
An Area-efficient Dynamically Reconfigurable
Spatial Division Multiplexing Network-on-Chip

with Static Throughput Guarantee
Zhiyao Joseph Yang1, Akash Kumar1,2 and Yajun Ha1

1Department of Electrical & Computer Engineering, National University of Singapore
2Eindhoven University of Technology, The Netherlands

Corresponding author email: akash@nus.edu.sg

Abstract—With an increasing trend to implement Network-on-
Chip (NoC)-based Multi-Processor Systems-on-Chips (MPSoCs),
NoCs need to have guaranteed services and be dynamically
reconfigurable. Many current NoCs consume too much area
and cannot support dynamic reconfiguration. In this paper, we
present an area-efficient Spatial Division Multiplexing (SDM)-
based NoC. We replaced area consuming 32-bit to M-bit serial-
izers with 32-bit to 1-bit serializers in the network interface and
incur almost no loss in performance. We also restrict flexibility
in the router to achieve further area reduction. A separate area-
efficient control network, with an overhead of 3.9% of the total
area of the NoC, is developed to support dynamic reconfiguration.

Index Terms—FPGA, Network-on-Chip, throughput guaran-
tee, dynamic reconfiguration, spatial division multiplexing.

I. INTRODUCTION

Chip density is increasing, allowing even larger systems
to be implemented on a single chip. With increasing de-
mands on flexibility and performance, these systems, known as
Systems-on-Chips (SoCs), combine several types of processor
cores, memories and custom modules of widely different sizes
to form Multi-Processor Systems-on-Chips (MPSoCs). The
bottleneck in such systems is shifting from computation to
communication [1]. The traditional way of using bus-based
mechanisms for inter-module communication has two main
limitations. Firstly, it does not scale well with increasing
system complexity. Secondly, it couples computation and
communication of the system leading to longer design times.
Networks-on-Chip (NoCs) have been proposed as an efficient
and scalable alternative to shared buses which allow systems
to be designed modularly.

Initial NoC proposals rely only on a Best-Effort service
based on packet-based switching techniques. QNoC [2] and
xPipes [3] are examples of packet-based NoCs. Another group
of proposals is based on circuit-based techniques whose ap-
proach is to reserve the entire path from the source to the
destination before data is sent out from the source. Examples
include PNoC [4] and ProtoNoC [5]. For more demanding
systems, it is necessary to have predictable performance as
connections between the IP blocks are subjected to timing
constraints. For such applications, it is necessary to be able
to guarantee throughput before run-time. To achieve this, link
allocation is done statically during design-time.

The most commonly used approach to guarantee throughput
is Time Division Multiplexing (TDM) where different connec-
tions use the same links at different time slots. One downside

of TDM is that the switching configuration of the router has
to be updated every time slot. This requires slot tables that
consume area and power in each of the routers. Examples
of TDM-based NoCs are Æthereal [1] and Nostrum [6].
Spatial Division Multiplexing (SDM) [7] is another approach
where subsets of the links which inter-connect the routers are
allocated to different connections. Each connection thus has
exclusive usage of the wires assigned to them. The sender se-
rializes data on the wires allocated and the receiver deserializes
the data before forwarding to the IP block. The advantage of
SDM over TDM is that it eliminates the expensive slot tables
thus reducing power but complexity is shifted to the serializers
and deserializers.

From an application’s perspective, applications having mul-
tiple use-cases require different sets of connection require-
ments at different times. A use-case is a combination of
applications that run at the same time. Current NoCs cannot
handle dynamism, therefore we need a new NoC which allows
dynamic reconfiguration with different setups during run-time.

In this paper, we give solutions to the above problems,
specifically the major contributions are as follows.

• A new design and detailed architecture for the Network
Interface (NI) is presented to address the complexity of
the serializers and deserializers that is inherent in SDM-
based NoC. This results in significant area savings as the
NI consumes a large proportion of area in the NoC.

• A low-complexity router design is presented which results
in lower area usage at the cost of routability. This also
eliminates the problem of reordering the data when they
arrive at the receiving NI.

• The functionality of dynamically reconfiguring the NoC
with different connection setups during run-time.

• The development of a design tool which generates VHDL
files for a NoC based on user-specified parameters. The
tool is available online [8] for use by the community.

• An algorithm which finds link allocations needed to
satisfy a given set of connection requirements for varying
router flexibility.

Point-to-point links between MicroBlazes in a Multi-
Processor System-on-Chip (MPSoC) generated using [9] have
been replaced by a NoC generated with our tool and a working
prototype has been successfully implemented on a Xilinx
FPGA development board (XUPV2P). The MicroBlazes were



Partition for

multi-processor 

implementation

Architecture & 

Communication 

Requirements

Code for

each core

Map cores 

onto Topology

Generate files 

for processor 

cores

Files for 

processor 

cores

Combine

Synthesize 

design for 

target platform

IP Cores 

Library

ConnectionR

equirements.t

xt

ConnectionR

equirements.t

xt

Connection

Requirements

ApplicationApplicationUse-cases
ApplicationApplicationApplications

Focus of this 

paper

Link Allocation
Programming

File

Programming

File

VHDL Files 

for NoC

Generate 

VHDL files for 

NoC

Programming

File

Programming

File

Programming

File

Fig. 1. Design Flow

used to verify the dynamic reconfiguration of the NoC as well
as to send and receive data between each other.

The remainder of this paper is organized as follows. Sec-
tion II shows the steps involved from application specifications
to synthesizing the design for the target platform. Section III
describes the architecture of the NoC developed and also
design details of the NI and the router. Section IV evaluates
experimental results and Section V concludes the paper and
highlights future work.

II. DESIGN FLOW

Figure 1 shows the design flow of an application to be
implemented as an MPSoC on a target platform. The applica-
tion is first partitioned for a multi-processor implementation
which involves deciding how many cores to use, which core
to perform which functions, etc. Examples of such tools are
discussed in [9], [11] and [12]. After this stage, codes for
each processor as well as the architecture and communication
requirements for the NoC are obtained. With the architecture
and communication requirements, files for the processor cores
can be generated and the cores can be mapped to the topology
chosen. VHDL files for the NoC will also be generated at this
stage. This paper focuses on stages within the dashed region
in Figure 1.

A. Dynamic Reconfigurability

Figure 2 shows an example of three applications mapped
onto a 2-by-2 NoC with one sending channel and one receiv-
ing channel per node. The dashed, dotted and solid arrows
represent the connection requirements for the three applica-
tions. We see that we cannot satisfy the requirements as two
sending/receiving channels are required at some nodes when
only one is available. However, if it is specified that there
are only two use-cases (as shown in Figure 2), then we can
perform the link allocation for two setups (one for each use-
case) and reconfigure the NoC for the appropriate use-case
when needed during run-time.

a0 b0

c0

a1 b1

a2 b2

c2

a0 b0

c0

a1

b1 a2 b2

c2

Use-case 

1

Use-case 

2

Fig. 2. Two Use-cases with Three Applications

B. Link Allocation
Performing link allocation at design-time ensures guaran-

teed performance right from the start. Requesting and allo-
cating resources during run-time runs the risk of not having
the available resources and thus not being able to satisfy
requirements. We employ a recursive mapping function which
utilizes backtracking to find the configuration that satisfies all
connection requirements. Although this will result in a more
complex path finding algorithm, this is acceptable as it is done
at design-time.

III. NETWORK ARCHITECTURE

The network architecture is designed as a two-layer system
where one layer is data network responsible for transporting
data while the other layer is the control network responsible
for programming the NoC. Each node in the control network
will provide the link configurations to the corresponding node
in the data network.

A. Control and Data Network
The control network is a low cost network as it is only used

when the NoC needs to be programmed. For our test setup,
the control network has an overhead of 3.9% of the total area
of the NoC. The data which is used to program the NoC is
transmitted to the control network via a master node.

Nodes in the control network are interconnected using the
minimum number of links required. The only requirement is
that there is a path from the master node to all other nodes.
Thus we can sacrifice path diversity and return paths in favour
of lower area usage. The bytes are processed and forwarded
based on the protocol developed. The number of programming
bytes needed is:
NumOfBytes = 2 + [12 + 3(NumOfSendingChannels

+NumOfReceivingChannels)](NumOfNodes)

For the data-network, the nodes as well as the NI are
interconnected via two links (one in each direction). The
number of wires in each link is user-defined as a parameter
in the design tool. Each node in the data network has a NI
which will interface to an IP core. The NI does the necessary
serialization and deserialization as data pass from the IP core
to the router and vice versa.

B. Network Interface
In [7], the NI design for the SDM approach presented is

highly flexible but incurs high area cost. Figure 3 shows the
NI design as interpreted from [7] for the case of eight wires
per port, two sending channels and 32-bit data width. For
each sending channel, an output message queue buffers 32-
bit data from the IP core. The data is then sent to a 32-bit



Output message 

queues 32-bit to M-bit serializer

Network Interface

(a) Original NI Design

32-bit to 1-bit 

serializers

Network Interface

(b) New Novel NI Design

send1

Data

Distributor

send2

Data

Distributor

32

output[7]

output[0]

32

32 32

output[7]

output[6]

output[5]

output[4]

output[3]

output[2]

output[1]

output[0]

32

32

32

32

IP
 C

o
re

R
o

u
te

r

32

32

IP
 C

o
re

R
o

u
te

r

Output message 

queues

Fig. 3. NI Design [7]

Output message 

queues 32-bit to M-bit serializer

Network Interface

(a) Original NI Design

32-bit to 1-bit 

serializers

Network Interface

(b) New Novel NI Design

send1

Data

Distributor

send2

Data

Distributor

32

output[7]

output[0]

32

32 32

output[7]

output[6]

output[5]

output[4]

output[3]

output[2]

output[1]

output[0]

32

32

32

32

IP
 C

o
re

R
o

u
te

r

32

32

IP
 C

o
re

R
o

u
te

r

Output message 

queues

Fig. 4. New NI Design

to M-bit serializer which serializes the data onto the allocated
wires. The 32-bit to M-bit serializer is flexible and the value
of M depends on how many wires have been allocated to
that particular sending channel. Our design achieves lower
complexity and area savings by using 32-bit to 1-bit serializers
instead of 32-bit to M-bit serializers.

Figure 4 shows the new NI design developed for the same
case. Instead of 32-bit to M-bit serializers (Figure 3), there are
multiple 32-bit to 1-bit serializers. The number of serializers
will depend on how many wires there are per port (eight for the
case in Figure 4). In this design, there is one data distributor
for each sending channel. The data distributor is responsible
for forwarding the 32-bit data to the serializer that has been
allocated to that particular sending channel. As input to the
32-bit to 1-bit serializer, there is one OR gate to allow all the
data distributors to be able to forward data to each serializer.
The other OR gate and 1-bit output are hand-shaking signals
between the data distributor and the serializer.

The advantage of the new NI design is area savings. The
trade off is that latency is affected when not sending data
continuously. For example, it will take longer to send one 32-
bit data using the new NI design compared to the NI design
in [7]. However, for the case of sending a stream of data
continuously, latency is comparable for both NI designs.

C. k-way Router

For the router described in [7], there is full flexibility
which means each incoming link is allowed to use any of the
outgoing links. This results in a big switch required in each
router. We use the term k-way router to describe the degree
of flexibility of the router where k refers to the number of
options available at each outgoing port for an incoming link.
Figure 5(a) shows an example of a 4-way router where the first
incoming link from the west can use any of the four wires of
the outgoing links in each direction. Besides the high area cost
incurred for routers with full flexibility, another issue is that
the order of the data at the sending NI may not be the same
when the data reaches the receiving NI. In [10], the idea of
reducing flexibility in the FPGA switch blocks is discussed.

(a) 4-way (b) 2-way (c) 1-way

Fig. 5. k-way Router

TABLE I
COMPARISON OF SWITCH SIZE

Router Evolution of Number of Cross Points
Full Flexibility O(N2)
Benes Switch [7] O(N · log2(N))
Our Design O(N)

The case of a FPGA switch block is similar to the k-way
router as the objective for both cases is to allocate links based
on given requirements at design-time. However, to the best of
our knowledge, this idea has not been used in the NoC context.
Figure 5 shows the options available to an incoming wire for
k-way routers with different values of k. By restricting the
number of links that each incoming wire can use, the area
cost of the router is reduced. The 1-way router seems to be a
good choice as it solves the problem of ordering of the data
at the receiving NI while using significantly less area. Table I
shows a comparison of the switch size in terms of the number
of cross points required. A cross point is a small switching
element that makes or breaks a connection between one input
wire and one output wire of the switch.

IV. EXPERIMENTS AND RESULTS

In order to verify the functionality of the NoC, a system with
4 MicroBlazes was generated using [9] in which point-to-point
links were replaced by a NoC generated with our tool. The four
MicroBlazes are connected to the NoC via Fast Simplex Links
(FSLs) and were used to verify the dynamic reconfiguration
of the NoC as well as to send and receive data between
each other. A MicroBlaze sends programming data via the
additional FSL to program the NoC. A laptop connected
via UART to that MicroBlaze allows debugging data to be
sent/received. The design has successfully been implemented
on a Xilinx FPGA development board (XUPV2P) and used to
study the area, power distribution and scalability on FPGA.

A. Area and Power on FPGA
Figure 6 and 7 shows the area and power (obtained using

Xilinx XPower Analyzer) breakdown of the whole design and
the NI with one sending, one receiving channels and eight
wires per input/output port. Each FSL buffers 64 words of 32-
bits each. The MicroBlazes are implemented very efficiently
by Xilinx. Optimizing the NI brings about great savings to
the design as a whole as it takes up a significant proportion
of the total area. The serializers and deserializers use more
area than the sendDataDistributor and rcvDataCollector in
this example as there is only one sending and one receiving
channel. The number of components required in the NI is
discussed in Section III-B. The serializers and deserializers
consume more power than the other NI components as they are
more active components. The routers consume minimal power



4 MicroBlazes
33.4%

9 FSLs
14.7%

4 NIs
36.5%

Data Network
3.2%

Control Network
2.2%

Misc
10.0%

(a) Top

sendDataDistributor
10%

rcvDataCollector
8%

8 serializers
26%

8 deserializers
37%

setupFsmNi
1%

2 FSLs
18%

(b) NI

Fig. 6. Area Breakdown

Total Power = 175.69mW

4 MicroBlazes
46%

9 FSLs
6%

4 NIs
14%

Routers
2%

Misc
32%

(a) Top

Total Power = 58.18mW

sendDataDistributor
4%

8 serializers
31%

8 deserializers
58%

setupFsmNi
1%

4%
rcvDataCollector

2%

2 FSLs

(b) NI

Fig. 7. Power Breakdown

TABLE II
COMPARISON OF NI COMPONENTS

Component Number of Slices Power (mW)
32-bit to M-bit serializer [7] 13319 134.38
sendDataDistributor 183 2.08
32-bit to 1-bit serializer 48 2.27

13319

26638

39957

53276

66595

567

750

933

1116

1299

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5
Number of Channels

N
u

m
b

e
r 

o
f 

S
li
c

e
s

0

200

400

600

800

1000

1200

1400

Design [7]

Our Design

Fig. 8. Device Utilization Comparison of NI Design with Varying Number
of Channels

due to minimal switching required in a SDM-based design.
The control network, which supports dynamic reconfiguration,
has an overhead of 3.9% of the total area of the NoC.

B. Area Scalability

Our new design is more scalable mainly due to the reduced
complexity in the NIs and routers.

1) Network Interface: Table II shows a comparison be-
tween the main components used in both NI designs. Our de-
sign consumes less area and power. Figure 8 shows the device
utilization for NIs having eight wires per port with varying
number of channels required (note the different vertical scales
used). We have achieved area savings of over 95% with almost
no loss in performance.

2) Router: Figure 9 shows the number of slices used for the
k-way router with eight wires per link in each direction as we
decrease the flexibility. The area cost decreases as we decrease
the value of k. The 1-way router is desirable as it eliminates
the need to reorder data at the receiving NI and lowers total
area cost. However, the trade-off is that we are not able to
satisfy all cases that we can with full flexibility but we have
highlighted ways to avoid such situations (Section III-C).

509

369

204

98

0

100

200

300

400

500

600

8 7 6 5 4 3 2 1
Value of k

N
u

m
b

e
r 

o
f 

S
li
c

e
s

Fig. 9. Device Utilization of k-way Router

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented new designs and detailed
architecture for the NI and router which achieved area savings
of more than 95% and improved scalability. Performing link
allocation during design-time allows us to provide throughput
guarantees as well as to generate different programming files
for different use-cases which are used to dynamically configure
the NoC during run-time.

In the future, the feasibility of connection requests from
IP cores during run-time will be explored. Another aspect to
be explored is flow control. Further, we plan to evaluate the
trade-offs of the 1-way router in the future.

ACKNOWLEDGMENT

The authors would like to thank Mr Shakith Fernando for
his assistance in the development of the MPSoC platform.

REFERENCES

[1] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 414–421, 2005.

[2] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of Systems
Architecture, vol. 50, no. 2-3, pp. 105–128, 2004.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 2, pp. 113–129, 2005.

[4] C. Hilton and B. Nelson, “PNoC: A flexible circuit-switched NoC
for FPGA-based systems,” IEE Proceedings: Computers and Digital
Techniques, vol. 153, no. 3, pp. 181–188, 2006.

[5] D. Castells-Rufas, J. Joven, and J. Carrabina, “A validation and perfor-
mance evaluation tool for ProtoNoC,” 2006 International Symposium on
System-on-Chip, SOC, 2006.

[6] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within
the Nostrum network on chip,” Proceedings - Design, Automation and
Test in Europe Conference and Exhibition, vol. 2, pp. 890–895, 2004.

[7] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor, “Concepts
and implementation of spatial division multiplexing for guaranteed
throughput in networks-on-chip,” IEEE Transactions on Computers,
vol. 57, no. 9, pp. 1182–1195, 2008.

[8] NoC Generation Tool. Username: fpl10 Password: fpl10.
[Online]. Available: http://www.ics.ele.tue.nl/∼akash/NoCGenTool/

[9] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal, “Multi-
processor System-level Synthesis for Multiple Applications on Platform
FPGA,” in Proceedings of 17th International Conference on Field
Programmable Logic and Applications. IEEE Circuits and Systems
Society, 2007, pp. 92–97.

[10] J. Rose and S. Brown, “Flexibility of interconnection structures for
field-programmable gate arrays,” IEEE Journal of Solid-State Circuits,
vol. 26, no. 3, pp. 277–282, 1991.

[11] B. De Sutter, D. Verkest, E. Brockmeyer, E. Delfosse, A. Vandecap-
pelle, and J. Mignolet, “Design and tool flow of multimedia MPSoC
platforms,” Journal of Signal Processing Systems, vol. 57, no. 2, 2009.

[12] S. Kwon, C. Lee, and S. Ha, “Data-parallel code generation from
synchronous dataflow specification of multimedia applications,” Pro-
ceedings of the 2007 IEEE/ACM/IFIP Workshop on Embedded Systems
for Real-Time Multimedia, ESTIMedia 2007, pp. 91–96, 2007.

http://www.ics.ele.tue.nl/~akash/NoCGenTool/

	Introduction
	Design Flow
	Dynamic Reconfigurability
	Link Allocation

	Network Architecture
	Control and Data Network
	Network Interface
	k-way Router

	Experiments and Results
	Area and Power on FPGA
	Area Scalability
	Network Interface
	Router


	Conclusion and Future Work
	References

