to bin size, show-
ing that the atomic operations on shared memory are well
balanced by multi-threading. Meanwhile, the comparison be-
tween scheme 3a and scheme 3b indicates if the updating
conflicts are not severe on global memory, the overhead of
merging is often larger than that of atomic operations. For
scheme 3a, after intra-block conflicts are resolved on shared
memory, inter-block conflicts are much lighter and thus can
be easily hidden by multithreading since thread blocks are
independent and progres in their own contexts.

C. Application Evaluation

We then proceed to the experiments for the whole regis-
tration process. Figure 6 illustrates the measured application
execution time. The number of thread blocks is set to be the
maximum for those schemes in which this factor matters. For
scheme 2, it is 14 for the sake of performance. The size

OA_02 OA_03 OA_04 OA_05 OA_06 OA_07 OA_09 OA_10 OA_11 OA_12

Image Index

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

R
M

S

CR_cpu

MI_cpu

MI_Chen

MI_Sham_1

MI_Sham_2

MI_Vetter

Scheme_1

Scheme_2

Scheme_3a

Scheme_3b

Scheme_4

Scheme_5

Fig. 7: RMS Error

of thread block is 256 which is one of the optimal values
suggested by the CUDA programming guide [21]. The number
of bins is varied depending on the stage, say 64, 128, 256, 256
for stage 1, 2, 3, 4, respectively.

As can be seen, in general the CR based methods run faster
than the MI based ones except scheme 2, on both CPU and
GPU. Particularly, scheme 5 achieves the best performance
among all the approaches. The average speedup of the pro-
posed five schemes over CR cpu is listed in Table III.

Figure 7 shows the RMS error between output images and
reference image. The measurement of error is not straightfor-
ward due to the lack of a standard baseline. So we simply
calculate the intensity standard deviation (RMS) between the
output images and the reference image. As can be seen, the CR
based methods still behave better than the MI based methods,
which highlights the great advantage of CR.

Meanwhile, except scheme 2, all the other proposed
schemes reach a speedup of 2 compared with CR cpu. In par-
ticular, the conflicts-free scheme achieves an average speedup
of 18.55 over the baseline with less RMS. The low perfor-
mance of scheme 2 suggests that the overhead of excessive
global memory access is much higher than some atomic opera-
tions (referring to scheme 1). Meanwhile, comparing between
scheme 1 and scheme 3, it is obvious that atomic operations
on shared memory are more efficient. Finally, the throughput
of scheme 3 is slightly higher than scheme 4 indicating that
for this dataset, conflicts inside thread block are not so severe
or maybe inter-warp conflicts are the main bottleneck [14].

V. DISCUSSION

In this section, we analyze three topics about the conflict
free scheme and their impact on performance.

A. Per-Thread-Block Workload Unbalancing

CUDA distributes thread blocks among streaming proces-
sors following a round robin fashion based on the assumption
that the workload for each thread block is roughly identical.
However, this is not the case for scheme 5 if each thread
block accounts for an entire histogram bin. Table IV shows
an example of one histogram calculation between OA 0002
and OA 0001 with 8 bins.

As can be seen, the proportion of voxels belonging to
Bin 1 is about 77% where Bin 8 is less than 0.02%. This is



TABLE III: Average Speedup Over Native Version

Index Scheme 1 Scheme 2 Scheme 3a Scheme 3b Scheme 4 Scheme 5
Average Speedup 2.027 0.782 10.530 4.661 9.832 18.548

TABLE IV: Histogram Result for 8 Bins

Bin 1 2 3 4 5 6 7 8
Voxels 8065900 1073218 742400 369655 113187 90263 29056 2081

Percentage 76.92% 10.24% 7.08% 3.53% 1.08% 0.86% 0.28% 0.02%

extremely unbalanced. So if 8 thread blocks are allocated, the
8th streaming processor will be idle for more than 99.97% of
the total execution time. Meanwhile, if a heavy-loaded thread
block is dispatched at the last period, the processor utilization
will be even lower since all the remaining streaming processors
are idle. So there must be a threshold to limit the maximum
workload for a thread block. Though some overhead may be
introduced, it is well worth as the total execution time drops
by a factor of over 3 in our observation. The code segment for
this post-sorting procedure is presented in List 3.

1 f o r ( i n t i =0; i<r e fS i ze ; i ++){
2 i f ( i−p re I >= MAX BLK WORKLOAD
3 | | ( va l= i r e f [ i ] / b inWidth ) ! = preVal ){
4 blkpos [ b l k I d ]= i ;
5 b lk2b in [ b l k I d ]= va l ;
6 preVal=va l ;
7 p re I = i ;
8 b l k I d ++;
9 }

10 }

Listing 3: Scheme 5 Post-sorting Process

The question arises what the optimal threshold is. Since
more thread blocks introduce extra overhead (initialization,
merging, dispatch etc.), this value is in fact a compromise
between workload balance and performance. Figure 8(a) il-
lustrates the variation of execution time with the workload for
each thread block. From this figure, 768 appears to be the
optimal which means at maximum one thread processes three
voxels.

B. Overhead of Presorting

The sorting process is already presented. Here we evaluate
its overhead. Since the stages have distinct resolutions hence
different image sizes, we list the time expense and throughput
of sorting for each stage in Table V. It can be seen that the
sorting kernel tends to achieve higher throughput for larger
dataset.

TABLE V: Sorting Overhead for Stages

Stage Vox Size Sorting Time (µs) Throughput (Vox/µs)
1 20480 708 28.9
2 163840 1650 99.3
3 1310720 4115 318.5
4 10485760 26907 389.7

The phase of sorting is only beneficial if its outcome can be
reused sufficiently. From this perspective, the more searches in-
side a stage, the more benefit we can expect from this process.
For other schemes, the scale of reference image dictates the
capacity of workload, thus the degree of conflicts. Therefore,
a larger volume reference image will benefit more from the
sorting, further highlighting the advantage of scheme 5.

In fact, scheme 5 does not need a complete pre-sorting but
a process to aggregate voxels with the same intensity values
together. This is also reflected in List 3. Further, if a series of
registration jobs share the same reference image, the sorting
results can be recycled among them. Note we do not apply
this optimization in the experiments of this paper.

C. Smoothing of the Border Region

The FLIRT algorithm deploys a weighting method to
smoothen the cost function at the marginal region [3]. This
improvement is also implemented in the proposed schemes
(The function named calWeight in List 2). In the previous
experiments, we disabled this function by simply returning
1. Here we evaluate its performance impact. The results are
presented in Figure 8(b) and Figure 8(c).

As weighting distance increases, more points will fall into
the boundary region hence more extra process and computation
are needed. However, from the figures, we can observe that
the execution time is almost unchanged, showing that these
additional computations can be fully hidden through multi-
threading and the long latency of texture fetching. Meanwhile,
the RMS curve exhibits a decreasing trend in general but
suffers some large deviation for big distances. This suggests
that the weighting function may incur some bias for the cost
function, especially when the overlapping region is small.
Maybe developing a new weighting function that takes inten-
sity values into consideration can address this problem but is
out of the scope for this paper. Here, the value of 26 appears
to be the optimal weighting distance.

VI. RELATED WORK

Ever since CUDA has been published, several works are
proposed about realizing the image registration algorithms on
GPUs [10], [11], [12], [9], [22]. However, the interleaved
and concurrent writing access to a limited memory region
by massive threads make this migration a difficult task be-
cause atomic operations are employed to preserve updating
correctness meanwhile introducing serious overheads, espe-
cially when numerous threads are competing for the same bin
location. Shams et al.[10], [11] maintain a number of shadow
histograms in global memory (when shared memory is out
of range) and aggregate afterwards to alleviate the degree
of conflicts, or keep partial number of shadow histograms
in shared memory but traverse the image several times to
cover the entire bin range. Chen et al. [12] sort the reference
volume beforehand to restrict the shadow histograms’ range
when counting the joint entropy. Vetter et al. [9] also perform
a pre-sorting to narrow the space required to fit into shared
memory and guarantee coalescing access. They further mit-
igate the collisions by allocating more counters for the ”fat
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Fig. 8: Additional Experiment Results on Scheme 5.

bin” that appears to incur more conflicts based on an intensity
distribution figure generated from a pre-profiling. All of these
methods, however, are mutual information based and conflicts
unavoidable. Though Shams et al. proposed a delegate sort-
and-count algorithm to achieve atomic operations free in [20],
this sort-and-count phase has to be performed by each thread
block every time the cost function is invoked, thus leads to
additional performance overhead.

VII. CONCLUSION

In this paper, we present five Correlation Ratio based image
registration schemes dedicated for GPUs. Through compar-
isons between different schemes, we show that 1) Atomic
operations on shared memory are much faster than on global
memory as expected 2) The overhead of massive access is
larger than that of atomic operations on global memory 3) If
collisions are relatively small, atomic operations are a better
choice than merging. Finally, we propose a scheme that totally
avoids conflicts and achieves more than 18 times’ speedup
compared to native implementation with lower error. This
design is based on the algorithmic characteristics of CR which
exhibits its great advantage on GPUs when compared with the
MI based approaches. Finally we evaluate the impact of bal-
ancing, sorting and smoothing on performance and accuracy,
as well as provide some optimization suggestions.
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