
A Multi-stage Leakage Aware Resource Management
Technique for Reconfigurable Architectures

Nam Khanh Pham
Department of Electrical and

Computer Engineering
National University of

Singapore
a0095804@nus.edu.sg

Amit Kumar Singh
Department of Electrical and

Computer Engineering
National University of

Singapore
amit.singh@nus.edu.sg

Akash Kumar
Department of Electrical and

Computer Engineering
National University of

Singapore
akash@nus.edu.sg

ABSTRACT
Shrinking size of transistors has enabled us to integrate more and
more logic elements into FPGA chips leading to higher comput-
ing power. However, it also brings serious concern to the leak-
age power dissipation of the FPGA devices. One of the major
reasons for leakage power dissipation in FPGA is the utilization
of prefetching technique to minimize the reconfiguration overhead
(delay) in Partially Reconfigurable (PR) FPGAs. This technique
creates delays between the reconfiguration and execution parts of
a task, which may lead up to 44% leakage power of FPGA since
the SRAM-cells containing reconfiguration information cannot be
powered down. In this work, a resource management approach con-
taining scheduling, placement and post-placement stages has been
proposed to address the aforementioned issue. In scheduling stage,
a leakage-aware cost function is derived to cope with the leakage
power. The placement stage uses a cost function that allows design-
ers to decide a trade-off between performance and leakage-saving.
The post-placement stage employs a heuristic approach and shows
further improvements. Experiments show that our approach can
achieve large leakage savings for both synthetic and real life appli-
cations with acceptable extended deadline. Furthermore, different
variants of the proposed approach can reduce leakage power by
40-65% when compared to a performance-driven approach and by
15-43% when compared to state-of-the-art works.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids; B.7.1 [Integrated Cir-
cuits]: Types and Design Styles—Gate arrays

General Terms
Design

Keywords
Resource management; FPGA; leakage aware

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) are promising candi-

dates for digital circuit implementation because of their growing
density and speed, short design cycle, and steadily decreasing cost.
Furthermore, most of the FPGA devices nowadays can be partially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI’14, May 21–23, 2014, Houston, Texas, USA.
Copyright 2014 ACM 978-1-4503-2816-6/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591513.2591526.

reconfigured at run time, i.e., a configuration can be loaded into
part of the device while the rest of the system continues operat-
ing. This feature obviously provides greater flexibility and more
powerful computing ability. However, these advantages come with
additional problems related to reconfiguration time and power dis-
sipation.

A drawback of FPGA due to its hardware redundancy is its inef-
ficiency in term of power consumption when compared to ASIC
components [12] [16]. In practice, an FPGA circuit implemen-
tation may use only a fraction of the hardware resource but the
power is dissipated in both the used and the unused components.
The total power consumption includes static (leakage) and dynamic
power [17], and their contribution into the total power consumption
heavily depends on the circuit technology. Beyond 65 nm technol-
ogy, leakage power becomes an increasingly dominant component
of total power dissipation [24]. This has motivated us to focus our
work on reducing the leakage power dissipation.

Configuration prefetching [9] is a widely adopted technique for
reducing the reconfiguration delay in Partially Reconfigurable (PR)
FPGA. In prefetching, a task is loaded into the FPGA as soon as
possible and this may result in overlap between the configuration
part of the waiting task (to be executed) with the execution part of
operating tasks, facilitating for reduced reconfiguration overhead
(time). However, even after the task is loaded (prefetched), it may
not execute and wait until few other tasks complete due to involved
dependencies. Such waiting introduces delays between the con-
figuration and execution part of the same task. During the delay
interval, the SRAM-cells of the FPGA (containing bits of the wait-
ing task to be executed) cannot be powered down to avoid the loss
of configuration data from the cells. Therefore, the cells dissipate a
significant amount of power.

Motivational Example: Fig. 1 presents an example to demon-
strate aforementioned issues. In this example, the task graph on
the left-hand side is scheduled on an FPGA platform with prefetch-
ing technique. During the interval between R3 and E3, the logic
blocks of columns 1 and 2 can be powered down to remove leakage
wastes. However, since the SRAM-cells of these columns cannot
be powered down as the configuration data will be lost, they con-
sume a considerable amount of power. As SRAM cells leakage
contributes≈ 38% to FPGA leakage [22] (up to 44% for Spartan-3
family [21]), reducing FPGA SRAM leakage is of paramount im-
portance.

In order to reduce leakage, a scheduling approach needs to be
developed aiming at allocating reconfiguration and execution parts
as close as possible while keeping task dependencies, timing and
architecture constraints into account. Several works have been
proposed to solve this problem [25], [10]. However, these works
attempt to address the leakage problem in a single phase of the re-
source management process (details in later sections). As a result,
the leakage power cannot be significantly reduced. It has also been

List scheduling with dynamic priority

1

T1

T2

T3

(3,2)

(3,2)

(1,2)

T1

C5

C4
R2 E2

C3

C2
R1 E1 R3 E3

C1

0 1 2 3 4 5 6 7

T2T4 T3T6T3

Ri

Ei Execution phase of task i

Reconfiguration phase of task i

Leakage waste
Columns

Time

Task graph

Number of
Columns

Execution
Time

Figure 1: Example of Leakage Waste caused by Prefetching
Technique
observed that there exists a trade-off between leakage savings and
performance [25]. However, the trade-off analysis by employing
the existing approaches is not efficient. A high degradation in per-
formance is noticed in order to achieve small amount of leakage
savings. To tackle the problem in a comprehensive perspective to-
wards achieving high leakage reductions, we propose a multi-stage
resource management approach consisting of three stages. Our
main contributions to each stage are as follows:
• Scheduling: A list-scheduling algorithm has been developed

with a specific priority function that is customized for ad-
dressing the leakage power reduction.
• Placement: A cost function has been derived for the place-

ment stage to further reduce the leakage power. This func-
tion provides designers a flexibility to manage the trade-off
between performance and leakage savings.
• Post-placement: A post-placement heuristic has been pro-

posed to improve the scheduling results (leakage savings)
from previous stages.

In our multi-stage approach, the application to be executed is pro-
cessed iteratively in the scheduling and placement stage, where in
each iteration the scheduling stage defines next application task
to be placed in the placement stage by using a dynamic priority
scheme (details in a later section). The placement stage identifies
the FPGA column to map the task. Once all the application tasks
are mapped, the post-placement stage tries to reduce gaps between
configuration and execution parts for all the application tasks in or-
der to improve results obtained from earlier stages. To the best of
our knowledge, this is the first work that considers leakage opti-
mization in multiple stages while considering application deadline.

Paper Organization: Section 2 presents state-of-the-art related
to leakage power reduction. Section 3 provides the targeted FPGA
architecture, application model and problem definition. The main
contributions are presented in Section 4. In Section 5, experimental
results are reported and Section 6 provides the conclusion.

2. RELATED WORK
There are various techniques reported in literature to reduce the

leakage power of FPGAs. At architecture level, Calhoun et al. [4]
introduce a fine-grained leakage control scheme using sleep tran-
sistors [15]. Fei Li et al. [13] proposed the programmable supply
voltage (Vdd) in FPGAs. Elements on critical path are provided
high supply voltage to ensure high performance, while components
on noncritical path are supplied with low voltage and unused part
of the device is switched-off. The leakage power of FPGAs signif-
icantly depends upon the threshold voltage (VT) and an approach
using high VT transistors is proposed in [6]. A profound survey of
leakage reduction techniques for SRAMs has been provided in [5].

At system level, works focusing on leakage power problems are
fewer than those of the architecture level [14]. Bharadwaj et al. [3]

propose a design methodology that groups temporal locality design
into cluster. The authors also develop a power state controller for
effectively switching the states of the cluster. Addressing the leak-
age problem from system level as well, Zapater et al. has proposed
an empirical model for leakage components and used it to design a
energy-efficient control mechanism for servers in data centers [26].

Task graph scheduling for FPGA is an extensively studied topic
[1, 2, 18, 20]. In [18], an efficient technique to schedule real-life
applications on FPGA is proposed, but partial reconfiguration and
resource constraint has not been considered. Most of the scheduling
methods for FPGA focus on specific problems related to reconfig-
uration overhead and defragmentation. Ahmadinia et al. [1] com-
bined scheduling and placement method for 2D FPGA architecture
using cluster-based method to improve the performance by 20%
and task rejection by 16.2%. Christoph at el. [20] integrated an on-
line placement into a scheduling algorithm using small tasks first
and earliest deadline first techniques. However, they do not take
into account prefetching technique and resource constraint due to
single reconfiguration controller pertaining to PR FPGA. The first
work that considered both prefetching technique and resource con-
straint was introduced by Banerjee at el. [2]. The scheduling and
placement models are included with the partitioning stage to form a
complete HW-SW co-design approach for PR systems. The linear
placement model in this work is later adopted by Yuh et al. [25]
and Hsieh et al. [10] to address the leakage power issues.

Yuh et al. [25] first introduced the idea of using scheduling ap-
proach to mitigate the leakage issue. The authors utilized the schedul-
ing and placement results from [2] and on top of that they devel-
oped a post-placement heuristic to reduce the delays between exe-
cution and reconfiguration parts. They also proposed an exact ILP
solution to perform the post-placement in order to verify the effec-
tiveness of the heuristic. Since their work tackles the leakage op-
timization after the tasks are already allocated onto the FPGA, the
existing placement results may not allow their approach to signif-
icantly eliminate the leakage power. To achieve maximal leakage
saving, our work addresses the leakage problem in all phases of the
resource management process: scheduling stage, placement stage
and post-placement stage.

With the same model and target, Hsieh et al. [10] introduced an-
other approach to reduce the leakage waste. Their method consists
of 3 phases: binding, priority dispatching and split-aware placing.
First, the reconfiguration and execution parts of all tasks are com-
bined together in the binding phase so that the leakage power is
minimal. Then, each task is assigned a priority value based on the
position of the task in the task graph. Finally, while placing the
tasks into FPGA architecture, the split-aware placer checks for the
deadline. If the deadline is violated, the placer splits the reconfigu-
ration and the execution phase of the task. While the work in [10]
tried to solve the leakage problem in the placement phase only, we
propose a more complete solution having multiple stages. Further-
more, the scheduling algorithms in [10] used static priority, which
is computed before the actual scheduling process takes place. The
static priority is computed based on the characteristic of the task
graph and remains unchanged during the scheduling process. In
contrast, our algorithm dynamically recalculates the priorities of
all available tasks every time a task is allocated onto the FPGA.
Therefore, our algorithm updates the current available resource of
the FPGA, leading to a better scheduling decision.

Table 1 summarizes the distinction of our work in comparison to
the closely related works reported in the literature. As can be seen,
existing works perform leakage aware optimization in scheduling,
placement, or post-placement stages, whereas our approach per-
forms optimization in all the stages. Further, unlike most of the ap-
proaches that consider static priorities of tasks, our approach con-
siders dynamic priorities.

Table 1: Comparison of various approaches
Features Ref. [2] Ref. [25] Ref. [10] Our work

Scheduling Performance No Performance Leakage
driven driven aware

Placement Performance No Leakage Leakage
driven aware aware

Post No Leakage No Leakage
placement aware aware

Priority Dynamic No Static Dynamic
of tasks

3. SYSTEM MODEL AND PROBLEM DEF-
INITION

The targeted architecture used in this work is 1 dimensional
(1D) FPGA, where the configurable logic blocks (CLBs) are ar-
ranged in fixed vertical columns, and a task occupies an integral
number of columns. Moreover, the device supports dynamic par-
tial reconfiguration: a part of the platform can be configured while
other parts operate without interruption. The basic configuration
unit is a column. A task can be deployed on an adjacent set of
columns, and the reconfiguration time of the task is proportional to
the number of columns. Such an architecture is similar to Xilinx
FPGA Virtex family [23]. The device can be configured by a bit-
stream through configuration ports like JTAG or ICAP. However,
both configuration ports are managed by only one configuration
controller. Therefore, two different tasks cannot be reconfigured
at the same time. Such architectural constraint plays a critical role
in the process of scheduling and placement. Another key element
realizing the benefits of scheduling algorithm on FPGA are sleep
transistors. It is assumed that unused CLBs can be totally pow-
ered off by the sleep transistors integrated in the device. Based on
this assumption, each column can be independently controlled by a
sleep transistor [25].

Task model: We consider only hardware tasks, i.e., a task can
be synthesized and implemented on the FPGA platform. In com-
parison to software tasks, hardware tasks have some additional pa-
rameters related to the required hardware area and configuration
time. Directed acyclic graph (DAG) is used to represent the task
set of an application. An example of the task graph model is pre-
sented in Fig. 1. In the DAG, each node u represents a task, while
an edge e(u; v) indicates the dependency between tasks u and v.

A task has two components: reconfiguration and execution. Re-
configuration part is scheduled under the architectural constraint
(only one reconfiguration controller) while scheduling of execu-
tion part depends on the data dependencies, where a linear task
placement model as that of [2] has been adopted. In the schedul-
ing process, the communication overhead between tasks is ignored
due to two reasons: 1) tasks communicate with each other through
a shared memory with the same latency and cost; and 2) this la-
tency is negligible in comparison to runtime reconfiguration over-
head (time) and execution time.

Scheduling Problem
The problem targeted in this paper considers following set of

input, constraints and objective.
• Input: The application task graph and FPGA architecture

(number of columns, 1 reconfiguration controller and 1D ar-
chitecture).
• Constraints: Task graph dependency for execution parts,

reconfiguration controller constraint for reconfiguration part
and sequential relation between the reconfiguration and exe-
cution parts of the same task.
• Objective: Minimize leakage power dissipation because of

the delays between the reconfiguration and execution parts,
minimize schedule length.

Scheduling
Stage

Placement
Stage

Post-Placement
Stage

Task graphT1

T2

T4

T3

T1

Priority
Function

Leakage-aware
Cost Function

Refinement
heuristic

C3
R3 E3

C2 R4 E4

C1 E1 R2 E2

0 1 2 3 4 5 6

C3
R2 E2

C2 R4 E4

C1 E1 R3 E3

0 1 2 3 4 5 6

Small leakage

No leakage

T3 T2

T2

T4

Schedulable task set
evolving with time

Figure 2: Multi-stage Scheduling Scheme

4. PROPOSED MULTI-STAGE RESOURCE
MANAGEMENT APPROACH

An overview of the proposed resource management approach is
provided in Fig.2. The approach has 3 stages: Scheduling, Place-
ment and Post-placement. At first, the application task graph is
processed iteratively in the first two stages (Scheduling and Place-
ment). In each iteration, the Scheduler will define the next task
coming to the Placer by a dynamic priority scheme, which means
that the priorities of all the schedulable tasks are changed after each
iteration. The Placer then decides the column where the task should
be mapped and update the current status of the platform for the
Scheduler. After all the tasks in task graph are allocated into the
platform, the refinement heuristic in Post-Placement Stage will fur-
ther improve the result from previous stages.

4.1 Scheduling Stage
Algorithm 1 presents our algorithm for the scheduling phase. At

each step, all schedulable tasks whose parents have been scheduled
are stored in a set of ready task− S. Then, the scheduler calculates
the dynamic priorities of all tasks in set S according to a priority
function defined by Equation 1. Thereafter, it chooses the task with
highest priority to pass to the placer. As mentioned in Section 2,
we use a dynamic priority function so that the scheduling process
can adapt with the current status of the FPGA. Since the priority
function has a strong impact on the schedule quality, it is carefully
designed to address both leakage saving and performance require-
ment. The function includes different components that reflect the
affection of constraints (FPGA architecture and task graph depen-
dency) as well as optimization targets (leakage saving and schedule
length) on scheduling decision. Our priority function is described
as follows:

F = αBT + σC − βEET − γERT − µLK (1)

LK = C ∗ (EET − (RT + ERT)) (2)

where,
BT : bottom level of the task that represents the length of

the longest path in task graph starting from this task;
EET : earliest execution time of the task;
ERT : earliest reconfiguration time of the task;
C : number of columns required by the task;
RT : the reconfiguration time of the task;

Algorithm 1 Leakage Aware Task Scheduling Algorithm
Input: Task graph G=(U,V)
Output: Schedule with minimal LK
1: Put source tasks {ti ∈ U : pred(ti) = ∅} into set S

// S − Set of schedulable tasks
2: while S 6= ∅ do
3: Calculate priorities of unscheduled tasks in S (by Equation

1)
4: Choose the task t with maximum priority
5: Choose the best column C for task t (by Algorithm 2)
6: Schedule task t starting from column C
7: if child tasks of t are not already added to S then
8: Add new available tasks to S
9: end if

10: Remove task t from S
11: end while

LK : leakage waste caused by scheduling the task. The
leakage waste is the product of the used columns and
the delay between reconfiguration and execution parts.

EET,ERT and LK are dynamic factors and are computed in
scheduling process based on the current status of the partial sched-
ule. Since these variables are fundamentals for scheduling problem,
the details of their calculation can be found in basic textbook about
task scheduling, such as [19]. α, β, γ, σ, µ are coefficients related
to each factor and used to determine the intensity of their impact
on the cost function. The signs of elements in the function are
given based on their impact on the schedule: tasks requiring larger
columns should be placed earlier to increase the space for other
tasks; tasks with higher bottom level (close to leaf tasks) should
be scheduled first because they strongly affect the schedule length.
Additionally, tasks with minimal EET , ERT and LK should be
chosen for the desired optimization objective. As shown in Fig.2
the output of the scheduling stage is a set of schedulable tasks with
the task of the highest priority in the front of the set. This highest
priority task is then transferred to Placement Stage to be allocated
onto the FPGA. Since we are using a dynamic priority scheme,
both the schedulable task set and the priorities of tasks in the set
are changed every time a task is placed in FPGA.

4.2 Placement stage
After getting the task with highest priority, the placer applies the

steps in Algorithm 2 to allocate the task into physical column(s)
of FPGA. When a task comes to this stage, the algorithm scans all
the columns to find available positions for the task and for each
available position, the cost function is computed. Then, the task
is placed into the position with minimal cost value. Here, also the
cost function is also designed to optimize for both performance and
leakage waste, which is presented as follows:

G =
a

10
∗ LK + (1−

a

10
) ∗ EST (3)

where, LK and EST represent leakage power and earliest start
time for a placement; a is the leakage-schedule length trade-off
coefficients, which can be used to provide a balance between the
two optimization goals. Therefore, the cost function not only facil-
itates to reduce the leakage dissipation but also provides designer
the ability to manage the trade-off between performance (schedule
length) and leakage saving. The trade-off values can be achieved
by adjusting the value of a in Equation 3. By increasing the value
of a, designer can save more leakage power with a longer schedule
length.

Fig. 2 demonstrates the placement results from the first 2 stages
of our approach. It is expected to have small leakage power as a
result of above optimization techniques as shown in the figures.

Algorithm 2 Leakage Aware Placement Algorithm
Input: Task t, set of columns P
Output: column C- with minimal LK
1: for each column ci ∈ P do
2: Schedule task t starting from column ci
3: Calculate cost of placing t on ci (by Equation 3)
4: end for
5: Choose the column C with minimal cost function

Algorithm 3 Leakage Aware Post-placement Algorithm
Input: Task graph G=(U,V), Tasks’ placement after placement

stage
Output: Optimized placement of tasks
1: for each leaf task ti ∈ U do
2: Schedule configuration and execution of task ti by consid-

ering architectural constraint
3: while parents of ti 6= ∅ do
4: Find reconfiguration costs for parent tasks of ti by Equa-

tion 4
5: Sort reconfigurations in descending order based on cost
6: Schedule reconfigurations considering architectural con-

straints
7: Select parents one by one from maximum to minimum

cost as ti
8: end while
9: Move executions close to reconfigurations if dependencies

do not violate
10: end for

4.3 Post-placement Heuristic
Our post-placement heuristic is presented in Algorithm 3. The

heuristic takes task graph & tasks’ placement as input and provides
optimized placement of tasks so that leakage power due to delays
between reconfigurations and executions is further minimized. The
heuristic first schedules leaf tasks to maintain the same finish time
towards meeting the timing deadline. For each leaf task, it’s parent
tasks are evaluated for their reconfiguration costs and scheduled by
taking architectural constraints into account. The cost is computed
as follows

C = lw ∗NC − sw ∗ SP (4)
where, NC and SP are the number of occupied columns and

range of reconfiguration space, respectively. The lw and sw are the
weights to be given to NC and SP respectively, which determine
the leakage power dissipation.

After all the tasks are scheduled, the executions are tried to place
close to the respective reconfigurations if dependencies are not vio-
lated. This helps us to achieve placement that contains reconfigura-
tions and executions close to each other as shown in Fig. 2, leading
to reduced leakage power.

5. EXPERIMENTAL RESULTS
A series of experiments are conducted to demonstrate the per-

formance of our resource management approach. Three versions
of our scheduling and placement approach with different value of
constant a in Equation 3 (a=1, a=2, a=10) are compared with fol-
lowing existing approaches: performance-driven algorithm (PDA)
proposed in [2], Enhanced Leakage Aware Algorithm (ELAA) em-
ployed in [10], the ILP and Iterative Refinement (ITE) heuristic
approach proposed in [25]. The PDA does not consider the leakage
waste in the scheduling process, and has been used as the baseline
approach for comparisons. ELAA demonstrates high performance
when dealing with the leakage problem [10]. One important target
in this work is to examine the trade-off between leakage saving and
the schedule length, so no deadline (in terms of schedule length) is
set for the trade-off analysis. The results from our post-placement
approach are compared to that of [25].

Our algorithm is implemented in Java language and experiments
are performed on an Intel Core i7 2.26GHz CPU with 4 GB RAM.

Figure 3: Leakage and Schedule Length when employing Different Approaches
The experiments are performed with real-life task graphs and syn-
thetic task sets generated by the TGFF tool [8]. For the synthetic
case, five task sets are considered. Each task set contains 10 task
graphs with different level of parallelism; and each task in the task
graph requires 10 to 50 columns and has the execution time from 1
to 9 time units. The FPGA platform is considered to have a fixed
number of columns as 100. For real-life task graphs, JPEG en-
coder [2], MP3 decoder [11] and MPEG4 decoder [7] are consid-
ered with their specifications provided in respective references in
order to demonstrate the applicability of our approach for real-life
scenarios.

The criteria of the comparison are schedule length, leakage waste,
and the runtime of the algorithms. The schedule length is measured
in time unit, while the leakage waste is measured in energy unit,
which is the power dissipation of one column during 1 time unit.
The leakage waste of a particular task is computed by Eqn. 2. The
leakage waste of the task graph after scheduling is the sum of leak-
age waste of all its tasks. For leakage waste of a task set, leakage
values of all the contained task graphs are added. Further, as sleep
transistors are used to stitch-off the unused SRAM cells for each
column, the leakage waste for a task before its configuration and
after the execution is considered as zero.
5.1 Leakage Waste and Schedule Length

Fig. 3 presents the leakage waste and schedule length (in terms
of time extension over baseline approach PDA) of all the approaches
over the five task sets. The whole bars present the leakage waste
obtained after Scheduling and Placement (S&P) stage, while the
lower parts of the bars describe the leakage waste after applying
Post-Placement (PP) methods. Therefore, for existing approaches,
the whole bars describe the leakage waste of PDA methods, and the
lower part of each bar is the leakage after post-placement refine-
ment (PDA+ITE or PDA+ILP). The time extension is the extended
deadline required for leakage reduction. It is computed by subtract-
ing the schedule length of each approach to the schedule length of
the baseline (PDA) and these values are presented by columns with
reversed direction (up to down). The horizontal axis declares no-
tations for different approaches. For example, the first two nota-
tions PDA+ILP and PDA+ITE denote two approaches used in [25],
where PDA is used in Scheduling and Placement (S&P) phase and
either ILP or ITE is used in Post Placement phase.

It can be seen from Fig. 3 that all versions of our approach
achieve better leakage saving when compared with the two ap-
proaches in [25]. Furthermore, when the number of tasks is large
(greater than 10), our approach with a = 10 can reach the optimal
leakage saving (leakage waste = 0) with smaller extension in time

when compared to ELAA. On an average, our approach adopted
with the parameter a = 1 and a = 2 shows leakage power sav-
ings of 40% and 65% respectively when compared to PDA. Fur-
thermore, when compared with existing approach PDA+ITE, our
approach achieves 15% and 43% more leakage savings with pa-
rameter a = 1 and a = 2, respectively. The reason behind superior
results by our approach over other approaches is that we consider
leakage optimization first in scheduling and placement stages and
then in post-placement stage as well. The optimization in schedul-
ing and placement stages results in minimize delays between con-
figurations and executions, and the post-placement stage try to fur-
ther minimize the left delays in order to reduce the leakage dissi-
pation. However, other approaches tackle the leakage optimization
in only one stage (e.g., in placement stage in ELAA [10] and in
post-placement stage in [25]).

5.2 Post-placement Leakage Waste and Algo-
rithm Runtime

In this experiment, we examine the leakage saving and runtime
of 3 post-placement methods ILP, ITE in [25], and our proposed
heuristic. The methods are executed with the same inputs, which
are the placement results from PDA. The deadline of all the task
graphs are set to the schedule length of our approach when achiev-
ing optimal value of leakage saving (i.e., a = 10).

Table 2 shows leakage waste and algorithm runtime for various
post-placement methods. As can be seen from Table 2, in many
cases, all the post-placement methods are unable to totally elim-
inate the leakage dissipation over the PDA placement. However,
for the same deadline, our multi-stage approach can achieve the
optimal solution (leakage waste = 0) as described earlier. This sig-
nifies the advantages of our comprehensive strategy that addresses
the leakage problem throughout the resource management process.
Although our scheduling and placement stages achieve high leak-
age savings, they still can leave spaces between reconfiguration and
execution parts of many tasks. Our post-placement stage tries to re-
allocate reconfigurations and executions so that the spaces between
them are minimized in order to achieve further leakage savings.
Table 2 shows that our post-placement heuristic can produce bet-
ter leakage results than ITE. Additionally, our heuristic obtains the
results in a smaller runtime.
5.3 Case-study: Real-life Applications

We applied different scheduling approaches on real-life appli-
cations: JPEG encoder [2], MP3 decoder [11] and MPEG4 de-
coder [7] as mentioned earlier. Table 3 shows leakage waste and
schedule length for real-life applications. The notations used in

Table 2: Leakage waste and algorithm runtime of post-placement methods
Number of tasks in task graphs

Algorithms 10 20 30 40 50
Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s)

PDA+ILP 0 2.278 40 12.451 60 25.812 0 50.24 60 199.24
PDA+ITE 20 2.46E-04 80 4.32E-04 180 8.17E-04 80 1.14E-03 80 3.69E-03

PDA + 20 2.15E-04 80 4.36E-04 100 3.66E-04 80 4.32E-04 80 5.02E-04
Our heuristic

this experiment are the same as those in previous experiments. The
ELAA and our approach with a = 10 always achieve the opti-
mal value of leakage waste (zero) with some extension in sched-
ule length. Therefore, leakage in these cases does not need any
improvement by Post-placement methods and not applicable (NA)
has been mentioned for the same. As can be seen from the ta-
ble, for MPEG and JPEG, our approach with a = 1 can obtain
the same results as that of approach PDA+ITE. However, when it
comes to MP3 decoder, the advantage of our comprehensive strat-
egy becomes obvious. Due to low quality solution in the first two
phases, the ITE approach cannot remove all the leakage from ini-
tial placement of previous phases. In contrast, all stages of our
approach still work well to get maximum leakage saving.

Table 3: Leakage waste and schedule length for real-life appli-
cations

PDA+ITE a=1 a=10 ELAA
MPEG Schedule length 44 44 53 57

Leakage S&P 140 80 0 0
Leakage PP 0 0 NA NA

JPEG Schedule length 22 23 24 29
Leakage S&P 60 20 0 0
Leakage PP 20 20 NA NA

MP3 decoder Schedule length 50 57 61 63
Leakage S&P 270 30 0 0
Leakage PP 270 30 NA NA

6. CONCLUSION
We present a multi-stage resource management approach to tackle

the leakage power problem in Partially Reconfigurable FPGAs. Our
multi-stage approach employs leakage-aware priority function in
scheduling stage, leakage-performance trade-off function in place-
ment stage and a heuristic in post-placement stage. A series of
experiments are performed to highlight the advantages of the pro-
posed approach over existing works. The results demonstrate that
the proposed approach dominates the existing approaches when
the application task graph contains higher number of tasks. Ad-
ditionally, experiments show that our approach can always achieve
the optimal value as a comprehensive strategy is adopted, whereas
other single-stage methods may not achieve the optimal value. Fur-
thermore, our approach also provides the flexibility to the design-
ers to achieve trade-off values between leakage saving and perfor-
mance. In the future, we plan to examine the dependencies between
task graph parameters and coefficient a to enhance the schedule
quality. Extending the problem for two-dimensional FPGAs is also
a promising direction.

7. ACKNOWLEDGMENT
This work is supported by Singapore Ministry of Education Aca-

demic Research Fund Tier 1, grant number R-263-000-B02-112.

8. REFERENCES
[1] A. Ahmadinia, C. Bobda, and J. Teich. A dynamic scheduling and

placement algorithm for reconfigurable hardware. Organic and
Pervasive Computing–ARCS 2004, pages 443–465, 2004.

[2] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Physically-aware hw-sw
partitioning for reconfigurable architectures with partial dynamic
reconfiguration. In DAC, pages 335–340, 2005.

[3] R. Bharadwaj et al. Exploiting temporal idleness to reduce leakage
power in programmable architectures. In ASP-DAC, pages 651–656,
2005.

[4] B. Calhoun, F. Honore, and A. Chandrakasan. Design methodology
for fine-grained leakage control in mtcmos. In ISLPED, pages
104–109, 2003.

[5] A. Calimera et al. Design techniques and architectures for
low-leakage srams. Circuits and Systems I: Regular Papers, IEEE
Transactions on, pages 1992–2007, 2012.

[6] L. Ciccarelli, A. Lodi, and R. Canegallo. Low leakage circuit design
for fpgas. In CICC, pages 715–718, 2004.

[7] J. Cong and K. Gururaj. Energy efficient multiprocessor task
scheduling under input-dependent variation. In DATE, pages
411–416, 2009.

[8] R. Dick, D. Rhodes, and W. Wolf. Tgff: task graphs for free. In
CODES, pages 97–101, 1998.

[9] S. Hauck. Configuration prefetch for single context reconfigurable
coprocessors. In FPGA, pages 65–74, 1998.

[10] J. Hsieh et al. An enhanced leakage-aware scheduler for dynamically
reconfigurable fpgas. In ASP-DAC, pages 661–667, 2011.

[11] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling of
task graphs with real-time constraints. In ASP-DAC, pages 123–128.
IEEE Press, 2011.

[12] I. Kuon and J. Rose. Measuring the gap between fpgas and asics.
TCAD, 26:203–215, 2007.

[13] F. Li, Y. Lin, and L. He. Field programmability of supply voltages for
fpga power reduction. TCAD, 26:752–764, 2007.

[14] A. Raghunathan, N. K. Jha, and S. Dey. High-Level Power Analysis
and Optimization. 1998.

[15] A. Sathanur et al. Row-based power-gating: a novel sleep transistor
insertion methodology for leakage power optimization in nanometer
cmos circuits. VLSI, 19:469–482, 2011.

[16] M. Shafique, L. Bauer, and J. Henkel. Remis: Run-time energy
minimization scheme in a reconfigurable processor with dynamic
power-gated instruction set. In ICCAD, pages 55–62, 2009.

[17] A. K. Singh et al. Energy optimization by exploiting execution slacks
in streaming applications on multiprocessor systems. In DAC, pages
115:1–115:7, 2013.

[18] A. K. Singh et al. Mapping real-life applications on run-time
reconfigurable noc-based mpsoc on fpga. In FPT, pages 365–368,
2010.

[19] O. Sinnen. Task scheduling for parallel systems, volume 60. 2007.
[20] C. Steiger, H. Walder, and M. Platzner. Heuristics for online

scheduling real-time tasks to partially reconfigurable devices. FPGA,
pages 575–584, 2003.

[21] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A 90nm
low-power fpga for battery-powered applications. In FPGA, pages
3–11, 2006.

[22] T. Tuan and B. Lai. Leakage power analysis of a 90nm fpga. In
CICC, pages 57–60, 2003.

[23] Xilinx. Partial reconfiguration user guide. Technical report.
[24] S. Yang et al. Accurate stacking effect macro-modeling of leakage

power in sub-100 nm circuits. In VLSI Design, 2005. 18th
International Conference on, pages 165–170, 2005.

[25] P. Yuh et al. Leakage-aware task scheduling for partially dynamically
reconfigurable fpgas. TODAES, 14:52, 2009.

[26] M. Zapater et al. Leakage and temperature aware server control for
improving energy efficiency in data centers. In DATE, pages
266–269, 2013.

