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Abstract—Single Event Upsets (SEUs) inadvertently change
the configuration bits of Static-RAM (SRAM)-based Field Pro-
grammable Gate Arrays (FPGAs), leading to erroneous output
until the error has been corrected. Scrubbing using an Error
Correction Code (ECC) such as hamming is a popular method
to correct such faults. However, current works either require a
large external memory to store the ECCs or can at most correct
only one error in a frame. This paper proposes a novel bit-
interleaved embedded hamming scheme along with scrubbing,
to correct single (SBUs) and multi-bit upsets (MBUs) in SRAM-
based FPGAs. This scheme does not require an external memory
to store the ECCs, as they are embedded within the configuration
memory itself. Experiments conducted on various benchmarks
show that the proposed scheme can handle multiple errors per
frame very well, with an embedding efficiency of over 99.3%.

I. INTRODUCTION

Static-RAM (SRAM)-based Field Programmable Gate Ar-
rays (FPGAs) have been gaining significant popularity due
to their operational capability and reconfigurability. However,
they are prone to radiation from high energy particles which
can cause a Single Event Upset (SEU), thereby inadvertently
changing the values of the SRAM bits. If SEUs affect only one
bit, this effect is known as a Single-Bit Upset (SBU) or single
error. On the other hand, if several bits are consecutively af-
fected, this effect is known as Multi-Bit Upset (MBU) or burst
errorase (Figure 1). Several mechanisms have been proposed
to mitigate SEUs in SRAM-based FPGAs. The most common
techniques exploit spatial/hardware redundancy [1], like Triple
Modular Redundancy (TMR) [2], [3] and Duplication With
Compare (DWC) [4]. However, these techniques require a very
large area and power overhead.

From our analysis of different designs, we notice that more
than 90% of the user design contains more than 50% unused
bits (discussed further in Section III). In this work, we make
use of these unused bits to store ECCs, which help repair
errors at runtime, without the need for an external memory.
Moreover, the ECCs are interleaved within the configuration
memory, enabling us to correct MBUs in addition to SBUs.
To the best of the authors’ knowledge, no other works have
proposed a similar approach to correct faults in FPGAs.

Contributions: The following are the key contributions of
this paper.

• A novel algorithm to embed hamming code into the
bitstream of the FPGA

• Providing multi-bit error correction through bit inter-
leaving and decomposition of frames

Experiments with various benchmark circuits have shown
an embedding efficiency of over 99.3% without any extra
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Fig. 1. Error model of single and multi-bit upset.

memory overhead. In cases where 100% embedding efficiency
is desired, internal block RAM or a small external memory
(typically of size less than 2 KB) can be used to achieve
this. Overall, the technique only uses less than 1% memory
overhead as compared with other works.

The remainder of this paper is organised as follows. Sec-
tion II presents the related works and Section III then motivates
the need for the proposed scheme. Section IV presents the
scheme in detail, while Section V then discusses the exper-
iments performed and results obtained. Finally, Section VI
presents the conclusions.

II. RELATED WORK

Scrubbing is a common method of fault mitigation which
requires an external memory to store the configuration frames,
frequently called golden copy. In order to minimise the impact
of faults, the scrubbing frequency must be greater than the
expected SEU rate. An alternate solution proposed to avoid
using the golden copy is to use ECCs [5]–[7]. The ECC of
the frames are computed at runtime and compared against
the ECCs stored externally. If an error is identified, the ECCs
can be used to correct the errors and the corrected frame is
then written back to the FPGA. This research focuses on the
existing readback scrubbers that use error correction schemes
combined with different ECCs.

Commercial FPGA vendors like Xilinx provide a soft error
mitigation strategy using a dedicated set of ECCs for every
frame of the FPGA [8]. Few bits1 from every frame are
set aside to store the ECCs which are then readback during
runtime. This method is able to detect and correct a single error
or detect up to two errors per frame. Though this method is
very effective to correct SBUs, it is unable to correct MBUs.
Lanuzza et al. [5] propose a scheme to mitigate the effects
of MBUs in SRAM-based FPGAs. Frame bit interleaving
is used to compose a data word and then hamming codes
are applied to it. The bit interleaving technique reduces the
probability to have several bit-faults in the same data word,
increasing the correction efficiency of the hamming codes.
However, this scheme imposes a large memory overhead to
store the hamming bits. Argyrides et al. [7] and Park et al. [6]
propose solutions that make use of hamming codes combined
with parity codes. The ECCs are applied to a frame which is
arranged as a 2D matrix. Though these schemes can handle
SBUs well, they are not efficient in correcting MBUs.

1Virtex-6 FPGA has 13 bits while Virtex-5 has 12
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Fig. 2. Average utilisation of the essential frames for 20 MCNC benchmarks

III. MOTIVATION

The lowest reconfigurable granularity of an FPGA is
called a configuration frame (f ). Mathematically, the set
of configuration frames of an FPGA can be represented as
Cbit = {fi|1 ≤ i ≤ η}, where Cbit is the configuration
bitstream and η is the total number of frames in the FPGA.
For example, the Xilinx Virtex-6 (XC6VLX240T) FPGA board
contains 28, 464 frames in total. Every frame contains bits that
represent the configuration data for Look-Up Tables (LUTs),
Flip Flops (FFs), switch matrices, etc. Each frame fi can be
represented as fi = {bij |1 ≤ j ≤ κ}, where κ represents the
total number of bits for each frame and bij represents the jth
bit of fi. For example, the Virtex-6 FPGA contains 2, 592 bits
(81 words) per frame. Before we discuss the utilisation of the
frames in the FPGA, the following terms are defined.

Definition 1. (ESSENTIAL AND NON-ESSENTIAL BITS) Es-
sential bits (Be) are a set of bits that are associated with
the circuitry of the user design [9]. Similarly, non-essential
bits (Bne) are defined as those bits that are completely not
associated with the circuitry of the user design.

The mask bitstream (Mbit) provides information about the
essential and non-essential bits in the FPGA and is represented
by Mbit = {fMi |1 ≤ i ≤ η}, where fMi are the frames
corresponding to the mask bitstream.

Definition 2. (ESSENTIAL FRAMES) Those frames that con-
tain at least one essential bit in them.

Mathematically, the set of essential frames can be repre-
sented as Fe = {fi|(1 ≤ i ≤ η)∧ (∃bij ∈ Bi

e)∧ (1 ≤ j ≤ κ)}
where Bi

e represents the set of essential bits for frame fi.
Similarly, a non-essential frame is a frame that does not have
any essentials bits and is represented by the difference of the
set of all frames in the FPGA and the set of essential frames,
Fne = Cbit \ Fe.

Definition 3. (FRAME UTILISATION) The ratio of the number
of essential bits to the total number of bits in a frame is defined
as the utilisation of the frame.

Formally, it can be represented as futili = |Bi
e|/κ, where

|Bi
e| is the number of essential bits in frame fi. Figure 2 shows

the average utilisation of the essential frames for all the MCNC
benchmark circuits implemented on a Virtex-6 ML605 FPGA
board. The utilisation of the frames were computed from the
Xilinx Essential Bits tool [9] which provides the necessary
Cbit and Mbit files of the user design. From the utilisation
ratios of the different MCNC benchmarks, more than 90%
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Fig. 3. Example of error detection using embedded parity

essential frames are only half or less than half utilised. These
frames contain more than 50% of non-essential bits that can be
used to store ECCs. Since less than 0.25% frames have 100%
utilisation, it would not hinder the effectiveness of embedding
ECCs in the non-essential frames. These observations motivate
the use of non-essential bits to store ECC bits instead of an
external memory.

IV. PROPOSED SCHEME

This paper proposes a novel bit-interleaved embedded
hamming scheme to correct SBUs and MBUs for SRAM-based
FPGAs. The scheme uniformly interleaves the bits of each
frame into a number of sub frames and uses the non-essential
bits of the frames to embed hamming parity bits, making the
entire sub frame hamming code compliant [10]. At runtime,
each frame of the user design is readback and the sub frames
are decoded to check for errors. If an error is detected, the
embedded hamming code is used to find the location of error
and the corrected frame is written back to the design. The
following sections discuss the scheme in detail.

A. Embedded Hamming Code

In order to illustrate the technique of embedded hamming
code, a simpler technique of embedded parity code is first
explained. A parity bit is a check bit that represents whether
the number of ‘ones’ in the frame is even (pe) or odd (po). In
a traditional parity code, the parity bit is appended after the
frame. However, in the technique of embedded parity code, the
parity of the essential bits is stored in one of the non-essential
bits of the same frame. This converts the entire frame into a
parity compliant code since any single bit error in the frame
can be detected by computing its parity.

For the rest of the examples illustrated in this section,
fi and fMi shown in Figure 3 are used. Both these frames
are combined into one frame (f+) for easier comprehension,
where the non-essential bits are represented by don’t care bits
“X”. In order to apply embedded parity code to f+, pe for the
essential bits is calculated. pe = 1 in this case since there are
an odd number of ones (5) in the essential bits. This value is
then stored in one of the non essential bits (X1 in this example)
while the other non-essential bits are set to 0 as shown in
Figure 3. The entire frame f+ is now parity compliant. When
a bit-flip occurs, the error can be detected as the pe of the
frame changes to 1.

Extending the same concept used in embedded parity code,
an embedded hamming code manipulates the non-essential bits
of a frame such that the entire frame becomes hamming code
compliant. A typical hamming code consists of a number of
data bits (di) with parity bits (pi) embedded in indices (ix)
that are powers of two as shown in Figure 4. These parity bits
are computed by choosing a different set of data bits for each
parity bit as specified by a hamming check matrix (H) [11].
Each row of H corresponds to a parity bit while the columns
specify whether a data bit is included in the parity bit of that
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Fig. 4. Hamming check matrix
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Fig. 5. Example of error detection and correction using embedded hamming

row. For the H shown in Figure 4, the parity bit p1 of fi is
given by p1 = d1⊕d2⊕d4⊕d5⊕d7⊕d9⊕d11. Other parity
bits are computed in a similar manner according to H .

For the example frame f+, computing the values of the
parity bits using H , results in a set of XOR equations with
the different non-essential bits as shown below.

X3 ⊕X7 ⊕X8 = 1

X1 ⊕X3 ⊕X5 ⊕X8 = 1

X2 ⊕X3 ⊕X6 ⊕X7 ⊕X8 = 1

X4 ⊕X5 ⊕X6 ⊕X7 ⊕X8 = 0

Solving these equations gives the values of the non-essential
bits that make the frame hamming code compliant. For the
example considered, we obtain X1 = X2 = X4 = X5 =
X6 = X7 = X8 = 0 and X3 = 1. Figure 5 shows the frame
f+ before and after embedding.

Algorithm 1 illustrates the steps needed to embed the
hamming code into a configuration frame. The algorithm
essentially tries to find a suitable value for the non-essential
bits, such that the entire frame becomes hamming compliant.

Algorithm 1 Embedded hamming code technique
Input: fi, fMi
Output: fi
1: κ = |fi|, δ = 0
2: repeat
3: δ ← (δ + 1)
4: until (δ + κ+ 1) ≤ 2δ

5: H ← gen ham mat(δ, κ)
6: b← ((fi ×HT )mod 2)T

7: tmp← H ⊕ repmat(fMi , δ)
8: A← tmp( : , find(fMi == 0))
9: fi(find(fMi == 0))← solve lin eq(A, b)

10: return fi

Lines 1-4 compute the δ required for fi. The hamming check
matrix H (dimensions δ × κ) is then generated (line 5) in
order to compute the parity bits of the hamming code [11]. The
column vector b, which is then computed using H and fi (line
6), represents the constants of the linear equality constraints of
the hamming code. The function repmat in line 7 replicates the
mask frame fMi for δ rows so that it can be XORed with H in
order to obtain the coefficients of the linear equality constraints
(tmp) of the hamming code. Line 8 selects only those columns
of matrix tmp which correspond to non-essential bits of fi.
Finally the values of the non-essential bits are computed by
solving the binary linear equation function solve lin eq(A, b).

B. Bit Interleaving

If the embedded hamming code was applied to the entire
frame, only SBUs can be corrected, as hamming code is

frame
1 1 X 0 X X 0 0 X 0 1 X 0 0 1 0

1 1

X 0

X X

0 0

X 0

1 X

0 0

1 0

Sub Frames

Fig. 6. Example of decomposition of a frame into sub frames through bit
interleaving
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Fig. 7. Overall flow of the proposed scheme

capable of correcting only one error. Bit interleaving has
been considered in combination with embedded hamming
to increase the number of errors than can be detected and
corrected.

Definition 4. (SUB FRAME) A frame fi ∈ FPGA is subdi-
vided into ϕ number of equal sub frames in which the bits of
each sub frame are distributed uniformly along the length of
frame fi as shown in Figure 6.

A frame can now said to be composed of a set of sub
frames fi = {(sij ⊂ fi)|(1 ≤ j ≤ ϕ)}. As shown in
the figure, a bigger frame is decomposed into smaller sub
frames, each of them containing some essential and non-
essential bits. Moreover, the bit interleaving also spreads out
the non-essential bits of the frame to all sub frames. This is
very important as the embedded hamming technique, can only
work if there are enough non-essential bits to create a hamming
compliant code.

Definition 5. (EMBEDDING EFFICIENCY) The ratio of the
number of sub frames that can be embedded with hamming
code to the total number of sub frames in the user design.

Since the hamming bits are directly embedded into the
frames of the bitstream, there is no external memory required
to store the ECC bits. Moreover, since the proposed scheme
can both detect and correct errors autonomously, it obviates the
need for a golden copy of the design as well. However, there
are cases where the sub frames are not embeddable. In these
cases, it becomes necessary to track the sub frames that were
not embedded. If the user requires 100% embedding efficiency,
the hamming codes for these sub frames can be stored in the
internal BRAM or in an external memory.

The overall flow of the scheme is shown in Figure 7
with the steps in blue showing the normal flow of the FPGA
configuration. The steps in red highlight the necessary changes
required to the normal flow.

V. EXPERIMENTS AND RESULTS

All experiments were conducted on a Virtex-6 FPGA
board2. The benchmarks were synthesised for the same board

2XC6VLX240T-1f1156
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Fig. 8. Embedding efficiency for different benchmark circuits

with the synthesis option set to speed. Moreover, the mask
file was generated through the Xilinx Essential Bits BitGen
parameter -g essentialbits:yes. Since the reserved bits of the
Xilinx ECC (13 bits) are not used by the proposed scheme,
these bits are used to track the sub frames that were not
embedded with hamming code. Hence, the number of sub
frames (ϕ) has been set to 13 for all experiments.

A. Embedding Efficiency

Figure 8 shows the embeddeding efficiency for various
MCNC benchmark circuits considered. The proposed scheme
has an embedding efficiency of over 99% for all designs.
Moreover, if the other < 1% of the sub frames require error
correction ability, the ECCs of these frames can be stored in
a memory external to the frame (like a BRAM). This memory
would be very small (typically < 2 KB).

B. Error Correction Performance and Memory Overhead

Overall, the proposed scheme is able to correct more than
90% of the errors when up to 5, 000 SBUs or 2, 000 MBUs3 are
injected. Moreover, its performance is better or on par with the
other state-of-the-art techniques. Table I compares the memory
overhead required by the different schemes considered. The
proposed scheme and [8], excel over other works since they
require no memory overhead. The other works require at least
1 MB of extra memory to store the ECCs. Moreover, this
extra memory needs to be further protected from SEUs. The
proposed method does not require any extra protection for
the ECCs since they are already embedded within the FPGA
configuration frames.

TABLE I. MEMORY OVERHEAD REQUIRED

Proposed Xilinx [8] Lanuzza [5] Park [6] Argyrides [7]

0 MB 0 MB 1.05 MB 4.19 MB 7.07 MB

The ratio between the error correction performance and the
memory overhead represents how good the error correction is
for a unit memory overhead. A larger ratio implies a better
error correction performance using a smaller memory over-
head. Figure 9 shows the ratios obtained for the various state-
of-the-art considered for an error injection of 500 SBUs and
500 MBUs. The values have been normalised with reference
to the proposed scheme. The proposed scheme has a ratio over
8× better than Lanuzza et al. and over 90× better than Park
et al. and Argyrides et al.

3MBU burst error length was fixed to 4 bits per burst error [12]
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Fig. 9. Ratio of error correction performance to memory overhead

C. Timing Analysis for Bitstream Generation

The time taken to embed hamming code is directly pro-
portional to the size of the user design. On average, the time
taken to embed hamming code into the designs was less than
a minute. It is to be noted that this time is just a one time
overhead which is required after the bitstream of the design
has been generated.

VI. CONCLUSION

This paper proposes a novel bit-interleaved embedded ham-
ming scheme to mitigate radiation induced SBUs and MBUs.
The scheme uniformly interleaves the bits of each frame into
a number of sub-frames and uses the non-essential bits of
the frames to embed hamming parity bits, making the entire
sub frame hamming code compliant. Experiments conducted
with various benchmarks have shown that the ratio of error
correction performance to the memory overhead is highest for
the proposed scheme as compared with other state-of-the-art.
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