
Analyzing Composability of Applications on MPSoC Platforms

Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal
Eindhoven University of Technology
5600MB Eindhoven, The Netherlands

Email: {a.kumar,b.mesman,b.d.theelen,h.corporaal}@tue.nl

Ha Yajun
National University of Singapore

10 Kent Ridge Crescent, Singapore
Email: elehy@nus.edu.sg

Abstract

Modern day applications require use of multi-processor
systems for reasons of performance, scalability and power
efficiency. As more and more applications are integrated in
a single system, mapping and analyzing them on a multi-
processor platform becomes a multi-dimensional problem.
Each possible set of applications that can be concurrently
active leads to a different use-case (also referred to as sce-
nario) that the system has to be verified and tested for. Ana-
lyzing the feasibility and resource utilization of all possible
use-cases becomes very demanding and often infeasible.

Therefore, in this paper, we highlight this issue of being
able to analyze applications in isolation while still being
able to reason about their overall behavior - also called
as composability. We make a number of novel observa-
tions about how arbitration plays an important role in sys-
tem behavior. We compare two commonly used arbitration
mechanisms, and highlight the properties that are important
for such analysis. We conclude that none of these arbitra-
tion mechanisms provide the necessary features for analy-
sis. They either suffer from scalability problems, or pro-
vide unreasonable estimates about performance, leading to
waste of resources and/or undesirable performance.

We further propose to use a resource manager (RM) to
ensure applications meet their performance requirements.
The basic functionalities of such a component are intro-
duced. A high-level simulation model is developed to study
the performance of RM, and a case study is performed for
a system running an H.263 and a JPEG decoder. The case
study illustrates at what granularity of control a resource
manager can effectively regulate the progress of applica-
tions such that they meet their performance requirements.

Index Terms—Composability, Predictability, MPSoC,
Arbitration, Non-preemptive, Heterogeneous, Resource
Manager.

1. Introduction

Current developments in set-top box products for me-
dia systems show a need for integrating a (potentially large)
number of applications or functions in a single device. The
consumer should not experience any significant artifacts or
delays when functions are switched on or off, or when mul-
tiple functions are executed concurrently. This places high
demands on the arbitration of available computational re-
sources as well as memory accesses. For systems with a sin-
gle general-purpose processor supporting pre-emption, the
analysis of schedulability of task deadlines is well known
[17] and widely used. In heterogeneous multi-processor
embedded systems without pre-emption however, the the-
ory of rate-monotonic analysis and the likes do not apply.
In order to predict the timing behavior of applications run-
ning on current and future hardware platforms, an alterna-
tive method for analysis is a necessary requirement for lim-
iting the design cost.

The analysis becomes a daunting task with the large
number of possibleuse-cases. (A use-caseis defined as
a possible set of concurrently running applications.) Future
multimedia platforms may easily run 20 applications in par-
allel, corresponding to an order of220 possible use-cases. It
is clearly impossible to verify the correct operation of all
these situations through testing and simulation. The prod-
uct divisions in large companies already report 60% to 70%
of their effort being spent in verifying potential use-cases
and this number will only increase in the near future. This
has motivated researchers to emphasize the ability to ana-
lyze and predict the behavior of applications and platforms
without extensive simulations of everyuse-case.

We would ideally want to analyze each sub-application
in isolation, thereby reducing the analysis time to a linear
function, and still reason about the overall behavior of the
system. One of the ways to achieve this, would be com-
plete virtualization. This essentially means dividing the
available resources by the total number of applications in
the system. The application would then have exclusive ac-
cess to its share of resources. For example, if we have 100

 0

 2

 4

 6

 8

 10

 12

 14

 A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

)

Applications

Comparison of Period: Virtualization vs Simulation

Estimated Full Virtualization
Average Case in Simulation

Worst Case in Simulation
Original (Individual)

Figure 1. Application performance as obtained with
full virtualization in comparison to simulation.

MHz processors and a total of 10 applications in the system,
each application would get 10 MHz of processing resource.
The same can be done for communication bandwidth and
memory requirements. Even discounting the fact that we
cannot achieve truegeneralized processor sharing, we have
two kinds of problems. When fewer than 10 tasks are ac-
tive, the tasks will not be able to exploit the extra available
processing power, leading to wastage. Secondly, the sys-
tem would be grossly over-dimensioned when the peak re-
quirements of each application are taken into account, even
though these peak requirements of applications may rarely
occur and never overlap.

Figure 1 shows this disparity in more detail. The graph
shows the period of ten streaming multimedia applications
(inverse of throughput) when they are run concurrently. The
period is the time taken for one iteration of the application.
The period has been normalized to the original period that
is achieved when each application is running in isolation.
If full virtualization is used, the period of applications in-
creases to about ten times on average. In practice, how-
ever, it increases only about five times. A system which is
built with full-virtualization in mind, would therefore, uti-
lize only 50% of the resources. Thus, throughput decreases
with complete virtualization.

Another way to reduce the complexity would be to an-
alyze the applications in isolation with as little information
from other applications as possible and then define acom-
posefunction to compute total requirement of the system.
This reduces the complexity of the analysis and still leads to
higher utilization of resources. In this paper, we studyhow
to reduce exponential analysis complexity to linear (or at
most polynomial) complexity, without paying the overhead
of complete virtualization. This problem is called ascom-

posability problem. In this paper, we study this problem in
detail, and bring to notice some very interesting and novel
observations. These are not found in any published litera-
ture, and are non-trivial to derive and important. While the
concepts are fairly basic, the interaction of multiple appli-
cations on a heterogeneous multiprocessor platform makes
the analysis complex.

Clearly, arbitration plays an important role in resolving
contention of resources. The overall system behavior de-
pends on the arbitration mechanism to a large extent. In
this paper, we compare the suitability of two very simple,
yet often used, arbitration mechanisms for such an analy-
sis. We propose a novel multiprocessor architecture with
an arbiter for each processor tile. We state requirements
for arbiters in future media platforms, and analyze these
properties (as much as possible) using Synchronous Data
Flow (SDF) graphs [16]. SDF graphs are a class ofmod-
els of computationthat allows analysis of systems at design
time. There are two requirements for using these models
of computation, namely the development of good analysis
tools that exploit these models, and the ability to capture
real-world behavior.

Two kinds of arbitration mechanisms are considered in
this paper -static-anddynamic-ordering.

• Static order: Actors - as defined in SDF model - are
repeatedly executed in an order specified by a pre-
defined list. If an actor is not ready to execute (i.e.
its input data has not yet arrived), the processor will
halt and wait.

• Dynamic order: Arbitration mechanisms which do not
have a pre-defined order fall in this category. Exam-
ples of dynamic order arbitrations are round-robin with
skipping and first-come-first-serve (FCFS). Order is ei-
ther not specified at all at design-time (FCFS) or only a
recommended order is specified which can be changed
in favor of work-conserving arbitration (round-robin
with skipping - RRWS). We shall limit to two dynamic
arbitration mechanism, namely, FCFS and RRWS.

Further, we find that none of the above arbitration mech-
anisms can be applied directly to composability analysis.
We therefore propose an alternative - the use of aResource
Manager (RM)for non-preemptive heterogeneous Multi-
Processor Systems-on-Chip (MPSoCs). We state the ba-
sic functionalities expected from such a component. While
most research only focuses on schedulability analysis, here
we also discuss the required protocol needed to realize a
working system. Further, we present a simulation model
developed using the modeling language POOSL [22] to val-
idate this protocol. POOSL is a very expressive modeling
language with a small set of powerful primitives and com-
pletely formally defined semantics. It furthermore serves as
a basis for performance analysis. This setup can be used to

2

study various trade-offs in design of an MPSoC. In this pa-
per, we use the setup to study the trade-off between control
overhead of monitoring and budget enforcement on the one
hand, and performance of applications on the other.

We assume the following for the scope of this paper.

• Multi-processor: For reasons of scalability and energy
consumption, a single high-performance processor is
not suitable for satisfying the computational demands
placed on future consumer devices.

• Non-preemptive: DSP processors and accelerator
hardware typically have a lot of states. As a result, the
interrupt delay is significant, whereas the typical exe-
cution time of an actor is much smaller than a task on
a conventional general-purpose processor. For embed-
ded systems in particular, non-preemptive scheduling
algorithms are easier to implement than preemptive al-
gorithms and have dramatically lower overhead at run-
time [13].

• Efficient arbitration: The arbitration mechanism
should be efficient, since the time required for arbi-
tration has to match the grain of actor executions.

• Heterogeneous architecture: The heterogeneity of sys-
tems is increasing with the use of specialized digital
hardware, application domain processors and other IP
(intellectual property) blocks on a single chip using
complex networks. This implies that mapping options
to hardware are often limited.

Section 2 provides an overview of related work. In Sec-
tion 3 we explain the concepts of composability and analyze
the effects of arbitration on the performance of systems.
The properties and requirements for arbitration are further
discussed in Section 4. Section 5 discusses the system we
propose with the use of a resource manager. Experimental
results with this setup are presented in Section 6. In Section
7 we present the conclusions and directions for future work.

2. Related Work

For traditional systems, with a single general-purpose
processor supporting pre-emption, the analysis of schedu-
lability of task deadlines is well known [17] and widely
used. Non-preemptive scheduling has received consider-
ably less attention. It was shown by Jeffay et al. [13] and
further strengthened by Cai and Kong [6] that the prob-
lem of determining whether a given periodic task system
is feasible even upon a single non-preemptive processor is
already intractable. Also, research on multiprocessor real-
time scheduling has mainly focused on preemptive systems
[8, 3].

Recently, more work has been done on non-preemptive
scheduling for multiprocessors [2]. Alternative methods

have been proposed for analyzing task performance and re-
source sharing. A formal approach to verification of MP-
SoC performance has been proposed in [20]. Use of real-
time calculus for schedulability analysis was proposed in
[23]. Besides providing a very pessimistic bound, the above
analysis techniques are also very compute intensive and re-
quire a very high design time effort.

SDF models have also been used extensively for analyz-
ing performance of systems. In [1], the authors propose to
analyze performance of asingle applicationmodeled as an
SDF graph (SDFG) mapped on a multi-processor system by
decomposing it into a homogeneous SDFG (HSDFG) [21],
and modeling dependencies of resources by adding extra
edges on the vertices. Vertices model actors in the appli-
cation. This can result in an exponential number of ver-
tices [19], after which the cycle mean of each cycle is com-
puted [7]. Throughput computation algorithms that have
a polynomial complexity for HSDFGs, therefore have an
exponential complexity for SDFGs. Algorithms have been
proposed to reduce average case execution [10], but it still
takes in practiceO(n2) time wheren is the number of ver-
tices in the graph. Besides, even for one application, the
number of ways extra edges can be added to model actor
dependency is exponential. For multiple applications the
number of computations is huge; and if we need to obtain
throughput of the graph, an HSDFG can take too much time
to analyze and provide results [10]. Further, only static or-
der arbitration can be modeled using this technique while
the best performance of SDFG applications is obtained in
a self-timed mechanism [21]. Dynamic ordering allows for
this self-timed behavior in applications.

For multiple applications, an approach that models re-
source contention by computingworst-case-response-time
for TDMA scheduling (requires preemption) has been ana-
lyzed in [4]. This analysis also requires limited information
from the other SDFGs, but gives a very conservative bound
that may be too pessimistic. As the number of applications
increases, the bound increases much more than the average
case performance. Further, this approach assumes a pre-
emptive system. A similar worst-case analysis approach for
round-robin is presented in [12], which also works on non-
preemptive systems, but suffers from the same problem of
lack of scalability. This is best illustrated by means of an ex-
ample shown in Figure 2. The example shows 3 application
SDF [16] graphs - A, B, and C, with 3 actors each. Actors
Ti are mapped on processing nodePi whereTi refers toAi,
Bi andCi for i = 1, 2, 3. Each actor takes 100 time units to
execute as shown.

Since 3 actors are mapped on the same node, an actor
may need to wait when it is ready to be executed at a node.
The maximum waiting time for a particular actor, can be
computed by considering thecritical instantas defined by
Liu and Layland [17]. The critical instant for a task is de-

3

Properties Liu etal [17] Jeffayetal [13] Baruah [2] Richteret al [20] Hoes [12] Our method
1973 1991 2006 2003 2004

Multiprocessor No No Yes Yes Yes Yes
Heterogeneous N. A. N. A. No Yes Yes Yes
Non-preemptive No Yes Yes Yes Yes Yes
Non-Periodic support No Yes No Yes Yes Yes
Utilization High High Low Low Low High
Guarantee Yes Yes Yes Yes Yes No

Table 1. Summary of related work (Heterogeneous property isnot applicable for uniprocessor schedulers)

100

100

100

A

100

100

100

B

100

100

100

C

A1 A2

A3

B1 B2

B3

C1 C2

C3

Figure 2. Example of a set of 3 application graphs.

fined as an instant at which a request for that task will have
the largest response time. Since the response time is equal
to sum of its waiting time and execution time, with exe-
cuting time being assumed constant, it can be translated as
the instant at which we have the largest waiting time. For
dynamic scheduling mechanisms, it occurs when an actor
becomess ready just after all the other actors, and therefore
has to wait for all the other actors. Thus, the total waiting
time is equal to the sum of processing times of all the other
actors on that particular node and given by the following
equation.

twait(Tij) =
m

∑

k=1,k 6=i

texec(Tkj) (1)

Heretexec(Tij) denotes the execution time of actorTij ,
i.e. actor of taskTi mapped on processorj. This leads to
a waiting time of 200 time units as shown in Figure 3. An
extra node has been added for each ‘real’ node to depict
the waiting time (WTAi). This suggests that each applica-
tion will take 900 time units in the worst case to finish ex-
ecution. This is the maximum period that can be obtained
for applications in the system, and is therefore guaranteed.
A resource manager approach can nicely interleave the ac-
tors and each application will only require 300 time units,

thereby achieving three times the performance guaranteed
by analysis in [12].

100

100

100

A

200 200

200

A1 A2

A3

WT A1 WT A2

WT A3

Figure 3. Modeling worst case waiting time for appli-
cation A in Fig. 2.

Table 1 shows a comparison of some analysis techniques
that have been presented in literature, and where our ap-
proach is different. As can be seen, all of the research done
in multiprocessor domain provides low utilization guaran-
tees. Our approach on the other hand aims at achieving high
utilization by sacrificing hard guarantees.

3. Composability

A typical multi-processor system-on-chip application
is usually composed of more than one smaller sub-
applications. For example, a mobile phone supports vari-
ous applications that can be active at the same time, such
as listening to mp3 music, typing an SMS and downloading
a java application in the background. Evaluating resource
requirement for each of these cases can be quite a challenge
even at design-time, let alone at run-time.

We define composability as the degree to which the map-
ping and analysis of applications on the platform can be per-
formed in isolation. Some of the things we would like to
analyze in isolation are for example, deadlock occurrence,
application throughput and computing a static schedule if
needed. Clearly, since there are more than one application
mapped on a multi-processor system, there is bound to be
contention for the resources. Due to this contention, the
throughput analyzed for an application in isolation is not
always achievable when the application runs together with
other applications. This will be demonstrated with the aid

4

of an example in section 3.2. In section 3.3 we show that
in case of static scheduling, the schedule complexity (and
therefore the program storage requirements) grows more
than linearly with the number of mapped applications. In
Section 3.4 we consider the computational requirements for
computing the timing behavior, and in section 3.5 we con-
sider the smooth transition when a new application enters
the system. All these observations are novel and have not
been studied in this context of heterogenous MPSoC plat-
forms. First, however, we shall provide a short introduction
to the modeling used for analysis in this paper, namely SDF
in Section 3.1.

3.1. SDF Modeling

5 7

10

3

6

3

1 1

4

4

4 2

1

1

A D
C

B

Figure 4. Example of an SDF Graph

Figure 4 shows an example of an SDF Graph. There are
four actors in this graph. As in a typical data flow graph,
a directed edge represents the dependency between tasks.
Tasks also need some input data (or control information)
before they can start and usually also produce some output
data; such information is referred to astokens. Actor exe-
cution is also calledfiring. So when sufficient input tokens
are available on all incoming edges of an actor, it is ready to
fire. Further, when an actor is ready to fire on a processing
nodeP , we say itarrivesatP .

An actor can only start execution when the required num-
ber of tokens are present on each of its incoming edge,
and upon completion produces the number of tokens spec-
ified on the outgoing edge. In an actual implementation,
edges indicate buffers in physical memory. The edges may
also containinitial tokenswhich denote data dependencies
across various iterations of the algorithm. These are indi-
cated by bullets on the edges.

In the above example, only A can start execution from
the initial state, since the required number of tokens are
present on all of its incoming edges. Once A has finished
execution it will produce 3 tokens on the edge to B. B can
then proceed as it has enough tokens and upon completion
produce 4 tokens on the edge to C. Another thing to note
is that since there are two initial tokens on the edge from
C to A, A can again fire as soon as it has finished the first
execution, without waiting for C to execute.

SDF graphs allow analysis of maximum achievable
throughput of a system by various algorithms [21]. Further,

SDF analysis also allows us to identify if a particular graph
or a schedule will result in a deadlock. HSDF - Homoge-
nous SDF - is a special class of SDF in which the number
of tokens consumed and produced is always equal to 1. For
simplicity (and without loss of generality), we shall con-
sider only HSDF graph, unless otherwise mentioned.

3.2. Composability Problem

Figure 5 shows an example of two task graphs A and
B with three actors, each mapped on a 3-processor sys-
tem. ActorsA1 andB1 are mapped ontoP1, A2 andB2

are mapped ontoP2, andA3 andB3 are mapped ontoP3.
Each actor as shown takes 100 clock cycles to execute and
because of dependency within the task graph, only one iter-
ation of each can be active. Thus, each task uses only 33%
of each processor node, and hence each processor can be
utilized at maximum for 67% because of executing a task
of each application. However, due to the dependencies -
both inter- and intra-task graphs, the maximum achievable
processor utilization is only 50%.

P1

P2

A

B

P3

t1t0 t2

100

100

100

A

100

100

100

B

t3

A1 A2

A3

B1 B2

B3

Steady State

Figure 5. An example showing why composability
needs to be examined. Individually each task takes
300 clock cycles to complete an iteration and requires
only 33% of processor resources. However, when an-
other job enters in the system, it is not possible to
schedule both of them with their optimal schedule of
300 clock cycles, even though the total request for a
node is only 67%.

Figure 5 also shows a schedule obtained when the ac-
tors are scheduled using dynamic scheduling. The first con-
tention between tasks A and B occur at instantt0, when both
A1 andB1 are ready to execute onP1. This arbitration goes
to A1, while B1 waits. Another contention occurs att1 for
processorP3, and then forP2 followed byP1. The schedule
shown in the figure assumes that A wins every arbitration.

5

The schedule soon settles into a steady state of 600 clock
cycles, in which A completes two iterations, while B com-
pletes only one. If B wins every arbitration, the situation
is reversed and B would execute twice as many times as A.
Since each processor is idle for half the number of clock
cycles, the utilization is only 50%. We tried many other
schedules (including preemption), some of which will be
shown later, and we could not achieve better performance.
This is a very important observation, and demonstrates that
even for very simple cases, it is not easy to predict the per-
formance of multiple applications. As can be seen from the
above example, simply adding up computational load of a
processor is not realistic.

3.3. Overhead of Multiple Use-cases

A static order strategy requires one to compute the opti-
mal schedule for each of the possible combinations. As the
number of applications increases, the total number of po-
tential use-cases rises exponentially. For a system with 10
applications in which up to 4 can be active at the same time,
there are approximately 400 possible combinations - and
it grows exponentially as we increase the number of con-
currently active applications. If static scheduling is used,
besides computing the schedule for all the use-cases offline
(design-time), one also has to be aware that they need to be
stored at run-time. The scalability of using static scheduling
for multiple jobs is therefore limited.

Dynamic scheduling mechanisms are more scalable in
this context. Clearly in FCFS, there is no such overhead
as no schedule is stored beforehand. In RRWS the easi-
est approach would be to store all actors for a processor
in the schedule. When an application is not active, its ac-
tors are simply skipped, without causing any trouble for
the scheduling kernel. It should also be mentioned here
that if an actor is required to be executed multiple number
of times, one can simply add more copies of that actor in
this list. This is one reason why RRWS might be preferred
over FCFS. RRWS in this way can provide easy rate-control
mechanism.

3.4. Computing Static Order Schedules

Three task graphs - A, B and C are shown in Figure 6.
Each is an HSDF with three actors. Let us assume each ac-
tor is mapped onto one processing node. Let us also assume
that actorsTi1 are mapped ontoP1, Ti2 are mapped ontoP2

andTi3 are mapped ontoP3; whereTi refers to tasks A, B
and C. This contention for resources is shown by the dotted
arrows in Figure 7. Clearly, by putting these dotted arrows,
we have fixed the actor-order for each processor node. If
an optimal ordering is to be computed for the entire system
when all three tasks are active at the same time, we need to

33

3

A B

5

13

C

53

1

A1 A2

A3

B1 B2

B3

C1 C2

C3

Figure 6. Example of a system with 3 applications.

combine different graphs into one big HSDF for complete
analysis. Figure 7(a) shows one such possibility when the
dotted arrows are used to combine the three task graphs.
Extra tokens have been inserted in these dotted edges to in-
dicate initial state of arbiter.

An astute reader would have noticed that this would only
be possible if each task is required to be run an equal num-
ber of times. If the rates of each task are not the same, we
need to introduce multiple copies of actors to achieve the
required ratio, thereby increasing analysis complexity.

When throughput analysis is done for this complete
graph, we obtain a mean cycle count of 11 [21]. This also
gives us the ideal order for each processing node. The bold
arrows represent the edges that limit the throughput. The
corresponding schedule is also shown. One actor of each of
the tasks, namelyTi1, is ready to fire at instantt0. We find
that the graph soon settles into the periodic schedule of 11
clock cycles. The period is denoted in the schedule diagram
of figure 7(a) between the time instantt1 andt2.

Figure 7(b) shows just another of the many possibilities
for ordering the actors of the complete HSDF. Interestingly,
the mean cycle count for this graph is 10, as indicated by the
bold arrows. In this case, the schedule starts repeating after
time t1, and the steady state length is 20 clock cycles, as
indicated by difference in time instantst1 andt2. However,
since two iterations for each task are completed, the period
is only 10 clock cycles.

From arbitration point of view, if task-graphs are ana-
lyzed in isolation, there seems to be no reason to prefer task
B or C after A has finished executing on processor 1. There
is at least a delay of 6 clock cycles before task A needs pro-
cessor 1 again. Also, since B and C each takes only 3 clock
cycles, 6 clock cycles are enough to finish their execution.
Further both are ready to be fired, and will not cause any
delay. Thus, the local information about a job and the tasks
that need a processor resource does not easily dictate pref-
erence of one task over another. However, as we see in this

6

33

3

A B

5

13

C

53

1

A1 A2

A3

B1 B2

B3

C1 C2

C3���� ���� ����	 �
��
��� ����

�� �� ���� �� ���� �� ���� ���� ���� ���� ���� ��

(a) Graph with clockwise schedule (static) gives MCM of 11 cycles.

33

3

A B

5

13

C

53

1

A1 A2

A3

B1 B2

B3

C1 C2

C3

t1t0 t2Steady State

A1 C1 B1 A1 A1C1 B1 C1

A2

A3

C2

C3

B2

B3

C2

C3 B3

A2

A3

B2 A2

(b) Graph with anti-clockwise schedule (static) gives MCM of 10 cycles.

Figure 7. Three individual task graphs give different MCM when scheduled differently. The respective cycles which
gives this MCM are shown in bold.

example, executing task C is indeed better for the overall
performance. Computing a static order relies on the global
information and produces the optimal performance. This
becomes a serious problem when considering MPSoC plat-
forms, since constructing the overall HSDF graph and then
computing its throughput is very compute intensive.

The number of possibilities for constructing the HSDF
from individual graphs is very large. In fact, if one tries to
combineg graphs of saya actors, scheduled in total ona
processors, there happen to be((g − 1)!)a unique combina-
tions, each with a different actor ordering, for only single
occurrence of each application. (Each processor hasg ac-
tors to schedule, and therefore(g − 1)! unique orderings on
a single processor. This leads to((g − 1)!)a unique combi-
nations since ordering on each processor is independent of
ordering on another.) To get an idea of vastness of this num-
ber, if there are 5 graphs with 10 actors each we get2410 or
close to6.34 · 1013 possible combinations. If each compu-
tation takes 1ms to compute [10], 2009 years are needed to
evaluate all possibilities. This is only considering the cases
with equal rates for each, and only for HSDF graphs. A
typical SDF graph with different execution rates would only
make the problem even more infeasible, since the transfor-
mation to HSDF yields many actor copies. An exhaustive

search through all the graphs is, therefore, not an option.
Thus, a simpler arbitration mechanism is needed with lesser
design overhead.

3.5. Deadlock

Deadlock avoidance and detection is an important con-
cern when tasks are activated dynamically. When static or-
der is being used, every new use-case requires a new sched-
ule to be loaded into the kernel. A naive reconfiguration
strategy can easily send the system into deadlock. This is
demonstrated with an example in Figure 8.

Say actorsA2 andB3 are running in the system on pro-
cessor node 2 and 3 respectively. Further assume that static
order for each processor currently is A, B when only these
two are active, and with a third task C, it becomes A, B,
C for each node. When C is activated, it gets processor 1
since that is available. Let us see what happens to processor
2: application A is running on it and it is then assigned to
application B. Processor 3 is assigned to C after B is done.
Thus, after each actor is finished executing on its currently
assigned processor, we obtainA3 waiting for processor 3
that is assigned to taskC3, B1 waiting for processor 1 which
is assigned toA1, andC2 waiting for processor 2, which is

7

Node Assigned to Task waiting Reassigned in RRWS
P1 A B B
P2 B C C
P3 C A A

Table 2. Table showing a deadlock condition

33

3

A B

5

13

C

53

1

A1 A2

A3

B1 B2

B3

C1 C2

C3

Figure 8. Deadlock situation when a new
job, C arrives in the system. A cycle
A1, B1, B2, C2, C3, A3, A1 is created without
any token in it.

assigned toB2. This can be expressed by Table 2.
Looking at Figure 8, it is easy to understand why the sys-

tem goes into a deadlock. The figure shows the state when
each task is waiting for a resource and not able to execute.
The tokens in the individual sub-graph show which actor is
ready to fire, and the token on the dotted edge represents
which resource is available to the task. In order for an actor
to fire, the token should be present on all its incoming edges
- in this case both on the incoming dotted edge and the solid
edge. It can be further noted that a cycle is formed without
any token in it. This is clearly a situation of deadlock [14]
since the actors on this cycle will never be enabled. This cy-
cle is shown in Figure 8 in bold edges. It is possible to take
special measure to check and prevent the system from going
into such deadlock. This, however, implies extra overhead
at both design-time and run-time. The task may also have
to wait before it can be admitted into the system.

The deadlock situation can be avoided quite easily by us-
ing dynamic scheduling. Clearly, for FCFS, it is not an is-
sue since resources are never blocked for non-ready actors.
For RRWS, when the system enters into a deadlock, the ar-
biter would simply skip to the actor that is indeed ready to
execute. Thus, processors 1, 2 and 3 are reassigned to B,
C and A as shown in Table 2. In addition, a task can be

activated at any point of time without worrying about dead-
lock. In dynamic scheduling, there can never be a deadlock
due to dependency on processing resources for atomic non-
preemptive systems.

4. Arbitration Requirements

Table 3 shows a summary of various performance pa-
rameters that we have considered in this paper. The static
scheduling clearly has a higher design-time overhead of
computing the optimal order for each use-case. The run-
time scheduler needed for both schedulers is quite simple,
since only a simple check is needed to see when the actor
is active and ready to fire. The memory requirement for
static scheduling is however, higher than that for a dynamic
mechanism. The static order certainly scores better than a
dynamic one when it comes to predictability of throughput
and resource utilization. Static-order approach is also better
when it comes to admitting a new job in the system since the
resource usage prior and after admitting the job are known
at design time. Therefore, a decision whether to accept it or
not is easier to make. However, extra measures are needed
to reconfigure the system properly so that the system does
not go into deadlock as mentioned earlier in Section 3.5.

A dynamic approach is able to handle dynamism better
than static order since orders are computed based on the
worst-case execution time. When the run-time varies sig-
nificantly, a static order is not able to benefit from early
termination of a process. The biggest disadvantage of static
order, however, lies in the fact that any change in the design,
e.g. adding a use-case to the system or a new processor
node, can not be accommodated at run-time.

From this summary, we conclude that dynamic mecha-
nisms satisfy most of our criteria. and is hence quite suitable
for a resource manager in an MPSoC. However, a resource
manager also needs a mechanism to enforce a time-budget
on the available resources for each application separately,
to ensure that they do not exceed the resource allocated for
it. We modeled such a resource manager and implemented
dynamic arbitration mechanisms. In the next section we ex-
plain the set up of the system

5. System Setup

An MPSoC consists of three kinds of resources - compu-
tation, communication and storage. We ignore in this paper
the contention for communication and storage resources as
computation resources already demonstrate the complexity
of the scheduling problem; and management of other re-
sources can be added in similar fashion. Figure 9 shows an
overview of the model. It has a tiled architecture, where
each tile can either be a processing tile, or a memory tile.

8

Property
Static Round Robin
Order with skipping

Design time overhead Calculating Schedules - - ++

Run-time overhead
Memory requirement - ++
Scheduling overhead + +

Predictability
Throughput ++ - -
Resource Utilization + -

New job admission
Admission criteria ++ - -
Deadlock-free guarantee - ++
Reconfiguration overhead - +

Dynamism
Variable Execution time - +
Handling new use-case - - ++

Table 3. Properties of Scheduling Strategies

I/O Int
ExtMem

RM

Tile

CA

P1

CA

P2

Mem
CA

P0

Arb Arb

Arb

M M

M

NI NI

NININI

Figure 9. Proposed system architecture.

The I/O interface in the model allows for interaction with
the input/output peripherals in the system, for example, key-
pad in case of a mobile phone. If some memory is stored
off-chip, it can also be accessed via the same interface. The
resource manager (RM) runs on one of the processing tiles.
For example, in figure 9, RM is run on processorP0. The
RM directs the usage of resources in the system. If the num-
ber of nodes is large, more than one tile can be allocated for
better distributed control.

Each processing tile consists of a processor, a small local
memory, a local arbiter and a communication assist (CA)
that is similar to the one described in [5]. A network-
interface (NI) is used to connect each tile to the network.
Æthereal is assumed to be used for communication infras-
tructure [11]. Besides, other benefits, it provides flow-
control at the level of connections. An architecture with
both CA and Æthereal allows easy decoupling of computa-
tion and communication. When an actor of one application
finishes its execution, the output data is placed in the local
memory of the processor. The processor then proceeds with
execution of other actor without spending time in communi-
cating the data to the destination node. This communication
is handled by the CA which transfers the data to the desti-

nation memory. When data from all the input edges has
been received, the actor is ready to be executed and can be
queued in the processor-arbiter.

5.1. Resource Manager

With increasing dynamism in modern applications, the
need for a separate task to monitor and direct the usage of
resources has arisen [24]. Such aresource manageris re-
sponsible for just that. It controls the access to resources
- both critical and non-critical, and enforces their usage.
Clearly, admission of a new job also falls in the scope of
resource manager. When a new job arrives in the system
and needs resources, the resource manager checks the cur-
rent state of the system and decides whether it has enough
resources to accommodate it. It also enforces a specified
resource budget for a task to ensure it only uses what was
requested. These two main functions, namelyadmission
controlandresource budget enforcement, are explained be-
low.

5.1.1 Admission Control

One of the main uses of a resource manager is admission
control for new applications. In a typical high-end multime-
dia system, applications are started at run-time, and deter-
mining if there are enough resources in the system to admit
new applications is non-trivial. As mentioned earlier, the
number of possible combinations with even a few applica-
tions can be very high. It is therefore, not feasible to analyze
all possible scenarios of applications. Thus, it is difficult to
predict the resource utilization when multiple applications
are allowed to run in the system.

When the RM receives request for a new application to
be started (through the I/O interface, or through another ap-
plication already running in the system), it fetches descrip-
tion of the incoming application from the memory. The de-
scription contains the following

9

• Desired performance: specified as average throughput.
• Performance bound: typically the minimum through-

put that the application may run at. This is explained
in more detail in Section 5.2.

• Actor array: A list of actors along with their execution
times, repetition vector [10] and node to which they
are mapped to.

The above information can also be in form of apareto-curve
where each point in the curve corresponds to a desired qual-
ity of the application and specification as above. With this
information, the RM checks if there are enough resources
available for all the applications to achieve their desiredper-
formance using apredictor(or in the case of a pareto-curve,
at which point the application can be run). The predictor
module in this setup simply adds the processor utilization
for each processing node and checks if it is less than 100%.
However, more research needs to be done for a more intelli-
gent predictor. An idea could be to reduce the 100% tox%
wherex is adaptive depending on the number of misses in
the past, for example.

One possibility would be to compute a static order sched-
ule of all the use-cases at design-time and store them, but
it is not a good idea as mentioned earlier. Another pos-
sibility is to analyze the applications running at run-time
and check how the incoming application will interact with
it. This clearly also makes the predictor more complex. A
good balance between run-time feasibility and design-time
complexity needs to be obtained.

if the predictor admits the application, then the resource
managerbootsthe application. This translates to loading the
application code from memory (possibly external) into local
memories of respective processors and enabling/adding the
application in the arbiter. Once the application is started, it
sends a signal to the RM at the end of every iteration to keep
it updated.

5.1.2 Resource Budget Enforcement

This is one of the most important functions we expect a re-
source manager to do. When multiple applications are run-
ning in a system (often with dynamically changing execu-
tion times), it is quite a challenge to schedule all of them
such that they meet their throughput constraints. Using a
static scheduling approach is neither scalable, nor adaptive
to dynamism present in a system [15]. A resource manager,
on the other hand, can monitor the progress of applications
running in the system and enforce the budgets requested at
run-time.

Clearly, the monitoring and enforcement also has an
overhead associated with it. Granularity of control is there-
fore a very important consideration when designing the sys-
tem, and determines how often the RM inspects the system.
We would like to have as little control as possible while

Manager
Resource

Actor level
micro seconds

Application level
few seconds

Reconfigure to meet
prescribed quality

Application
QoS

Managers

mili seconds

Arbiters
Processor

Local

Core

BA

Quality

time

Arbiter
Local

Figure 10. Resource Manager tries to achieve the
specified quality without interfering at the actor level

achieving close to desired performance. This is explained
further in Section 5.4.

Task migration

Task migration is not considered in this paper, but it could
be useful in cases when a particular actor can be scheduled
on multiple nodes. A technique to achieve low-cost task
migration in heterogeneous MPSoC is proposed in [18].

Arbiter vs Resource Manager

Figure 10 shows how the resource manager differs from the
application QoS manager and from the processor arbiter. A
quality-of-service (QoS) manager for an application might
dictate varying desired levels of application quality at differ-
ent points in time. For example, if an application goes into
background, its quality level might change. Such change
is unlikely to happen more than once every few seconds.
On the other end of control spectrum we have a proces-
sor arbiter, which may have to choose the actors that can
be executed on a particular node after an actor has finished
executing. This depends on the grain of actors, but is gen-
erally in the order of micro-seconds. The resource manager
operates in between the two extremes and tries to achieve
the quality specified by QoS manager by reconfiguring the
arbiter once in a while.

Achieving desired rate for different applications running
concurrently can also be achieved by rate-controlled-static-
priority as mentioned in [25]. However, this would require a
very complicated arbiter at every tile in the system, amount-
ing to a high overhead in terms of chip area. Further, an
application consists of multiple actors, which can often op-
erate at different rates in different iterations. When the rate-
control is achieved via local arbiters at cores, each arbiter
has to be aware of the global state of the application. This

10

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

T
hr

ou
gh

pu
t

Time

Tdes

Tmax

Tmin

Desired throughput
Maximum throughput
Minimum throughput

Figure 11. Boundary Specification for non-buffer crit-
ical applications.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

time

N
um

be
r

of
 It

er
at

io
ns

Desired Perf.
Max perf.
Min perf.

B
out

B
in

t
late

t
early

Figure 12. Boundary specification for buffer-critical
applications or constrained by input/output rate.

is much harder to achieve in practice, and also expensive
in terms of communication. Therefore, we propose using a
simple arbiter and an extra component - resource manager,
for this control.

5.2. Performance Bound Specification

Figure 11 shows an example of how performance bound
may be specified. In the figure, the middle lineTdes in-
dicates the desired throughput, andTmax andTmin indi-
cate the maximum and minimum throughput that an appli-
cation may tolerate respectively. However, this only applies
to applications that do not have an input or output through-
put constraints. For applications with strict throughput con-
straints on input or output, we need a different kind of spec-
ification as shown in Figure 12.

1. Start Appl X

3. Start Appl Y

5. Start Appl Z

12. Z Finished

16. X Finished

18. Y Finished

2. Queue/Enable X

4. Queue/Enable Y

6. Queue/Enable Z

7. Suspend X
8. Start Appl A

9. Appl A Reject

11. Z Done

13. Suspend Y

15. X Done

17. Y Done

X suffers when it
is restarted

Y starts to suffer
when Z starts

T
im

e

10. Resume X

14. Resume Y

Applications
Z Y X

Computation Platform

I/O
 In

te
rf

ac
e

R
es

ou
rc

e
m

an
ag

er

Figure 13. Interaction diagram between various mod-
ules in the system-setup.

The deviation from the desired throughput in the vertical
direction signifies the extra buffering that is needed. The
same is indicated in Figure 12 byBout and Bin to indi-
cate the maximum output and input buffer present for the
application respectively. If an application is running twoit-
erations ahead of the desired rate, the output of those two
iterations needs to be buffered somewhere. The same ap-
plies to input buffer as well when an application is lagging
behind. The deviation in the horizontal direction signifies
how ‘early’ or ‘late’ the application completes its execution
as compared to desired time. For applications where such
jitter is more critical than the average throughput achieved,
the performance bound should be as specified in Figure 12.

5.3. Resource Management Protocol

Figure 13 shows an example interaction diagram be-
tween various modules in the design. The user-interaction
module sends a signal to the respective application man-
ager when any application is to be started. The resource
and application managers are responsible for actually run-
ning the applications and interacting with the computation
platform. The platform module can consist of a number of
processors and each processor has a scheduler which can
for example be first-come-first-serve (FCFS), round-robin
or round-robin-with-skipping [15]. Other scheduler types
can be easily added in the model.

In Figure 13, the user-interface module sends a request
to start applicationX (1). The resource manager checks if
there are enough resources for it, and then admits it in the
system (2). ApplicationsY andZ are also started respec-

11

tively soon after as indicated on the figure (3-6). However,
whenZ is admitted,Y starts to deteriorate in performance.
The resource manager then sends a signal to suspendX (7)
to the platform because it has slack andY is then able to
meet the desired performance. WhenX resumes (10), it is
not able to meet its performance andY is suspended (13)
because nowY has slack. When the applications are fin-
ished, the result is transmitted back to the user-interface(12,
16 and 18). We also see an example of applicationA being
rejected (9) since the system is possibly too busy, andA is
of lower priority than applicationsX , Y andZ.

5.4. Suspending Applications

Each application sends a signal to the RM upon comple-
tion of each iteration. This is achieved by appending a small
message at the end of the output actor of the application
graph1. This allows the RM to monitor the progress of each
application at little cost. After every sample period - defined
assample points, the RM checks if all applications are pro-
gressing at their desired level. If any application is found
to be running below the desired throughput, the application
which has the most slack (or the highest ratio of achieved
to desired throughput) is suspended. The suspended appli-
cation is re-activated if all applications are running above
the desired throughput. Suspension and re-activation occur
only at sample points.

Each arbiter maintains two lists - an actor ready queue,
and an application enable list. Once the processor is avail-
able, the arbiter checks the actor at the head of the queue,
and if its corresponding application is enabled, it is exe-
cuted. Otherwise, the next available task (with enabled
application) is executed. Suspension of an application is
achieved by sending a temporary disable signal to the ar-
biters running the application. Say, for example, if applica-
tion A2 has actors mapped on 3 processorsP1 P2 andP4.
The three processor-arbiters will be signalled to disable ap-
plicationA2. Thus, even when actors of applicationA2 are
ready, they will not be executed, but actors behind them in
the queue will be executed.

Suspension of an application is not to be confused with
pre-emption. In our model, we do not allow actors to be
preempted, but an application can be suspended after com-
pleting the execution of any actor. This is to limit the con-
text that needs to be saved when an actor in the middle of
its execution is to be stopped.

Communication Overhead

The overhead of monitoring and suspension is easy to com-
pute. Consider ten applications running concurrently on a

1In the event of multiple output actors, any output actor may be chosen
for this.

ten-processor system. Each application signals the RM ev-
ery time it completes an iteration. Let us assume the pe-
riod of each application is 100,000 clock cycles. Therefore,
on average only one message is sent to the manager every
10,000 cycles. Let us consider the case with sampling pe-
riod being 500,000 cycles. The RM messages at most every
processing node every sampling interval. This is on average
a message every 50,000 cycles, giving in total 6 messages
every 50,000 cycles. If the length of each message is around
10 bytes, we get a bandwidth requirement of 60 bytes ev-
ery 50,000 cycles. For a system operating at 100 MHz, this
translates to about 120 Kb per second. In general, forN ap-
plicationsA0 . . . An−1 each with throughputTAi

mapped
on M processing nodes, with RM sampling atfsamp fre-
quency, if each message isb bytes, the total communication
bandwidth is given by following equation

BWreqd = b ×
(

fsamp.M +

N−1
∑

i=0

1

TAi

)

(2)

This is only the worst-case estimate. In practice, messages
from the RM will not be sent to every processing node ev-
ery sampling interval, but only when some application is
suspended or resumed.

6. Performance Evaluation

We have developed a three-phase prototype tool-flow to
automate the analysis of application examples. The first
phase concerns specifying different applications (as SDF
graphs), the processors of the MPSoC platform (including
their scheduler type) and the mapping. For each application,
desired throughput is specified together with the starting
time for the application. After organizing the information
in an XML specification for all three parts, a POOSL model
[22] of the complete MPSoC system is generated automat-
ically. The second phase relies on the POOSL simulator,
which obtains performance estimations, like the application
throughput and processor utilization. It also allows genera-
tion of trace files that are used in the final phase to generate
schedule diagrams and graphs like those presented in this
paper.

This section presents results of a case study regarding
the mapping of H263 and JPEG decoder SDF models (de-
scribed in [12] and [9] respectively) on a three-node MP-
SoC. Corresponding SDF graphs are shown in Figure 14.
An FCFS scheduling policy was used in all the cases pre-
sented below. Table 4 shows the load on each processing
node due to each application. The results were obtained af-
ter running the simulation for 100M cycles.

Figure 15 shows performance of the two applications
when they are run in isolation on the platform and also when
they are run concurrently. In this figure, the resource man-
ager does not interfere at all, and the applications compete

12

9,600

30,000

28,800

VLD

IQ

Reconstruction

2376

1

1

2

1188

1188

1188

2376

IDCT

1188

120,000

(a) H263

28,800

2,400

36,00

2,400

2,400

7,200

VLD

IQ

reordercolor−conv

6

1 1 1 1

1

1

1161

1

5

IZZ

IDCT

(b) JPEG

Figure 14. SDF Graphs of H263 and JPEG modeled
from description in [12] and [9] respectively.

H263 JPEG Total
Proc 1 0.164 0.360 0.524
Proc 2 0.4 0.144 0.544
Proc 3 0.192 0.252 0.444
Total 0.756 0.756 1.512
Throughput Required 3.33e-6 5.00e-6

Table 4. Load (in proportion to total available cycles)
on processing nodes due to each application

with each other for resources. As can be seen, while the
performance of H263 drops only marginally (depicted by
the small arrow in the graph), a huge drop is observed in
JPEG performance (big arrow in the graph). In fact, we see
that even though the total load on each processing node is
close to 50%, JPEG throughput is much lower than desired.

Figure 16 shows how a resource manager interferes and
ensures that both are able to meet their minimum specified
throughput. In this figure the resource manager checks ev-
ery 5 million cycles whether applications are performing as
desired. Every time it finds that either JPEG or H263 is per-
forming below the desired throughput, it suspends the other
application. Once the desired throughput is reached, the
suspended application is re-activated. We observe that the
RM effectively interleaves three infeasible schedules (JPEG
Alone, H263 Alone, and H263/JPEG Together, in Fig. 15)
that yields a feasible overall throughput for each applica-
tion. (InAlone, only one application is active and therefore,
those schedules are infeasible for the other application.)

Figure 17 shows applications’ performance when the
sample period of resource manager is reduced to 500,000
cycles. We observe that progress of applications is
‘smoother’ as compared to Figure 16. The ‘transition phase’

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Performance with both H263 and JPEG without Resource Manager

H263 Alone

H263 Together

JPEG Alone

JPEG Together

H263 Desired

JPEG Desired

Figure 15. Progress of H263 and JPEG when they run
on the same platform — in isolation and executing
concurrently.

of the system is also shorter, and the applications soon settle
into a ‘long-term average throughput’, and do not vary sig-
nificantly from this average. This can be concluded from the
almost horizontal curve of achieved throughput. It should
be mentioned that this benefit comes at the cost of increas-
ing monitoring from the resource manager, and extra over-
head in reconfiguration (suspension and reactivation).

Specified No RM
RM sampling period

5,000k 2,500k 500k
JPEG 500 133 541 520 620
H263 333 800 554 574 504

Proc 1 0.524 1.00 0.83 0.85 0.90
Proc 2 0.544 0.56 0.71 0.71 0.72
Proc 3 0.444 0.46 0.55 0.55 0.56
Total 1.512 2.02 2.09 2.11 2.18

Table 5. Iteration count of applications and utilization
of processors for different sampling periods for 100M
cycles.

Table 5 shows the iteration count for each application
specified, achieved without and with intervention from the
RM. The first two columns clearly indicate that JPEG exe-
cutes only about one-fourth of the required number of iter-
ations, whereas H263 executes twice the required iteration
count. The next three columns demonstrate the use of our
RM to satisfy the required throughput for both the applica-
tions. The last row indicates that the utilization of resources
increases with finer grain of control from the RM.

13

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+07 4e+07 6e+07 8e+07 1e+08

T
hr

ou
gh

pu
t

Time

Performance with both H263 and JPEG with sample time of 5,000,000

H263 Desired

JPEG Desired

H263 Achieved
JPEG Achieved

Figure 16. With a resource manager, the progress of
applications is closer to desired performance.

7. Conclusions and Future Work

In this paper, we have introduced the composability
problem and shown that combining resource usage is non-
trivial. We also introduced properties and requirements
for resource arbitration for a multi-processor based system-
on-chip. Furthermore, using these requirements, we have
compared two simple arbitration mechanisms. We observe
that round-robin with skipping has lower design-time and
run-time overhead, and also handles dynamism in the tasks
more efficiently. When a new job arrives in the system, dy-
namic scheduling mechanisms have little overhead for re-
configuration. They however, suffer heavily from the lack
of performance predictability in the design - one of the most
important requirements for a resource manager in an MP-
SoC.

Further, we propose a resource manager (RM) for non-
preemptive heterogeneous MPSoCs. Although the schedul-
ing of these systems has been considered in the literature,
the actual resource management in the context of concur-
rently executing applications is still unexplored area. Theo-
retically, design-time analysis of all possible use-casescan
provide performance guarantees, but the potentially large
number of use-cases in a real system makes such analysis
infeasible [15]. Our resource manager shifts the burden of
design-time analysis to run-time monitoring and interven-
tion when necessary.

A high-level simulation model has been developed using
POOSL methodology to realize RM. A case study with an
H263 and a JPEG decoder demonstrates that RM interven-
tion is essential to ensure that both applications are able to

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+07 4e+07 6e+07 8e+07 1e+08

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Performance with both H263 and JPEG with sample time of 500,000

H263 Desired

JPEG Desired

H263 Achieved
JPEG Achieved

Figure 17. Increasing granularity of control makes the
progress of applications smoother

meet their throughput requirements. Further, a finer grain
of control increases the utilization of processor resources,
and leads to a more stable system.

Future research will focus on incorporating more intelli-
gent prediction schemes for admission control. An FPGA
implementation of an MPSoC is already realized, and we
will use it to run our proposed RM on, to handle more real-
istic cases and to measure the overhead. Further, we would
like to extend the model to include the communication and
storage resources as well.

References

[1] N. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhat-
tacharyya. Intermediate representations for design automa-
tion of multiprocessor DSP systems.Design Automation for
Embedded Systems, 7(4):307–323, 2002.

[2] S. Baruah. The non-preemptive scheduling of periodic
tasks upon multiprocessors.Real-Time Systems, 32(1):9–20,
2006.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
An on line algorithm for real-time tasks allocation.Algo-
rithmica, 15:600–625, 1996.

[4] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastr-
nak, B. Mesman, J. D. Mol, S. Stuijk, V. Gheorghita, and
J. van Meerbergen. Dataflow analysis for real-time embed-
ded multiprocessor system design. InDynamic and Robust
Streaming in and between Connected Consumer-Electronic
Devices, pages 81–108. Springer, 2005.

[5] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pas-
trnak, and J. van Meerbergen. Predictable embedded multi-

14

processor system design.Proceeding of the SCOPES work-
shop, September, 2004.

[6] Y. Cai and M. C. Kong. Nonpreemptive scheduling of peri-
odic tasks in uni- and multiprocessor systems.Algorithmica,
15(6):572–599, 1996.

[7] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms.ACM Trans. Des. Autom.
Electron. Syst., 9(4):385–418, 2004.

[8] S. Davari and S. K. Dhall. An on line algorithm for real-time
tasks allocation.IEEE Real-time Systems Symposium, pages
194–200, 1986.

[9] E. de Kock. Multiprocessor mapping of process networks:
a JPEG decoding case study. InProceedings of 15th Intl.
Symp. on System Synthesis, 2002., pages 68–73. IEEE Com-
puter Society, 2002.

[10] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Thee-
len, M. Mousavi, A. Moonen, and M. Bekooij. Throughput
Analysis of Synchronous Data Flow Graphs. InSixth Inter-
national Conference on Application of Concurrency to Sys-
tem Design, 2006. ACSD 2006., pages 25–36, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[11] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal net-
work on chip: concepts, architectures, and implementations.
IEEE Design and Test of Computers, 22(5), 2005.

[12] R. Hoes. Predictable Dynamic Behavior in NoC-based MP-
SoC. Available from: www.es.ele.tue.nl/epicurus/, 2004.

[13] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. InProceedings of
12th IEEE Real-Time Systems Symposium, pages 129–139,
1991.

[14] Karp, Richard M. and Miller, Raymond E. Properties of
a model for parallel computations: Determinancy, termi-
nation, queueing.SIAM Journal on Applied Mathematics,
14(6):1390–1411, nov 1966.

[15] A. Kumar, B. Mesman, H. Corporaal, J. van Meerbergen,
and Y. Ha. Global analysis of resource arbitration for mpsoc.
In Ninth Euromicro Conference on Digital System Design.
Euromicro, 2006.

[16] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous dataflow programs for digital signal process-
ing. IEEE Transactions on Computers, Feb 1987.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.J. ACM,
20(1):46–61, 1973.

[18] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest. Low
cost task migration initiation in a heterogeneous mp-soc. In
Proceedings of DATE ’05, pages 252–253. IEEE Computer
Society, 2005.

[19] J. Pino and E. Lee. Hierarchical static scheduling of dataflow
graphs onto multipleprocessors. InAcoustics, Speech, and
Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, volume 4, pages 2643–2646, Detroit, MI,
USA, 1995. IEEE.

[20] K. Richter, M. Jersak, and R. Ernst. A formal approach to
MPSoC performance verification.Computer, 36(4):60–67,
2003.

[21] S. Siram and S. Bhattacharyya.Embedded Multiprocessors;
Scheduling and Synchronization. Marcel Dekker, 2000.

[22] B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Put-
ten, and J. Voeten. Software/Hardware Engineering with the
Parallel Object-Oriented Specification Langauge. InPro-
ceedings of the Fifth ACM-IEEE International Conference
on Formal Methods and Models for Codesign, pages 139–
148, 2007.

[23] L. Thiele, S. Chakraborty, and M. Naedele. Real-time cal-
culus for scheduling hard real-time systems. InProceedings
of ISCAS 2000 Geneva., volume 4, pages 101–104, Geneva,
Switzerland, 2000. IEEE.

[24] W. Wolf. The future of multiprocessor systems-on-chips. In
Proceedings of the 41st DAC ’04, pages 681–685, 2004.

[25] H. Zhang and D. Ferrari. Rate-controlled static-priority
queueing. InINFOCOM ’93. Proceedings.Twelfth Annual
Joint Conference of the IEEE Computer and Communi-
cations Societies. Networking: Foundation for the Future.
IEEE, pages 227–236, San Francisco, CA, USA, 1993.

15

