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Abstract—FPGA-based heterogeneous Multiprocessor
Systems-on-Chip (HMPSoCs) are becoming quite popular for
high performance embedded systems because of their powerful
computational ability and relatively flexible architecture to
adapt to unexpected system requirement changes. However,
with the insatiable demands of supporting an extensive
range of applications beyond the limited resources of FPGA
chip and shorter time-to-market, many research works on
partially reconfigurable (PR) FPGA architectures have been
conducted to fulfill the needs. Those have yet to fully provide
a versatile framework to exploit the flexibility of PR such as
hardware/software task migration and bitstream relocation;
more importantly, the on-chip debug features to access all
processors currently loaded in the system are compromised
because of the lack of native-support from vendor tools. In
this paper, a novel PR-HMPSoC architecture for dynamic
FPGA-based embedded system is proposed to provide solutions
for all of the above issues. The results from the experimental
system consisting of one static Microblaze and three PR
Microblaze/hardware accelerators connected by a Network-on-
Chip show that the architecture is very promising with just 8%
reduction in operating frequency.

Index Terms—FPGA, partial reconfiguration, multiprocessor,
heterogeneous, debug, bitstream relocation, task migration

I. INTRODUCTION

Nowadays, the demands for FPGA-based embedded sys-
tems with higher performance in terms of powerful compu-
tational ability and fast processing time are rising rapidly.
Homogeneous multiprocessor systems may be able to cope
with the requirements. However, according to Amdahl’s law
[1], increasing number of processors does not always translate
to linear speedup because not all portions of the application
can be parallelized. Employing heterogeneous platforms called
Heterogeneous Multiprocessor Systems-on-Chip (HMPSoCs)
with different dedicated hardware accelerators and specialized
processors can improve the overall performance of system by
effectively boosting up specific computational intensive and
sequential tasks. In addition, these systems are developed on
FPGA therefore they can be reprogrammed after manufactur-
ing to apply the changes in requirements or bug fixes.

Nevertheless, the number of applications that need to be
supported by one system is expanding. It is not practical to

integrate dedicated hardware accelerators for each of the appli-
cation onto a single FPGA chip because the FPGA resources
are limited. More importantly, even if all applications can
be incorporated in FPGA, they are not likely to operate at
the same time, which makes the chip becomes underutilized
most of the time. One solution is to develop multiple FPGA
configurations, each of them supporting a group of applications
called a use-case [2]. The particular configuration will be
loaded to FPGA once needed. The disadvantages of this
approach are the excessive storage requirement as the number
of use-cases increases and the lengthy reconfiguration process
for the whole FPGA.

Here is where the idea of dynamically loading and un-
loading modules at run time comes. This feature is called
partial reconfiguration and is increasingly supported in a wide
range of FPGA devices by vendors such as Xilinx and Altera.
However, designing a HMPSoC that supports PR is not a trivial
task; there are several design challenges that the architect must
consider to build a flexible, high performance and reliable
system as listed below.

1) Task migration. It is helpful not only in fault-tolerant
system to move a running task and intermediate data
from a faulty processing element (PE) to another to
maintain the operation of the system, but also in pre-
emptive environment, i.e, a low priority task can be
suspended to relinquish the current PR region (PRR)
to another high priority task and then resumed once
the new task finishes. This feature is only applicable
if the task manager has access to all internal memory
instances of PE. The replication and shared memory
strategy suggested by [3] can be used, but it is fairly
restrictive and requires redundant memories.

2) Runtime loading of processor executable code. The
purpose of PR system is to dynamically change the func-
tionality of PEs by making use of PR feature. Therefore,
it should be able to load the processor executable code
at runtime when the PE is configured as processor. It
can only be done if a micro-kernel is preloaded with
the partial bitstream to load the task at run time by



TABLE I
PR-HMPSOC IN COMPARISON WITH PREVIOUS WORKS. IT OUTPERFORMS ALL PRIOR SYSTEMS IN MOST ASPECTS.

System Multiprocessor Par. Reconf. Runtime loading .elf On-chip Debug Bitstream Relocation Task Migration
Göhringer et al. [6] yes yes yes no no no
Beretta et al. [7] yes yes no no yes no
Cazzaniga et al. [8] yes yes no no no no
Navas et al. [9] no yes no no no no
PR-HMPSoC (this work) yes yes yes yes yes yes

itself. This approach requires extended memory to store
the micro-kernel beside the task. Another method is
preloading the entire task with partial bitstream at design
time which cannot be changed at run-time.

3) Bitstream relocation. It is necessary to minimize the
bitstream storage and increase the flexibility of the
system in which one particular partial bitstream of
one module can be dynamically allocated to different
locations on the chip. One of the requirements for
this feature is uniform PRRs [4], [5] in terms of size,
resource footprint and input/output interface with static
region. Therefore, the structure of PEs should be made
identical.

4) Processor debug. The effort in developing applications
on multiprocessor system would be greatly improved
if the developer can control all processors within the
system to efficiently debug and monitor running appli-
cations. It helps increasing the reliability of system. In
addition, the development environment for new architec-
ture should be similar to the conventional system without
PR feature to eliminate the overhead of learning process.

While there are many on-going research works proposing
architectures and design methodologies for PR systems such
as [6], [7], [8], [9], they are not able to provide solutions to
handle all the aforementioned issues.

Contributions: In this paper, a novel architecture is pro-
posed which offers a sophisticated framework to tackle all
those requirements. This new architecture is developed for
Xilinx FPGA. The experimental system is implemented on
Xilinx Virtex 6 consists of one static Microblaze and three
partially reconfigurable Microblaze processors/hardware accel-
erators connected by a simple Network-on-Chip.

The remaining of this paper is organized as follows. The
state of the art of PR systems is discussed in Section II. The
proposed architecture is presented in Section III, followed by
experimental results in Section IV. Finally, the conclusion and
future works are presented in Section V.

II. RELATED WORKS

In [6], Göhringer et al. introduces the RAMPSoC architec-
ture in which every node can be anything, from microproces-
sor, microprocessor + co-processor to hardware accelerator.
The PRRs for nodes are determined at design time and they
are different from each other, therefore the system does not
have the generic architecture, which is essential for bitstream
relocation as mentioned in Section I. Besides, the paper sug-
gests methods to send software executable file to a processor

in PRR by using ICAP module [10] or transferring it via
communication infrastructure. For the former approach, the
partial bitstream and corresponding instruction data cannot be
programmed simultaneously, because there is only one ICAP
instance that can be used at a time. For the latter case, the
author does not specify how it is implemented.

The system suggested by Beretta et al. [7] is divided into
fixed size PRRs called slots with the same resources for
bitstream relocation. Each slot can be configured with more
than one processor core or hardware accelerator. However, the
procedure of loading instruction codes for the processor cores
in those slots is not mentioned.

Cazzaniga et al. [8] proposes a PR-MPSOC with the intro-
duction of MARC (Multi-Adaptive Reconfigurable Core), the
customizable reconfigurable processor, which is indeed a small
version of a single processor system with one Microblaze pro-
cessor and its peripherals are connected via standard PLB bus.
However, the instruction code for MARC cannot be loaded
at runtime because it can only be merged with the partial
bitstream at design time after extracting the BRAM location
in the corresponding .ncd file. This method unnecessarily
increases the reconfiguration time of the MARC in case only
instruction code is required to be updated while keeping the
current MARC architecture as is.

The RecoBlock SoC platform, proposed in [9], is quite
versatile and lightweight with flexible, reconfigurable inter-
connection between blocks and built-in buffers for data-driven
streams. Still, the architecture targets only single processor
systems with multiple reconfigurable hardware accelerators.

All of the above works do not provide processor debug
facility which hinder the development process in a complex
multiprocessor system. The task migration possibility is also
not supported. Table I summarizes the features of aforemen-
tioned systems compared with PR-HMPSoC. As shown, PR-
HMPSoC is the only one that provides all the features stated
in Section I. In the following section, the details of proposed
architecture are presented.

III. PROPOSED ARCHITECTURE

A. Overview

The overview of the proposed architecture is depicted in
Fig.1. There are three interconnect planes in this system. One
component can belong to more than one plane.

1) The first one is the Primary PLB bus plane which con-
nects Master Processor (MstProc) with other standard
Xilinx IPs such as ICAP [11], SysACE [12], MDM
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Fig. 1. Overview of the architecture. The connections from Master Controller
and MDM to all Tiles are not shown for simplicity.

[13], MPMC [14], Timer [15], etc.; and compulsory PR-
HMPSoC custom IPs: Master Controller (MstCtrl) and
Tile Memories (TileMems). The MstProc can be either
Xilinx Microblaze soft-core or ARM hard-core (on Zynq
chip). This MstProc, as the name suggests, handles all
the management operations of the system. Its role and
PR-HMPSoC custom IPs are discussed in more detail in
Section III-B. Besides, two IPs that must be instantiated
to satisfy basic operations of the PR system are the ICAP
module for partial bitstream reconfiguration and the
external memory controller such as SysACE for accesses
to compact flash card where partial bitstreams, processor
executable files or any other input/output data reside.
The MDM (for debugging), MPMC (for accesses to
DDR-RAM) and Timer, etc. are optional and dependent
on the initial requirements.

2) The second plane is the Network-on-Chip (NoC), which
is the high-speed dedicated communication infrastruc-
ture between a set of Tiles and the MstProc. A Tile
represents a PR PE which can be partially reconfigured
at run-time to become either a processor or a hardware
accelerator. Structure of Tile is considered in Section
III-B. The NoC plane is used separately with the Primary
PLB bus for two reasons:

• First, most of applications mapped on HMSoCs are
very computationally intensive and require signif-
icant amount of intermediate data transferred be-
tween PEs, or Tiles in this case. With dedicated
communication medium, the data is not affected
by the input/output traffic managed by the MstProc

(to/from ICAP and SysACE) which are expected to
occur frequently in practical systems with lots of
different applications and configurations for Tiles. It
increases the predictability and analyzability of the
system performance, which are critical in designing
real-time system.

• Second, it provides freedoms in choosing any so-
phisticated architecture to suit bandwidth require-
ments, area constraints, power efficiency or dynamic
reconfiguration without changing the rest of the sys-
tem. The experimental system presented in Section
IV utilizes the NoC proposed by [16].

3) The final plane is called Mixed plane. It consists of
groups of directed connections from TileMems, MDM
(optional) and MPMC (optional) to all predefined num-
ber of Tiles in NoC plane. The implementation of
MDM module and how the processors configured in
Tiles are accessed from the development environment
are discussed in Section III-C. Beside NoC, this plane
supplies alternative means of sharing and storing data for
Tiles by the direct links to MPMC module which handles
up to 8 ports. It is very useful in below scenarios.

• Shared memory model. Two or more Tiles can
share the common DDR locations and make use
of NoC connections to synchronize with each other
about the availability of data.

• Large temporary storage. In addition to the dedi-
cated TileMem for each Tile, the DDR in this case
plays a role as a secondary memory which is bigger
in size but slower in access time.

However, it is assumed that there is a memory manager
running on MstProc to allocate DDR memory regions
to Tiles or they can be preassigned based on the initial
requirements to avoid access conflicts.

B. Tile, TileMem, MstProc and MstCtrl

As previously defined in Section III-A, a Tile is a PR PE
belonging to NoC plane. Each Tile is complemented by one
TileMem, a static module attached to the Main PLB bus.
The structure of Tile and TileMem are identical across all
of their instances in the system and are illustrated in Fig.2.
Tile is composed of one clock/reset facilitator (not shown in
the figure) to handle the input clock/reset requests, and one
PR module, PR Wrapper, which is a blackbox as a rule of
designing PR module [17]. The input/output interface of Tile is
standardized with four groups of signals: clock/reset, debug (to
MDM), NoC (FSL/AXIS stream interface) and PLB. TileMem
is basically a wrapper of BRAM with one multiplexer to
arbitrate accesses between MstProc and Tile (connected to
TileMem through two BRAM Ports). It is possible to connect
the PLB interface of Tile to the Main PLB bus, but this
standard BRAM port allows flexibility in designing hardware
inside the PR module, PR Wrapper, because it is simpler to
implement a hardware accelerator with direct and predictable
links to the memory rather than dealing with other buses. The
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Fig. 2. Detailed implementation of Tile and Tile Memory. PR Wrapper is
PR module of Tile which is a blackbox.

Slave Controller in TileMem is implemented such that the
multiplexer is transparent from the view of MstProc and Tile.

MstProc is the one that manipulates all the operations of
the system. It controls the clock as well as reset signals of all
Tiles by writing to registers in the MstCtrl. This is important
because the PR modules inside Tiles have to be reset after
being partially reconfigured. The clock enable signal is also
useful when one Tile is not in use. If it is known in advance
that the Tile will be reused in the near future, it is better to
gate the clock than to reconfigure it with the blank partial
bitstream. The MstProc also reads the corresponding partial
bitstreams from external memory such as compact flash card
via SysACE and sends them to ICAP to reconfigure the Tiles
when new processors or hardware accelerators are required
by a particular application. In case of loading processor
executable files for Tiles, the MstProc only needs to transfer
them to the corresponding TileMem via the Main PLB bus.

Despite the uniform look of the proposed architecture with
identical instances of Tile, the heterogeneity of the system
comes from the variants of PR Wrapper. This generic ar-
chitecture provides the possibility in configuring the partial
bitstreams to any existing PRRs in the system that have the
same resource footprints [4], [5]. However, this problem is left
for future work.

C. Debugging

One advantage of PR-HMPSoC is that it offers debugging
capability for Tiles in case they are configured as processor. If
the processors are Microblaze and Xilinx MDM is preferred
as debug module, no third-party tool is required. Besides, the
number of debug-enabled Tiles depends solely on the Xilinx
MDM, at the time of this paper, one MDM supports up to
32 Microblaze processors. Due to the informal characteristic
of the architecture, Xilinx tools are not able to identify
the existence of Microblaze instances. Therefore, the system
description file exported by Xilinx XPS, system.xml, must
be modified to assist Xilinx SDK in recognizing the correct
system hierarchy. After that, the normal flow of developing
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Fig. 3. Two communication scenarios for experiments. They are only
applicable for NoC [16] used in the experimental system to determine the
links at run-time. Any other NoCs can be used since PR-HMPSoC is not
restricted to a specific interconnect.

embedded multiprocessor suggested by Xilinx can be followed
to create application projects for each processor. The tradi-
tional debug practices can also be applied such as using the
XMD console to communicate with processors via MDM.

D. Implementation Consideration

In the current implementation of loading the processor
executable codes for Tiles, the MstProc accepts file format
.mem converted by the data2mem tool [18] from the .elf files
generated by Xilinx SDK. The MstProc parses the content of
.mem file and transfers it to the desired TileMem via the Main
PLB bus. Other approaches can also be considered because
the MstProc is able to manipulate memory of Tile easily.

In addition, the MstCtrl only drives the clock/reset signals
to all Tiles bases on the requests from MstProc. In future
works, the MstCtrl may also act as a standalone hardware-
based ICAP controller or utilize the enhanced ICAP modules
proposed by [19], [20] to handle and speed up the partial
reconfiguration tasks independently. Then, the MstProc will
be able to copy processor executable files or initial data to the
TileMems in parallel with the partial bitstreams which will be
transferred by MstCtrl. In this way, the overhead of entire
partial reconfiguration operation can be reduced drastically
resulting in a shorter time needed to change applications. This
is the purpose of keeping TileMems in the static region instead
of putting them inside Tiles.

IV. EXPERIMENTS

The effectiveness and flexibility of PR-HMPSoC is assessed
by the experimental system with one Xilinx Microblaze soft-
core as MstProc and three Tiles. The NoC proposed by
[16] is employed in this experiment to connect MstProc and
Tiles. This NoC can be reconfigured at run-time to change
the links between communicating nodes. Therefore, two NoC
configurations are created at design time for the experiments
as shown in Fig.3. The partial bitstreams, processor execution
codes are generated by Xilinx PlanAhead and Xilinx SDK
version 14.4 respectively. In the experiments, all components
operate at 75MHz.



Fig. 4. Tile 1 is being debugged in Xilinx SDK. Any Tile configured with
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A. Scenario 1 — Debug Feature and Reconfiguration Time

In the first scenario, Fig.3a, MstProc communicates directly
with all Tiles via the FSL interfaces supported by NoC. Each
Tile is either Microblaze or hardware accelerator with the same
functionality. Tile 1 is also debugged in the Xilinx SDK to
show how easy and familiar it is for developers to work with
PR-HMPSoC. The actual debug screen is captured in Fig.4. As
seen, all debug functionalities provided by Xilinx SDK can be
used with PR-HMPSoC: manipulating breakpoints, stepping
through instructions, monitoring variables, etc.

The time spent by MstProc to reconfigure and load proces-
sor executable code for one Tile is also presented in Fig.5.
The BRAM is actually used as a buffer to store configuration
files read from SysACE or BPI Flash before being fed to
the reconfiguration tasks. This method is 3 times faster than
SysACE but can only achieve a 33% speedup compared to
BPI Flash. However, the reconfiguration speed is rather slow
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due to the limitation of Microblaze which has been reported in
[19]. A dedicated reconfiguration module will be considered
in future works as previously discussed in Section III-D.

Regarding the processor executable code, the loading time
is quite high despite the small file size. The reason is that the
MstProc has to parse the .mem file before writing to TileMem
which incurs nontrivial text processing to extract the data.
However, as already stated in Section III-D, other methods
can be used to shorten the process.

B. Scenario 2 — Multiple Applications and Use-cases

The NoC configuration for second scenario is shown in
Fig.3b, MstProc communicates directly with Tile 1 and 3,
while Tile 2 only works with Tile 1 as a co-processor. Fig.6 il-
lustrates two use-cases for three applications in PR-HMPSoC.
The processor executable code of application B can be used
for both Tile 1 and 3 without having to compile it separately
for each Tile at design time. The purpose of re-using Tile 1
is to demonstrate that a particular processor execution code
can be freely moved around Tiles, thanks to their uniformity
and the special architecture of PR-HMPSoC. This is also the
basic idea of task migration. Yet, a more advanced technique
in software layer is required to store and load the status
registers of Microblaze to resume the operation. The partial
reconfiguration tasks, PR, are defined to load corresponding
partial bitstreams and processor executable codes. These tasks
can be included in the original task graphs before using
a proper task scheduler to determine the best mapping for



TABLE II
RESOURCE USAGE OF ONE TILE (CONFIGURED AS MICROBLAZE WITH
LMB CONTROLLERS), TILEMEM (16KB OF MEMORY) AND MSTCTRL

USED IN THE EXPERIMENTAL SYSTEM. THE LAST ROW REPRESENTS
RESOURCE CONSUMPTION OF STATIC MICROBLAZE INCLUDING LMB

CONTROLLERS AND 16KB OF MEMORY.

Module Slice LUTs Slice Register LUTRam BRAM
Tile 930 935 151 0
TileMem 71 93 0 4
MstCtrl 56 152 0 0
Microblaze 856 937 150 4

applications. Nonetheless, this issue is not discussed here and
is left as future works.

C. Resource Usage and Operating Speed

Table II shows the resource usage of PR-HMPSoC cus-
tom IPs: Tile, TileMem and MstCtrl. As seen, the resource
overhead of Tile plus TileMem compared with Microblaze is
about 17%. This overhead comes from the extended features of
TileMem (can be accessed from MstProc) and Tile (processes
requests from MstCtrl and supports PR feature). The resources
of hardware accelerators used in the experiments are not shown
because they are significantly smaller than Microblaze. An-
other overhead is the size of the PRR in which the Tile resides.
In this experiment, one PRR consists of 1110 slices which is
about 20% more than the actual implementation requirement.
This size of the PRR is chosen to not only reduce the time
of mapping and place-and-route processes but also increase
the operating speed of the system. The maximum frequency
supported by the experimental system is 75.279MHz. This is
8% lower than the maximum frequency of conventional sys-
tem with four Microblaze processors, which is 81.960MHz,
because of the restricted placement constraints.

As presented above, the architecture is very promising
with small overheads of extended components, however, these
components contribute significantly to the increased versatility
of the new multi-processor system over the conventional one
even when the PR feature is not used. The actual unavoidable
overhead is the size PRRs. In a practical system with many
types of hardware accelerators and Tiles, setting all PRRs
to the same size is not an efficient way of utilizing FPGA
resources. In this case, the architect may consider varying sizes
of PRRs to restrict the flexibility of bitstream relocation to
smaller subsets of modules.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents the architecture of PR-HMPSoC, a par-
tially reconfigurable heterogeneous multiprocessor system-on-
chip. It discusses many advantages of PR-HMPSoC such as the
heterogeneous Tiles with homogeneous structures. This char-
acteristic allows the possible implementation of task migra-
tion as well as bitstream relocation methods. Besides, unlike
previous architectures, the debug features for all Microblaze
processors in Tiles are retained in the familiar Xilinx SDK
environment. It is the desirable feature in the development
process of multiprocessor systems which is rather complicated.

The forthcoming works are designing a complete solution
to generate the system configurations automatically, includ-
ing finding optimal placements for PRRs and mappings for
predefined sets of applications at design time. The bitstream
relocation method will also be developed to increase the
system flexibility and reduce the partial bitstream storage.
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