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Abstract—Shrinking transistor geometries, aggressive volt-
age scaling and higher operating frequencies have nega-
tively impacted the dependability of embedded multiproces-
sor systems-on-chip (MPSoCs). Fault-tolerance and energy
efficiency are the two most desired features of modern-
day MPSoCs. For most of the multimedia applications, task
communication energy constitutes more than 40% of the
overall application energy. In this paper, an integer linear
programming (ILP) based approach is proposed to reduce the
communication energy and fault-tolerant migration overhead
of throughput-constrained multimedia applications modeled
using synchronous data flow graphs (SDFGs). The ILP is solved
at compile-time for all fault-scenarios to generate task-core
mappings satisfying an application throughput requirement.
These mappings are stored in a table which is looked up at
run-time as and when faults occur. Experiments conducted with
real and synthetic applications demonstrate that the proposed
technique reduces communication energy by an average 40%
and migration overhead by 33% as compared to the existing
fault-tolerant techniques.

Keywords-Fault-Tolerance; Task Mapping; Communication
Energy; Synchronous Data Flow Graph; Linear Programming;

I. INTRODUCTION

To accommodate the ever increasing demands of applica-
tions and for the ease of scalability, multiprocessor systems-
on-chip (MPSoCs) are becoming the obvious design choice
in current and future technologies with streaming multimedia
applications constituting a large fraction of the application
space [1]. With reducing feature size and increasing transis-
tor count, MPSoCs are becoming susceptible to permanent
and transient faults [2]. This research focuses on permanent
fault-tolerant techniques.

Permanent faults are traditionally tackled using hardware
redundancy [3]. However, stringent area and power budgets
are prohibiting the use of hardware redundancy in mod-
ern systems. Software fault-tolerant techniques like task-
migration are gaining popularity among research community
[4]–[9]. Task migration involves remapping of tasks from a
faulty core to other functional cores by moving the task’s
code and data memory (referred to hereafter as state space).

Most modern day MPSoCs consist of cores interconnected
with networks-on-chip (NoCs) in a mesh-based architec-
ture1. Multimedia applications mapped to these MPSoCs are
typically executed multiple times in a periodic fashion with
the average number of iterations per unit time determining

1While a mesh-based topology is assumed for the target MPSoC, the
research is orthogonal to any other topologies such as torus and tree

the throughput. When one or more cores of an MPSoC
become faulty, the MPSoC is unavailable during the task
remapping time. The new location (core) for a task on a
faulty core is pivotal in determining the energy consumption
associated with communication among its dependent tasks.
Tasks migrated further away from their dependent tasks will
consume more energy per iteration of the application graph.

Multimedia applications are characterized by fixed
throughput requirement, violation of which directly impacts
user experience. The task migration objective for multimedia
applications can therefore be summarized as reduction of
migration overhead and communication energy while sat-
isfying the application throughput requirement. Most of the
fault-tolerant task-migration research works have focused on
minimizing migration overhead [5] and load balancing [7] or
maximizing the reliability of a system [4]. These techniques
provide no guarantee on the application throughput making
them unsuitable for multimedia systems. Recently, there is
a study to maximize throughput under faulty scenarios [9].
Migration overhead and task communication cost are not
accounted and therefore can increase significantly in this
technique. On the power minimization research direction,
there are works focusing on energy-aware scheduling tech-
niques [10]–[14]. However, either they do not address task
movement under faulty scenarios or the joint consideration
of throughput, energy and migration overhead are lacking.

Contributions: The focus of this paper is on software
technique for tolerating permanent faults in homogeneous
multimedia multiprocessor systems with applications mod-
eled using Synchronous Data Flow Graphs (SDFGs) [15].
Key contributions of this paper are the following.

• Communication energy aware fault-tolerant task map-
ping of throughput constrained multimedia applications

• Integer linear programming (ILP) based minimization
of migration overhead, throughput degradation and
communication energy

• Consideration of hop-count in the migration overhead
computation

The ILP is solved at compile-time to determine task-
core mappings for all fault scenarios. These mappings are
stored in a table for lookup at run-time as and when faults
occur. Experiments conducted with synthetic and real appli-
cation graphs demonstrate that the proposed fault-tolerant
technique minimizes communication energy by 40% with a
reduction of 33% in migration overhead as compared to the
existing techniques [6] [9].



The rest of the paper is organized as follows. A brief
overview of the prior art is provided in Section II followed
by a motivating example in Section III to emphasize the
importance of this work. SDFG is introduced next in Section
IV. Task communication energy and migration overhead are
modeled in Section V & VI respectively. ILP formulation
is discussed in Section VII and the proposed methodology
in Section VIII. Section IX provides simulation results and
Section X concludes the paper with future directions.

II. RELATED WORKS

The need for dependable and energy-efficient designs for
battery-powered MPSoCs have led to two research directions
on task mapping – fault-tolerance and energy minimization.
Recently, efforts are made towards joint optimization of
energy and fault-tolerance. This section provides some key
initiatives for each of these research directions.

A. Fault-tolerant task mapping and scheduling
The existing fault-tolerant research can broadly be classi-

fied into two categories – architecture level and application
level. A popular architecture level fault-tolerant technique
is to replicate critical design components [3]. Stringent area
and power budget are increasingly prohibiting the use of
redundancy based designs for MPSoCs.

One of the widely used application level fault-tolerant
techniques is task migration. Task remapping decisions can
be pre-computed at compile-time (analyzing all possible
fault-scenarios) or can be decided at run-time as and when
faults occur. Accordingly, task migration can be categorized
as static and dynamic. Dynamic approaches monitor system-
status and decide to migrate tasks at run-time to minimize
migration overhead [5] [6] or balance processor load [7].
A limitation of these techniques is that throughput is not
always guaranteed. Moreover, migration algorithms need to
be simple to minimize computation overhead.

Static task migration techniques compute task mapping
decisions at compile-time for different fault-scenarios [8],
[9]. As faults occur, these mappings are looked up at run-
time to carry out task-migration. An advantage of these
techniques is that any sophisticated algorithm can be used
at compile-time albeit the storage overhead.

B. Energy-aware task mapping and scheduling
To accommodate the ever increasing demand of perfor-

mance and features in MPSoCs, energy budget is becoming
more stringent. Researchers have focused on every aspect
of energy reduction techniques. These techniques can be
classified into circuit-level approaches (power gating, for
example) and software approaches such as energy-aware
scheduling where tasks are scheduled on cores to minimize
the overall energy consumption.

Recently, software approaches are gaining a lot of interest
among research community. A dynamic voltage scaling
technique is proposed in [10] to minimize the energy con-
sumption. The slack budgeting technique of [11] distributes
execution time slack of a task among other tasks, to re-
duce their frequency of operation. A gradient-based energy
minimization is proposed in [12]. However, none of these
research works address the task movement from faulty cores.

C. Energy-reliability joint optimization
In recent years, quite some efforts have been made to-

wards joint optimization of fault-tolerance and energy. An
ILP based approach is presented in [13]. Energy optimiza-
tion is performed under the constraint of task-execution time
which incorporates fault-tolerance overhead using check-
pointing based recovery model. This technique is not suitable
for permanent failures as it does not address the actual
task migration under different faulty-scenarios. Moreover,
throughput, communication energy and migration overhead
are not addressed in this paper.

A lifetime-reliability aware scheduling technique is de-
veloped in [14] to minimize energy consumption. Tasks
are scheduled on processors equipped with dynamic volt-
age scaling (DVS) capabilities. However, throughput is not
guaranteed in this technique either.

To summarize, none of the existing techniques address
minimization of throughput degradation, communication en-
ergy and migration-overhead simultaneously.

III. MOTIVATION

Most streaming multimedia applications, like H.263 de-
coder, demand fixed throughput which is manifested as
the quality-of-service (QoS) requirement. The importance
of migration cost for multimedia applications has already
been established [16]. In this section, examples are provided
to signify the importance of hop distance for migration
overhead and task communication energy.

A. Importance of hop distance
Figure 1(a) shows a synthetic application with 9 tasks

mapped on a target architecture with 6 cores. The no-fault
task mapping is shown in Figure 1(b) with the number
in parenthesis against each task indicating the size of its
state space. Figure 1(c) and 1(d) show two different task
mappings satisfying the application throughput requirement
with core c3 as faulty. The migration overhead for Figure
1(c) involves migrating 180 units of state space of task F
from core c3 to core c0 through one hop and 120 units for
task I from core c3 to core c1 through two hops. Thus,
the total overhead is 180 + 2 × 120 = 420 units. The
migration overhead for Figure 1(d) are 180 units and 120
units through one hop each for task F and I respectively.
The total overhead is therefore 180 + 120 = 300 units.
If only state space is considered for migration, the two
configurations 1(c) and 1(d) are equally good to be selected
(state space are 300 units each). However, selecting 1(c)
results in 40% extra migration overhead in reality than 1(d)
due to extra hops.

B. Importance of task communication energy
A multimedia application (MP3 decoder for example) is

characterized by periodic execution of its constituent tasks.
The energy associated with data communication among
these tasks contributes to ≈ 40% of the total dynamic energy
of the application. With reference to Figure 1(a), the directed
arcs of the graph indicate producer-consumer relationship.
As an example, the data produced by source task A is
consumed by B; the data produced by B is consumed by
both C and D and so on. When tasks are mapped to cores,
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Figure 1. Importance of hop-count and communication energy

Table I
COMMUNICATION ENERGY ESTIMATE

Links Hop Distance Token size of Comm. Energy
cfg 1(c) cfg 1(d) source task cfg 1(c) cfg 1(d)

C − F 2 0 32 64Ebit 0
C − I 1 0 32 32Ebit 0
D − I 1 0 64 64Ebit 0
F −G 0 2 64 0 128Ebit

I −G 1 2 64 64Ebit 128Ebit

Total 224Ebit 256Ebit

the data produced from a task on a source core need to be
communicated to a task on the sink core. If the producer and
the consumer tasks are mapped to the same core, there is
no communication energy involved. However, if the cores of
the source and the sink tasks are different, energy is required
to transfer every bit of data between these cores [17].

Figure 1(c,d) represent two task mappings obtained from
Figure 1(b) with core c3 as faulty. There are five producer-
consumer relations that are affected due to task remapping:
C − F , C − I , D − I , F − G and I − G. In Figure 1(c),
the two tasks F and I of core c3 are mapped to cores c0
and c1 respectively. In Figure 1(d) however, the two tasks
F and I are both mapped to core c4. Table I shows the
hop count (distance), the data communicated and the energy
associated for the two mappings. Ebit is energy required
to communicate every bit of information. The energy of
communication is directly proportional to the hop distance
and the data communicated (referred to hereafter as token).

From the table it can be concluded that although, the
computation energy remains unaltered due to homogeneous
platform, extra communication energy is incurred in every
iteration of the graph if 1(d) is selected as the mapping after
core c3 becomes faulty.

IV. SYNCHRONOUS DATA FLOW GRAPH (SDFG)

Synchronous Data Flow Graphs (SDFGs, see [15]) are
often used for modeling modern DSP applications and for
designing concurrent multimedia applications implemented
on a multi-processor system-on-chip. The nodes of an SDFG
are called actors; they represent functions that are computed
by reading tokens (data items) from their input ports and
writing the results of the computation as tokens on the output
ports. The number of tokens produced or consumed in one
execution of actor is called port rate, and remains constant.
The rates are visualized as port annotations. Actor execution
is also called firing, and requires a fixed amount of time,
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Figure 3. Self-timed execution

denoted with a number in the actors. The edges in the graph,
called channels, represent data that is communicated.

Figure 2 shows the SDF Graph of H.263 encoder.
There are eight actors in this graph. In the example, actor
motion estimation has rate of 1 on all input edges and
a rate of 99 on its output edge. An actor is called ready
when it has sufficient input tokens on all its input edges
and sufficient buffer space on all its output channels; an
actor can only fire when it is ready. The edges may also
contain initial tokens, indicated by bullets on the edges,
as seen on the edge from actor motion compensation to
motion estimation in Figure 2. A set Ports of ports
is assumed, and with each port p ∈ Ports a finite rate
Rate(p) ∈ N \ {0} is associated.

When an actor a starts its firing, it removes Rate(q)
tokens from all (p, q) ∈ InC(a). The execution continues
for τ(a) time units and when it ends, it produces Rate(p)
tokens on every (p, q) ∈ OutC(a).

Self-timed execution (ref [18]) is widely used for schedul-
ing SDFG. Static-schedules are constructed using worst-case
actor execution times at compile-time. The actor ordering
on tiles are retained discarding the timing information. At
run-time, actors are fired maintaining the same order as
determined at compile-time. In this respect the following
lemmas are stated. For proof, readers are urged to refer [18].

Lemma 1: For a consistent and strongly connected
SDFG, the self-timed execution consists of a transient phase
followed by a periodic phase.

Lemma 2: For a consistent and strongly connected
SDFG, the throughput of an actor is given by the average
firing of the actor per unit time in the periodic phase of the
self-timed execution.

V. MODELING COMMUNICATION ENERGY

Energy modeling for NoC-based MPSoCs has received
significant attention in recent times. In [17], bit energy (Ebit)
is defined as the energy consumed when one bit of data is
communicated through the routers and links of a NoC.

Ebit = ESbit + ELbit (1)

where ESbit
and ELbit

are the energy consumed on the
switch and the link respectively. The energy per bit con-



G(A,C) = Given SDFG
Si = Self timed scedule for core i

trans(Si) = Transient phase of Si

steady(Si) = Periodic phase of Si

actors(trans(Si)) = Set of actors in the transient phase
of Si

actors(steady(Si)) = Set of actors in the periodic phase
of Si

rpt(trans(Si), a) = Number of firing of actor a in the
transient phase of Si

rpt(steady(Si), a) = Number of firing of actor a in the
periodic phase of Si

connect(a) = Set of tasks dependent on task a
map(a, b) = Binary variable takes on the value

1 when tasks a and b are mapped
to different tiles and is 0 otherwise

t = Number of actors
p = Number of tiles
F = Level of fault-tolerance desired
τ = Application throughput constraint

Mp−f
t = Set of mappings of t actors

on p− f tiles
M = Complete set of mappings

= {Mp
t ,M

p−1
t , · · · ,Mp−F

t }
mp−f

t (i) = a mapping ∈Mp−f
t

mp
t = initial no-fault mapping
T = Set of throughputs

corresponding to mapping m ∈M
(e0, e1, · · · , ef ) = f -fault-scenario with

first fault occurring at tile e0
second at tile e1 and so on

Table II
NOTATIONS AND LEGENDS USED IN THIS PAPER

sumed in transferring data between tile i and tile j, situated
nhops(i, j) away is given by Equation 2 according to [11].

Ebit(i, j) = nhops(i, j)×ESbit + (nhops(i, j)− 1)×ELbit (2)

As has been established in Section IV, the self-timed
execution of SDFG consists of transient and periodic phase
where the transient phase is executed once while the periodic
phase is executed repeatedly. Figure 3 shows an example
self-timed execution of 3 actors – a, b and c on a core.

When actor a on tile ta fires, the total number of tokens
produced on channel p in one iteration is Token(p) ×
Rate(p). If channel p connects to another actor b on tile tb,
then the energy (Eb

a) of communicating tokens from actor a
to actor b per iteration is given by Equation 3.

Eb
a = Ebit(ta, tb)× (Token(p)×Rate(p))× TokSize (3)

where TokSize is the token size (in bits) communicated.
However, if actors a and b are mapped to the same tile, then
Eb

a = 0. Using notations from Table II, the periodic energy
per iteration of a schedule Si of mapping m is given by

Esteady(Si) =
∑(

rpt(steady(Si), a)
∑

Eb
a

)
(4)

where the outer sum is evaluated ∀a ∈ actors(steady(Si))
and the inner sum ∀b ∈ connect(a). In a similar way,
the transient energy is formulated with steady replaced by
trans. The overall communication energy of mapping m is

Ecomm(m) =
∑
∀i

(Etrans(Si) + n ∗ Esteady(Si)) (5)

where i ∈ [1, 2, · · · , p], p is the number of tiles and n is the
number of iterations of the periodic phase of the application
graph. Usually, the number of periodic iterations is a large
number (can be regarded as periodic decoding of every frame
for a video application) and hence for all practical purposes,
the energy of the periodic phase dominates over the transient

energy. Throughout the rest of this paper, communication
energy will imply energy of the periodic phase (Esteady)
per iteration.

VI. MODELING MIGRATION OVERHEAD

The migration overhead of an actor is measured by the
size of its state space times the hop distance traveled
during migration. In order to couple this with the actor
communication energy, the migration overhead is converted
to energy overhead. Specifically, if src(a) is the tile for actor
a before fault occurrence and dst(a) is its new location after
fault, the energy associated with this migration is given by
Equation 6.

Emig(a) = StateSpace(a) ∗ Ebit(src(a), dst(a)) (6)
≈ StateSpace(a) ∗ nhops(src(a), dst(a)) ∗ Ebit

From Equation 6, it is clear that minimizing the migration
overhead is equivalent to minimizing the migration energy.

VII. PROBLEM FORMULATION

This section formulates the minimization of migration
overhead considering one of the tiles to be faulty. Later in
Section VIII, details are provided on the integration of this
formulation with the actor communication cost to form the
proposed fault-tolerant methodology.

Given:
• Application SDFG G(A,C) (|A| = t)
• Mapping of t actors on k tiles mk

t (k ≤ p)
• New mapping of t actors on k − 1 tiles mk−1

t
• Faulty tile ID f

Objective:
Minimize migration overhead (equivalently migration en-
ergy) in moving from mk

t to mk−1
t .

Simplification:
In order to simplify the objective, we form an energy
matrix (Table III) with tiles from mapping mk

t forming the
rows (indicated by oi) and the tiles from mk−1

t forming



Table III
ENERGY TABLE

EM(oi,nj) n1 n2 n3 · · · nf · · · nk−1
o1 50 205 180 · · · 0 · · · 175
o2 200 100 180 · · · 0 · · · 200
o3 200 175 130 · · · 0 · · · 125
...

...
...

...
. . .

...
. . .

...
of 0 0 0 · · · · · · · · · 0
...

...
...

... · · ·
... · · ·

...
ok 165 110 120 · · · 0 · · · 135

the columns (indicated by nj). The rows (and columns)
corresponding to the unused tile(s) and the fault ID f
are filled with zeroes. The non-zero entries (oi, nj) of the
energy matrix (referred hereafter as EM ) correspond to the
migration energy associated with the extra actor(s) on tile
nj of mk−1

t which is (are) not present on tile oi of mk
t . This

is computed as follows.

actors(ox, k) = actors mapped on tile ox of mk
t

actors(nx, k − 1) = actors mapped on tile nx of mk−1
t

EM(oi, nj) =
∑

∀a∈actors(nj ,k−1)

a/∈actors(oi,k)

Emig(a)

ILP Formulation:
Base Variables: Xij , i ∈ [1, k], j ∈ [1, k − 1]
Objective: Minimize z =

∑
ij Xij × EM(oi, nj)

Constraints:
One element from each row and column is to be selected

k−1∑
j=1

Xij := 1, ∀i ∈ [1, k],

k∑
i=1

Xij := 1, ∀j ∈ [1, k − 1] (7)

VIII. FAULT-TOLERANT METHODOLOGY

Figure 4 gives an overview of the proposed technique.
The methodology is split into two phases – compile-time
analysis phase and run-time execution phase. At compile-
time, analysis is performed for every fault-scenario to deter-
mine a set of mappings which give minimum communication
energy. Migration overhead for these mappings is computed
using the ILP technique of Section VII. The mapping with
minimum migration overhead is selected. Thus, for every
fault-scenario, a mapping is determined. These mappings
are stored in a table for use at run-time. The proposed
methodology prioritizes communication energy over migra-
tion overhead based on the fact that migration overhead is
incurred only when faults occur, but communication energy
is consumed in every iteration of the application.

The pseudo-code of the proposed methodology is pre-
sented in Algorithm 1. The first step is the generation
of the mapping set M and the throughput set T (line 1-
2)2. The mapping set is pruned to retain those mappings
which satisfy the application throughput constraint (line 3).
Following this, there are F iterations (line 4-24). At each
iteration f , mappings are selected for every fault-scenario

2Throughput for a mapping is computed using the SDF3 tool [19].
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Figure 4. Design Methodology

with f tiles as faulty. These mappings (stored in HashMap
data-structure) give the lowest communication energy and
migration overhead satisfying the throughput constraint τ .

In every iteration of the outer for loop (line 4-24), the
mapping set Mp−f

t is further pruned to retain mappings
with minimum communication energy (line 7). A set of
fault-scenarios are then determined (line 8). As an example,
the set of 3-fault scenarios for an architecture with 4
tiles are {(0, 1, 2), (0, 1, 3), (0, 2, 3), · · · }. For every fault-
scenario of this set, a reduced scenario is generated along
with the current fault ID (line 11-12). A reduced scenario of
(e0, e1, · · · , ef ) is (e0, e1, · · · , ef−1) with ef as the current
fault-ID. It is to be noted that the mapping set for the reduced
scenario is already obtained in the previous iteration and
is stored in the table. This mapping is fetched from the
HashMap (line 14) (referred to as mp−f+1

t ). For each
mapping mp−f

t (i) ∈ Mp−f
t , the ILP is solved (line 16) to

obtain the least migration energy. The mapping which gives
the minimum migration energy is stored in HashMap for
the particular fault-scenario. For the ease of representation,
a linearization technique is applied where each mapping mi

is represented by a tuple (t0i , t
1
i , .., t

s−1
i ) where, tki is the

tile to which actor ak is mapped. A mapping ID (mIDi) is
assigned to mapping mi which is calculated as

mIDi =

t−1∑
j=0

tji × pj (8)

IX. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section provides an overview of the computations
performed and the complexity of the proposed algorithms.
Simulation experiments are conducted with synthetic and
real application graphs on a quad-core Intel Xeon 2.4GHz
server running Linux. Algorithms are implemented in C++
integrated with Matlab and used in conjunction with the
SDF3 [19] tool for throughput computation. The ILP is
solved using Matlab optimization toolbox.

As established in Section II, there are three categories of
research relevant to this work – throughput maximization,
migration overhead minimization and energy minimization.
The proposed technique is compared with the represen-
tative from each of these categories i.e. with throughput
maximization technique of [9] (referred to as TMax), mi-
gration overhead minimization technique of [6] (referred



Algorithm 1 Determine fault-tolerant mappings
Input: mp

t , SDFG(A,C), τ , F , HashMap (H)
Output: minimum energy mappings satisfying throughput

constraint for f = 1 to F faults
1: Determine M
2: T := SDF 3 getThroughput(M)
3: ∀m ∈M, if T (m) ≥ τ, M̂ .add(m)
4: for f ∈ [1, F ] do
5: Mp−f

t := mappings (of set M̂ ) with f less tiles
6: ∀m ∈Mp−f

t , determine Ecomm(m)
7: Ωp−f

t := mappings (of set Mp−f
t ) with min. energy

8: Sf := genFaultScenarios(f)
9: for all sf ∈ Sf do

10: mapEnergy :=∞, map = NULL
11: (ei1 , ei2 , · · · , eif ) := sf
12: sf−1 := (ei1 , ei2 , · · · , eif−1

)
13: fID := eif
14: mp−f+1

t := HashMap[sf−1].getMap()

15: for all mp−f
t (i) ∈ Ωp−f

t do
16: Emig := solveILP (mp−f+1

t ,mp−f
t (i), fID)

17: if Emig ≤ mapEnergy then
18: mapEnergy := Emig

19: map := mp−f
t (i)

20: end if
21: end for
22: HashMap[sf ].setMap(map)
23: end for
24: end for

to as OMin) and energy minimization technique of [11]
(referred to as EMin). Although EMin does not address fault-
tolerance, results are compared with it to determine how far
our approach is from the minimum energy possible with the
application on the given architecture (without considering
throughput degradation and fault-tolerance). Our approach
is referred as Throughput constraint COmmunication Energy
and Migration overhead minimization (TCOEM).

A. Migration cost and communication energy performance
Figure 5 plots the average communication energy of

TCOEM for single and double faults of synthetic applica-
tions with varying actors on an architecture with 8 tiles.
An application is represented by App j, where j is the
number of actors. TMax is the only approach which con-
siders throughput (suitable for multimedia applications) and
therefore our approach is compared with TMax. Further, to
signify the potential energy savings possible, TMax tech-
nique is split into two categories – one resulting in maximum
communication energy (TMax EMax) and one resulting in
minimum communication energy (TMax EMin). The com-
munication energy of all three techniques are normalized
with respect to the computation energy for an application.
The percentage change of TMax EMin and TCOEM with
respect to TMax EMax and TMax EMin respectively are
indicated on the bars. Although, not explicitly captured in the
figure, the communication energy (of TMax EMax) for the
applications constitute on average 55% of the total energy.

As can be seen from Figure 5, communication energy

Figure 5. Energy savings for different applications

Table IV
MIGRATION ENERGY PERFORMANCE OF TCOEM

Migration Energy (nJ) Comm. Energy (nJ)

App 8

EMin OMax 187,836 9,589
TMax OMin 2,406 13,876

TCOEM 1,575 8,868
OMin 1,402 18,153

App 10

EMin OMax 192,305 1,257
TMax OMin 3,581 7,651

TCOEM 2,418 1,221
OMin 1,559 56,967

of TMax EMin is 38% less on average, as compared to
TMax EMax. Clearly, any mapping which does not consider
communication energy can have this extra energy overhead
per iteration of the application graph. This justifies the
consideration of communication energy for fault-tolerant
task remapping of throughput-constrained multimedia ap-
plications. Additionally, our TCOEM approach reduces the
communication energy further by exploring all mappings
(including the highest throughput mappings) which sat-
isfy application throughput requirement. The energy gain
of TCOEM for T 10 is more than 60% with respect to
TMax EMin. This is because for this application, the highest
throughput mapping and the least energy mapping points are
significantly different in terms of energy. On the other hand,
for T 12, these two mappings are closer and therefore the
energy gain is ≈ 8%. On average, the proposed TCOEM
approach achieves energy savings of 40% with respect to
TMax EMin. In terms of the total energy (communication
+ computation), this saving is around 20%.

Table IV reports the migration overhead of our approach
for two different applications with 8 and 10 actors on an
architecture with 8 tiles. The migration overhead is measured
in terms of energy needed to transfer the state-space of the
actors that are migrated. Our approach is compared with
OMin to identify how far our approach is from the mini-
mum migration overhead point. Like in the case of energy,
TMax technique can be split based on migration overhead;
however, TMax with minimum overhead (TMax OMin) is
only included for comparison. Additionally, to signify the
potential migration overhead incurred with energy minimiza-
tion alone, our approach is also compared with EMin, which
results in highest migration overhead satisfying throughput
requirement (EMin OMax). An important point to note is
that TCOEM is fundamentally EMin followed by overhead
minimization (i.e. EMin OMin) with throughput require-
ment. However, the naming convention for our approach is
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Figure 6. Communication energy with varying number of actors

retained for consistency.
As can be seen from the table, TCOEM achieves the

minimum migration and communication energy among
TMax OMin and EMax OMax. On average, TCOEM
achieves 99% less migration energy with respect to
EMin OMax. Thus, minimizing communication energy
alone can result in substantial migration overhead. Moreover,
TCOEM reduces migration energy by 33% (on average)
with respect to TMax OMin signifying the importance of
our approach for fault-tolerant task migration. In compar-
ison with OMin (minimum migration technique without
considering throughput), Table IV shows that our approach
incurs an extra migration energy of ≈ 860nJ for App 10.
However, the communication energy savings per iteration
of the application graph is ≈ 55, 000nJ . Thus, the energy
lost in migration due to fault occurrence is recovered within
the next iteration of the application graph. Similar result
is obtained for App 8. These results verify the assumption
that communication energy savings is more critical than
migration overhead for multimedia applications.

B. Energy gain with varying problem size
Figure 6 plots the average communication energy of the

four techniques (TMax, OMin, EMin and TCOEM) for
single and double fault scenarios with varying number of
actors. The reference architecture consists of 8 homogeneous
tiles and the energy numbers are normalized with respect to
the EMin technique. As can be seen from the figure, the
energy overhead of all the fault-tolerant techniques (TMax,
OMin and TCOEM) increases as the number of actors
increases. This is expected due to the increase in the data
traffic with increase in the number of actors. An important
trend to follow from this figure is that, although the energy
consumption of TCOEM increases with the number of
actors, the growth is slow and is close to the optimal
energy savings obtained using EMin. Energy consumption
of the other two techniques grows rapidly with the number
of actors. With 12 actors mapped on 8 cores, TCOEM
has an energy overhead of 10% whereas for TMax and
EMin, overheads are more than 100%. These results clearly
demonstrate the advantage of our approach for solution to
energy minimization and permanent fault-tolerance.

C. Throughput-energy performance
The experiments in previous sections are conducted for

throughput-constrained applications. Therefore, throughput
is not integrated into the optimization objective. A mapping
is selected as long as it satisfies the application throughput
requirement. However, to enable the use of our algorithm for

Table V
EXECUTION TIME AND MAPPINGS OF VARYING NUMBER OF ACTORS ON

8 TILES

Actors Homogeneous Min. Energy Execution Time (sec)
Mappings Mappings TMax TCOEM

8 1 1 0.616 0.616
9 36 6 9.718 1.012
10 750 11 71.269 1.014
11 11880 133 259.171 2.011
12 123411 311 933.282 3.533

scalable throughput applications, experiments are conducted
incorporating the throughput into the optimization objective.
Two real applications are considered – H263 encoder with
7 actors and MP3 decoder with 14 actors. The applications
are run on architectures with 6 and 12 tiles respectively.
Figure 7 plots the throughput per unit energy of the three
fault-tolerant techniques for some of the fault scenarios.
The energy considered is the sum of communication and
computation energy. The results are normalized with respect
to TMax. As expected, the performance of TCOEM is
superior among the existing fault-tolerant techniques due to
the consideration of throughput, communication energy and
migration overhead. On average, for all single and double
fault scenarios, TCOEM delivers 130% and 200% better
throughput per unit energy performance than TMax and
OMin respectively. Another trend to follow from Figure 7 is
that as the number of actors increases, the throughput/energy
also increases. MP3 Decoder with 14 actors has higher
throughput/energy for most of the fault-scenarios considered.
A similar trend is observed for other fault-scenarios and
with different application set. Due to space limitations, these
results are omitted.

D. Complexity
The complexity of Algorithm 1 is measured in terms

of number of computations performed. The total num-
ber of fault-scenarios with f -tiles as faulty is given by
permute(p, f) where the permute function gives the num-
ber of permutations of p tiles taken f at a time. For every
fault-scenario, the ILP is solved Nf times to obtain the
migration energy (Nf = |Mp−f

t |). The number of compu-
tations for f faulty tiles = permute(p, f) ∗Nf . Hence, the
overall complexity of Algorithm 1 is given by Equation 9
where O(ILP) is the complexity of the ILP solver and Nf

approximated with pt.

complexity =

F∑
f=1

(permute(p, f) ∗Nf ∗O(ILP )) (9)

≈ O(F ∗ pF ∗ pt ∗O(ILP ))

E. Execution Time
Table V reports the total number of homogeneous map-

ping (i.e. the set M ) evaluated and the execution-time of
TMax and TCOEM as the number of actors are scaled on
an architecture with 8 tiles. The number of mappings in
column 2 of Table V is reported considering homogeneity
of tiles [20]. For example, if there are 4 actors (a0, a1, a2, a3)
to be mapped on 4 homogeneous tiles (t0, t1, t2, t3), all
mapping permutations: (t0 − a0, t1 − a1, t2 − a2, t3 − a3),



0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2 4 5 0‐3 1‐0 2‐4 3‐5 4‐3 5‐2

Th
ro
ug
hp

ut
 p
er
 u
ni
t e

ne
rg
y

Fault Scenarios

H263 Encoder

TMax OMin TCOEM

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

2 4 5 0‐3 1‐0 2‐4 3‐5 4‐3 5‐2

Th
ro
ug
hp

ut
 p
er
 u
ni
t e

ne
rg
y

Fault Scenarios

MP3 Decoder

TMax Omin TCOEM

Figure 7. Normalized communication + computation energy for some fault scenarios with real audio and video applications

(t0 − a1, t1 − a2, t2 − a0, t3 − a3), · · · are equivalent.
Therefore, there is one mapping of 4 actors on 4 tiles. All
entries of column 2 are filled in a likewise manner.

The table also reports the number of mappings (out of
set M ), which gives minimum energy. The execution time
of TMax is dependent on the number of homogeneous
mappings evaluated and therefore grows exponentially with
the number of actors. The execution times for OMin and
EMin are similar to the time taken by TMax. The TCOEM
approach solves the ILP for every mapping of the minimum
energy mapping set. Clearly, the execution time of TCOEM
is less and is therefore scalable with larger problem size.

X. CONCLUSIONS & FUTURE DIRECTION

This paper minimizes the actor communication energy
and migration overhead jointly for fault-tolerant remap-
ping of tasks while satisfying the application throughput
requirement. Experiments with real and synthetic appli-
cations demonstrate that the proposed approach achieves
40% reduction in communication energy and 33% reduction
in migration overhead. Moreover, the proposed approach
is within 10% of the minimum energy achievable on the
platform. For scalable throughput applications, our approach
outperforms existing fault-tolerant techniques by more than
100% in terms of throughput/energy. In future, minimization
of actor computation energy can be investigated. Heuristic
approaches can also be considered as an alternative to
ILP for reduction of execution time. Finally, an approach
to reduce storage associated with the mappings and the
heterogeneity of the cores can be targeted in future.
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