Energy-Aware Task Mapping and Scheduling for Reliable Embedded
Computing Systems

ANUP DAS, National University of Singapore
AKASH KUMAR, National University of Singapore
BHARADWAJ VEERAVALLI, National University of Singapore

Task mapping and scheduling is critical in minimizing energy consumption while satisfying the perfor-
mance requirement of applications enabled on heterogeneous multiprocessor systems. An area of growing
concern for modern multiprocessor systems is the increase in the failure probability of one or more com-
ponent processors. This is especially critical for applications where performance degradation (throughput,
for example) directly impacts the quality of service requirement. This paper proposes a design-time (offline)
multi-criterion optimization technique for application mapping on embedded multiprocessor systems to min-
imize energy consumption for all processor fault-scenarios. A scheduling technique is then proposed based on
self-timed execution to minimize the schedule storage and construction overhead at run-time. Experiments
conducted with synthetic and real applications from streaming and non-streaming domain on heterogeneous
MPSoCs demonstrate that the proposed technique minimizes energy consumption by 22% and design space
exploration time by 100x while satisfying the throughput requirement for all processor fault-scenarios. For
scalable throughput applications, the proposed technique achieves 30% better throughput per unit energy
as compared to the existing techniques. Additionally, the self-timed execution based scheduling technique
minimizes schedule construction time by 95% and storage overhead by 92%.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing and Fault-
Tolerance; B.8.2 [Performance and Reliability]: Performance Analysis and Design Aids; J.6 [Computer-
Aided Engineering]: Computer-aided design (CAD); D.4.7 [Organization and Design]: Real-time sys-
tems and embedded systems

General Terms: Design, Algorithms, Performance, Reliability

Additional Key Words and Phrases: Task mapping and scheduling, fault-tolerance, energy consumption,
multimedia applications, synchronous data flow graphs

1. INTRODUCTION

As the performance demands of embedded applications (multimedia in particular) are
growing, multiple processing elements (PEs) are integrated on the same chip to form
multiprocessor systems-on-chip (MPSoCs) with networks-on-chip (NoCs) as the com-
munication backbone [Wolf et al. 2008]. Homogeneous architectures are associated
with high area and power requirements [Kumar et al. 2004]. Modern MPSoC designs
are resorting to heterogeneous PEs such as General Purpose Processors (GPPs), Digi-
tal Signal Processors (DSPs), Reconfigurable Areas (RAs) and Application Specific In-
tegrated Circuits (ASICs) [Popovici et al. 2008]. Examples of heterogeneous MPSoCs
are OMAP from TI [Cumming 2003], NOMADIK from ST [Artieri et al. 2003] and
NEXPERIA from Philips [De Oliveira and Van Antwerpen 2003]. Most of these PEs
support a wide range of voltages and frequencies, which are often exploited to meet
performance and to perform dynamic voltage and frequency scaling (DVFS) to mini-

Author’s addresses: {A. Das, A. Kumar, B. Veeravalli}, Department of Electrical and Computer Engineering,
National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077; e-mail: akdas@nus.edu.sg;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 A. Das et al.

mize energy consumption [Rakhmatov and Vrudhula 2003; Irani et al. 2003; Quan and
Hu 2007; Kim et al. 2008; Schranzhofer et al. 2010].

Another area of growing concern for MPSoCs is the need for fault-tolerance. Shrink-
ing transistor geometries, aggressive voltage scaling and higher operating frequencies
have negatively impacted MPSoC dependability by increasing the chances of failures
(transient, intermittent and permanent) [Constantinescu 2003]. Although, transient
faults are more frequent than permanent faults, recovery from the latter category is
crucial for an MPSoC (or any component) to continue its operation albeit some accept-
able performance degradation. This research focuses on permanent faults in MPSoCs.

Permanent faults are traditionally tackled using hardware redundancy [Koren and
Krishna 2007]. Due to stringent area and power budgets, software techniques such
as task-migration are gaining popularity among the research community [Yang and
Orailoglu 2007; Lee et al. 2010; Huang et al. 2011; Das and Kumar 2012]. Most MP-
SoCs consist of processing cores interconnected with NoCs in a mesh-based architec-
ture!. When one or more cores fail, tasks on these cores need to be migrated to other
functional core(s) to continue correct operation. The new location (core) is pivotal in
determining the energy consumption associated with communication among its depen-
dent tasks. Additionally, as new tasks (those from a faulty core) are mapped to a core,
the voltage and frequency may need to be raised to meet the throughput requirement.
These concerns have motivated researchers in recent years towards joint optimization
of fault-tolerance and energy [Wei et al. 2011; Zhu 2011; Das et al. 2012].

1.1. Scope of this work

This paper attempts to solve the following problem. Given a heterogeneous MPSoC
architecture and a set of multimedia and other high performance embedded applica-
tions, how to assign and order the tasks of every application on the component cores
such that the total energy consumption (computation and communication) is mini-
mized while guaranteeing to satisfy the performance requirement (throughput for ex-
ample) of the application under all possible core fault-scenarios. The scope of this paper
is limited to permanent faults of cores. It assumes a given MPSoC architecture (floor-
plan) and therefore the selection of cores (number and/or types) for the architecture
and their placement (co-ordinates) are not addressed. To the best of our knowledge,
this is the first work considering the joint optimization of throughput, computation en-
ergy and communication energy for reactive fault-tolerance (defined in a later section)
of heterogeneous MPSoC platforms.

1.2. Key contributions
Following are the key contributions of this paper.

— Fault-aware task mapping technique to minimize the computation and communica-
tion energy while satisfying the application throughput requirement.

— A scheduling technique to minimize the run-time schedule construction and schedule
storage overhead.

— A heuristic to minimize the design space exploration time.

— Floorplan-aware task remapping for heterogeneous MPSoC

1.3. Paper organization

The rest of this paper is organized as follows. A brief overview of the related work is
provided in Section 2. Introduction to Synchronous Data Flow Graphs (SDFGs) is pro-
vided in Section 3 and the problem formulation in Section 4. The design methodology is
discussed in Section 5 and the proposed scheduling technique in Section 6. Experimen-

1While a mesh-based topology is assumed for the target MPSoC, the research is orthogonal to any other
topology such as torus and tree.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A:3

tal setup and results are discussed next in Section 7. Lastly, conclusions are presented
in Section 8 along with discussions on possible extensions.

2. RELATED WORKS

Task mapping and scheduling for energy optimization has received significant atten-
tion over the past years for extending the battery-life of embedded MPSoCs. A commu-
nication energy-aware task mapping heuristic is studied in [Singh et al. 2010; Man-
delli et al. 2011]. However, task computation energy is not considered. Dynamic power
aware application mapping technique is proposed in [Goh et al. 2009; Schranzhofer
et al. 2010]. Floorplanning and inter-task communication are not addressed. The slack
budgeting technique of [Hu and Marculescu 2004] distributes execution time slack of
a task among other tasks, to reduce their frequency of operation. However, through-
put degradation is not accounted in this technique. A common limitation of these en-
ergy optimization techniques is that they do not address mappings for different fault-
scenarios making them unsuitable for joint optimization of fault-tolerance and energy.

Task mapping and scheduling have also shown significant potential for fault-
tolerance in deep sub-micron technologies. For permanent faults two research direc-
tions are prominent — proactive fault-tolerance i.e. preventing (or delaying) the oc-
currence of failures [Huang and Xu 2010; Chou and Marculescu 2011; Das et al. 2013]
and reactive fault-tolerance i.e. develop techniques dealing with core failures once they
have occurred [Yang and Orailoglu 2007; Lee et al. 2010; Huang et al. 2011; Das and
Kumar 2012; Derin et al. 2011].

Reactive fault-tolerance techniques can be classified into run-time and design-time
based. Run-time approaches monitor system-status and decide on task migration at
run-time to minimize migration overhead [Al Faruque et al. 2008; Derin et al. 2011] or
balance processor load [Zhang et al. 2010]. However, throughput is not always guar-
anteed in these techniques. Moreover, migration algorithms need to be simple to min-
imize computation. Design-time based task mapping techniques compute task map-
ping decisions statically for different fault-scenarios [Yang and Orailoglu 2007; Huang
et al. 2011; Lee et al. 2010; Das and Kumar 2012]. As faults occur, these mappings are
looked up at run-time to carry out task-migration. An advantage of these techniques
is that any sophisticated algorithm can be used at design-time despite the associated
mapping storage overhead. This research focus on design-time analysis for resource
management after fault(s) have occurred.

A fixed order Band and Band reconfiguration technique is studied in [Yang and
Orailoglu 2007]. Cores of the target architecture are partitioned into two bands. When
one or more cores fail, tasks on these core(s) are migrated to other functional core(s)
determined by the band in which these tasks belong. The core partitioning strategy is
fixed at design-time and is independent of the application throughput requirement.
Consequently, throughput is not guaranteed by this technique. A re-execution slot
based reconfiguration mechanism is studied in [Huang et al. 2011]. Normal and re-
execution slots of a task are scheduled at design-time using evolutionary algorithm
to minimize certain parameters like throughput degradation. At run-time, tasks on
a faulty core migrate to their re-execution slot on a different core. However, a limi-
tation of this technique is that the schedule length can become unbounded for high
fault-tolerant systems. Task remapping technique based on offline computation and
virtual mapping is proposed in [Lee et al. 2010]. Here, task mapping is performed
in two steps — determining the highest throughput mapping followed by the genera-
tion of a virtual mapping to minimize the cost of task migration to achieve this highest
throughput mapping. A limitation of this technique is that the migration overhead sig-
nificantly increases as this is not considered in the initial optimization process. More-
over, throughput constrained streaming applications do not benefit from a throughput
higher than required and can even increase the buffer requirements at output. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 A. Das et al.

(=)

(b)

Fig. 1: SDFG model

technique in [Das and Kumar 2012] jointly minimizes the migration overhead and
throughput degradation for streaming multimedia applications modeled using Syn-
chronous Data Flow Graphs (SDFGs). A limitation of this technique is that scheduling
is not considered and therefore suffers from huge schedule construction overhead at
run-time or schedule storage overhead from design-time. A common limitation of these
fault-tolerant techniques is the non-consideration of energy minimization.

Recently, there are some works which jointly optimizes energy and fault-tolerance.
An ILP based approach is presented in [Wei et al. 2011]. Energy optimization is per-
formed under execution time constraint which incorporates fault-tolerance overhead
using check-pointing based recovery model. This technique is not suitable for perma-
nent failures as it does not address the actual task migration under different faulty-
scenarios. Moreover, throughput, communication energy and migration overhead are
not addressed in this work. A lifetime-reliability aware scheduling technique is devel-
oped in [Huang and Xu 2010] to minimize energy consumption. Although the useful
life of a device is maximized, the paper does not address migration overhead, resource
management and throughput degradation. In a recent work [Das et al. 2012], the au-
thors addressed these objectives while minimizing the task communication energy.
However, computation energy is not minimized and so are scheduling and mapping
storage overhead.

3. INTRODUCTION TO SYNCHRONOUS DATA FLOW GRAPHS

Synchronous Data Flow Graphs (SDFGs, see [Lee and Messerschmitt 1987]) are often
used for modeling modern DSP applications [Sriram and Bhattacharyya 2000] and
for designing concurrent multimedia applications implemented on a multi-processor
system-on-chip. Both pipelined streaming and cyclic dependencies between tasks can
be easily modeled in SDFGs. Tasks are modeled by the vertices of an SDFG, which are
called actors. SDFGs allow one to analyze a system in terms of throughput and other
performance properties, e.g. latency, buffer requirements [Stuijk et al. 2006al].

The nodes of an SDFG are called actors; they represent functions that are computed
by reading tokens (data items) from their input ports and writing the results of the
computation as tokens on the output ports. The number of tokens produced or con-
sumed in one execution of an actor is called port rate, and remains constant. The rates
are visualized as port annotations. Actor execution is also called firing, and requires
a fixed amount of time, denoted with a number in the actors. The edges in the graph,
called channels, represent dependencies among different actors.

Figure 1 (a) shows an example of an SDF Graph. There are four actors in this graph.
In the example, @, has an input rate of 3 and output rate of 4. An actor is called ready
when it has sufficient input tokens on all its input edges and sufficient buffer space
on all its output channels; an actor can only fire when it is ready. The edges may also
contain initial tokens, indicated by bullets on the edges, as seen on the edge from actor

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A:5

a, to ag in Figure 1 (a). A set Ports of ports is assumed and with each port p € Ports,
a finite rate Rate(p) € N\ {0} is associated. Formally an SDFG is defined as follows.

DEFINITION 1. (ACTOR) An actor a; is a tuple (I;,0;, N;, u;) consisting of a set I;
(C Ports) of input ports, a set O; (C Ports) of output ports with I; N O; = (), N; is the
set of execution cycles of a; and y; is its state space (program and data memory). The
execution cycle N; is a set {n; | 1 <1 < h}, representing the CPU cycles needed to execute
actor a; on core type l. For homogeneous systems, h = 1 and therefore execution cycles of
an actor on all cores are the same.

DEFINITION 2. (SDFG) An SDFG is a directed graph Gy, = (A,C) consisting of
a finite set A of actors and a finite set C C Ports® of channels. The source of channel
chf € C is an output port of actor a;, the destination is an input port of actor a;. All
ports of all actors are connected to precisely one channel, and all channels are connected
to ports of some actor. The source and the destination port of channel chf are denoted by

SrcP(chl) and DstP(ch]) respectively. The channels connected to the input and output
ports of an actor a; are denoted by InC'(a;) and OutC(a;) respectively.

Before an actor a; starts its firing, it requires Rate(g;) tokens from all (p,q;) €
InC(a;). When the actor completes execution, it produces Rate(p;) tokens on every
(pi,q) € OutC(a;). One of the most interesting properties of SDFGs relevant to this
paper is throughput. Throughput is defined as the inverse of the long term period, i.e.
the average time needed for one iteration of the application. (An iteration is defined as
the minimum non-zero execution such that the original state of the graph is obtained.)
This is the performance parameter used in this paper. The following properties of an
SDF graph are defined.

DEFINITION 3. (REPETITION VECTOR) Repetition Vector Rpt of an SDFG G, =
(A, C) is defined as the vector specifying the number of times actors in A are executed
for one iteration of SDFG G 4.

For example, in Figure 1 (a), Rptjap a1 a2 a3] =[1112].

DEFINITION 4. (APPLICATION PERIOD) Application Period Per(A) is defined as the
time SDFG G, = (A, C) takes to complete one iteration on average.

The amount of data communicated from actor a; to actor a; is given by

d;j = Rptla;] * Rate(SrcP(chg)) * sze 1)

where sze is the size of a token in bits. The total amount of data communicated
between actors a@; and a; is d;; + d;;.

The period of an SDFG can be computed by analyzing the maximum cycle mean
(MCM) of an equivalent homogeneous SDFG (HSDFG). The period thus computed
gives the minimum period possible with infinite hardware resources e.g. buffer space.
If worst-case execution time estimates of each actor are used, the performance at run-
time is guaranteed to meet the analyzed throughput. For multiple applications with
soft real-time constraint, an iterative approach similar to [Kumar et al. 2010] can be
adopted to analyze and estimate throughput.

SDFGs allow buffer-sizes to be modeled as a back-edge with initial tokens. In such
cases, the number of tokens on that edge indicates the buffer-size available. When
an actor writes data on a channel, the available size reduces; when the receiving actor
consumes this data, the available buffer increases. Figure 1 (b) shows such an example,
where the buffer size of the channel from actor a; to a, is shown as two. Before a; can
be executed, it has to check if enough buffer space is available. This is modeled by
requiring tokens from the back-edge to be consumed. Since it produces one token per

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Das et al.

7‘7/// A, Floorplan Floorplan
;/ // =4 unaware mapping | | aware mapping
aj Co aj Cy
a; Cg 3 Cs

(c)

Fig. 2: Conceptual architecture model

firing, one token from the back-edge is consumed, indicating reservation of one buffer
space on the output edge. On the consumption side, when a, is executed, it frees two
buffer spaces, indicated by a release of two tokens on the back-edge. In the model, the
output buffer space is claimed at the start of execution, and the input token space is
released only at the end of firing. This ensures atomic execution of the actor.

Self-timed strategy is widely used for scheduling SDFGs on multiprocessor systems.
In this technique, the exact firing of an actor on a core is determined at design-time
using worst-case actor execution-time. The timing information is then discarded re-
taining the assignment and ordering of the actors on each core. At run-time, actors
are fired in the same order as determined from design-time. Thus, unlike fully-static
schedules, a self-timed schedule is robust in capturing the dynamism in actor execu-
tion time. In this respect the following lemmas are stated. For proof, readers are urged
to refer [Ghamarian et al. 2006].

LEMMA 1. For a consistent and strongly connected SDFG, the self-timed execution
consists of a transient phase followed by a periodic (steady-state) phase.

LEMMA 2. For a consistent and strongly connected SDFG, the throughput of an
actor is given by the average firing of the actor per unit time in the periodic phase of the
self-timed execution.

This paper focuses on streaming applications represented as SDFGs. However, the
techniques proposed are generic and applicable to both SDFGs and DAGs. Sections
requiring special treatment for either of them are appropriately highlighted.

4. PROBLEM FORMULATION
4.1. Architecture model

The architecture assumed for the target platform is shown in Figure 2 (a) with the
processing cores interconnected in a mesh-based topology. Figure 2 (b) shows the cor-
responding floorplan where different zones represent heterogeneity with the cores
within each zone being homogeneous. In all existing reactive fault-tolerant studies,
floorplanning of the cores is ignored i.e. heterogeneous cores are considered without
their actual coordinates. This can impact application communication energy as shown
in Figure 2 (c). Here, actors a; and a; requires core type 0 and 1 respectively. Floorplan-
unaware and floorplan-aware mapping examples are provided in two tables as shown
in the figure. Clearly, floorplan-unaware mapping can lead to higher data communica-
tion energy (data communicated over 4 hops between ¢y and ¢s as compared to 2 hops
between e; and ¢; in floorplan-aware mapping).

An architecture is represented as a graph G, = (Vare, Farc), Where V. is the set of
nodes representing cores of the architecture and E,,. is the set of edges representing
communication channels among the cores. Each core ¢; € V. is a tuple (h;, F;), where
h; represents the heterogeneity type of the core and F) is the set {w;;} of frequencies
supported on the core.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A7

4.2. Mapping representation
For ease of representation, the following notations are defined.

Nare number of cores of the architecture i.e. ng.c = |Vare|
Napp number of actors of the given application i.e. nyy, = | 4|
M, mapping of G4y, on G, With n cores where n < ng,.

D (1) core on which actor a; is mapped in mapping M,

Q(1) frequency assigned to actor a;

U(4) set of actors mapped to core ¢;

Sf Fault scenario with f faulty cores = (c;,,¢;,, -~ ,¢;;)

The mapping M,, is a 2 X n,p, matrix as shown below.

O(1) ®(2) -+ P(napp
Mn = (leg QE2§ QE”MW%)

The core assignment for the actors of the mapping M,, are indexed by M,,.®[1 : ngpp).
Here n is the number of cores used for the mapping and is equal to the number of
unique elements in the set {M,,.®(1), M,,.®(2),- - - , M,,.®(nqpp)}. The frequency assign-
ment for the actors are indexed as M,,.Q[1 : ngpp).

An ID is assigned to each mapping M,, as calculated in Equation 2.

Tapp

mID(My) = Z M. @(5) * (nare)’ @
Jj=1

Clearly, every mapping can be uniquely represented using this linearization tech-
nique. For the ease of problem formulation a variable z;;;, is defined as follows

3

g — 1 if actor @; is mapped on core c¢; at frequency wy,
ik =0 otherwise

4.3. Computation energy modeling of an application

The total computation power of an application is given as the sum of the dynamic and
the leakage power. The focus of this research is on reduction of dynamic power and
hence is orthogonal to any leakage power reduction techniques. The dynamic power
of a circuit is given by Equation 4 where (3 is the activity factor, w is the frequency
of operation, C.sy is the effective load capacitance and Vy, is the supply voltage. The
frequency of operation is related to the supply voltage according to the a-Sakurai law
as given in equation 6, where K is a constant, « is a process-dependent parameter that
models velocity saturation and V; is the CMOS threshold voltage.

P=pxwxCepyxV3 @)

_ a
K« (Vaa — Vi)
Vad

As established in [Meijer and de Gyvez 2008], for 656nm low power CMOS, the fre-
quency scales linearly with supply voltage. Equation 5 can be rewritten as

%)

w =

w o< Vgg (6)

The computation energy of an SDFG is given by E.omp = EL + Niter x E55, where

comp comp
El;,., is the actor computation energy in the transient phase of the schedule, EZ;,, , is
the actor computation energy per iteration of the steady state phase and Ny, is the
number of iterations of the steady state phase. Usually, the number of steady state
iterations (i.e. N,) is a large number (can be regarded as periodic decoding of every

frame for a video application) and hence for all practical purposes, the computation

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. Das et al.

energy of the steady state phase dominates over that in the transient phase. Similar
reasoning applies for actor communication energy. Throughout the rest of this paper,
computation (or communication) energy implies computation (or communication) en-
ergy of the steady state phase per iteration.

Denoting ¢;;;, as the execution time of the actor a@; on core ¢; operating at frequency
wyg, the dynamic energy consumption is given by Equation 7 where Rpt[a;] is the num-
ber of firings of actor a; per steady state iteration of the SDFG.

eijk = P xtij, * Rptla;] = B xwy * Ceypyp * Vde * ti1 * Rpta;] 7

The execution time of an actor can be expressed in terms of its execution cycles i.e.
tijr, = —1. Substituting this in Equation 7 and using Equations 4 and 6 yields

wg *

eijk = a* Cepp * V2 n;; * Rptla;) = K’ + w} *n;; * Rpta;] (8)

where K’ is a constant. The computation energy of the application is given by?
Ecomp = Zzzemk *Tijk 9)
i ik

4.4. Communication energy modeling of applications

Communication energy modeling for NoC-based MPSoCs has received significant at-
tention in recent years. In [Ye et al. 2003], bit energy (E;;;) is defined as the energy
consumed in transmitting one bit of data through the routers and links of a NoC.

Eyit = Es,,, + EL,,, (10)

where Eg,.,, and E;,,, are the energy consumed in the switch and the link respec-
tively. The energy per bit consumed in transferring data between cores ¢, and ¢, sit-
uated nn0ps(p, ¢) away is given by Equation 11 according to [Hu and Marculescu 2004]
where nj,0p5(p, ¢) is the number of routers between cores ¢, and ¢,.

Nhops(D;q) * Es, .. + (Mhops(p,q) — 1) x Ep, . if
Epit(p,q) = {Ohnpe(p q) bit (hope(p Q)) Lyt otﬁefvgise (11)

The communication energy (per iteration) is therefore given by Equation 12 where
(i) and ®(j) are the cores where actors a; and a; are mapped respectively.

Ecomm = Z d’L] * Ebit(q)(i)a (D(.])) (12)
va;,a;cA

4.5. Migration overhead modeling of application

Migration overhead associated with moving from one mapping to another is governed
by two quantities — the state space of the actors(s) participating in the migration pro-
cess and the distance (hops) through which the state space is migrated?. It is assumed
that a given multiprocessor system consists of one or more task migration modules
(TMMs) which can access the memory of a core without interfering its operation. For
these systems, state space of an actor (mapped to a faulty core) can be recovered and
hence migrated to some other core where the actor is mapped post fault occurrence.
For multiprocessor systems without TMM(s), task migration involves migrating the
state space of an actor from the main memory to the new core where it is mapped.

2The proposed technique deals with scheduling-based energy minimization of an application and is orthog-
onal to circuit level energy minimization techniques for the NoC (e.g. at switch fabric or network interface)
or the processing cores (e.g. clock gating/power gating).

3The state space of an actor consists of the the data memory and the pre-compiled object code for the &
different core types.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A:9

Design-Time
Encode
Mapping
Construct
Initial > t;:::r::::faiunlts »]s f=F? Yes
Mapping pping
N

Task Decode | mapping
Migration Mappin e
'gra pping 3150 |e—o

- Di i X
Continue Is core Ves etfzrr;ﬁtlne - 20109
Operation faulty? ! X X

scenario

Fig. 3: Design Methodology

To better couple with the computation and the communication energy, the migration
overhead is represented as energy and is termed as migration energy. Let a; be an ac-
tor mapped on core ¢;. Denoting ¢, as the core on which the actor a; is migrated after
core ¢; becomes faulty, the migration energy is calculated according to Equation 13.

MigEnergy(j — k) = Z i * Epie (4, k) (13)
Va; ¥ (j)

The migration energy constitutes a very small fraction of the overall energy con-
sumption as established in Section 7.5. Unless otherwise stated, the migration energy
is ignored for most of the experiments.

5. DESIGN METHODOLOGY

The fault-tolerant task mapping methodology consists of two phases — analysis of ap-
plications at design-time and execution at run-time. The focus of this research is on
the design-time analysis; however, for the sake of completeness, a brief overview is
provided on how to use the design-time analysis results at run-time.

The fault-tolerant task mapping methodology is outlined in Figure 3. For every
fault-scenario with f faulty cores, an optimal mapping is generated which satisfies
the throughput requirement and results in minimum energy overhead. These map-
pings are encoded by the Encode Mapping block (according to Equation 2) and stored
in memory. At run-time, an application is executed until faults occur. On detection
of a fault?, the corresponding fault-scenario is identified and the encoded mapping is
fetched from the memory. This mapping is then decoded by the Decode Mapping block
and forwarded to the Task Migration block where actual migration is performed®.

The rest of this section is organized as follows. In Subsection 5.1 the fault-tolerant
mapping generation technique is highlighted. An essential component of this is the
minimum energy mapping generation which is described in Subsection 5.2. Finally in
Subsection 5.3, a technique is proposed to select an initial mapping which minimizes
application computation and communication energy.

4Qur research is orthogonal to any fault-detection mechanism

5Tt is to be noted that, mappings and schedules determined at design-time for different fault-scenarios
satisfy an application throughput requirement. By enforcing these mappings and schedules at run-time
post fault occurrences, throughput is guaranteed for the application under all processor fault-scenarios.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Das et al.

Algorithm 1 Generate fault-tolerant mappings

Input: Initial mapping My,,..., Gapp, Gare, throughput constraint C, fault-tolerance level F'
Output: Minimum energy mappings for all fault scenarios with f = 1 to F faults
1: for f = 1to F do

2: ST = genFaultScenarios(f)

3: fors; e Sfdo

4 sp=(Ci,Cip, - Cip_y ,cif) /lrepresent fault-scenario

5 sf_1=(€5;,Cin, - ,cq;f_l) /Igenerate reduced fault-scenario

6: My_y = HashMap[sy_1].getMap() /lfetch mapping for reduced fault-scenario
7 My = genMinEnergyMap(My_1, Gapp, Gare, C, Cig, sy) llgen. min. energy map
8 HashMapls].setMap(My) /Istore mapping for the fault-scenario

9 end for

10: end for

5.1. Fault-tolerant mapping generation

Fault-tolerant mappings are generated using Algorithm 1. There are F' stages of the al-
gorithm, where F is a user-defined parameter denoting the maximum number of faults
to be tolerated in the device. At every stage f (1 < f < F), mappings are generated,
one for each fault-scenario with f faulty cores.

The first step at every stage of the algorithm is the generation of a set (S7) of fault-
scenarios (line 2). The cardinality of this set (denoting the number of fault-scenarios)
is "are Py, where ng,. is the initial number of cores in G,,.. An example set with 2 out of
3 cores as faulty (f = 2, n4.. = 3) is the set S/ = {(0, 1), (1,0),(0,2), (2,0), (1,2), (2, 1)}6.
For every scenario of the set S/, the last core (¢;,) of the tuple (¢;,,¢;,, - ,€;;) is
considered as the current faulty core and a lower order tuple is generated by omitting
c;, (line 5). This gives fault-scenario s;_; with f — 1 faulty cores for which the optimal
mapping is already computed (and stored in HashMap) in the previous stage (i.e. at
stage f — 1). As an example, the fault-scenario (3,1,5) implies that faults occurred
first on core e3 followed by on core e; and finally on core e¢;. Thus, to reach this fault-
scenario, the system need to encounter fault-scenario (3, 1) first. Mapping for (3, 1) is
therefore considered as the starting mapping for (3, 1,5) with core ¢; as current failing
core. Similarly, mapping for (3) is the starting mapping for scenario (3, 1) with core ¢,
failing next. A point to note here is that, the scenario (3) is a single fault scenario and
to reach this, the starting mapping is the no fault initial mapping M, ..

An important aspect of Algorithm 1 is the generation of the minimum energy map-
ping genMinEnergyMap(). This routine takes a starting mapping (M,,), the current
faulty core (j) and the fault-scenario (s;) and generates a new mapping M,,_; with
core ¢, as faulty. This new mapping satisfies the throughput constraint and gives min-
imum energy (computation and communication). Details of this routine are provided
in the next subsection. Once an optimal mapping is determined (line 7), the algorithm
stores it in the HashMap for the particular fault-scenario (line 8). This is repeated for
every scenario of the set S7.

5.2. Generate minimum energy mapping

Mapping and scheduling of applications on a multiprocessor platform is an NP hard
problem [Gary and Johnson 1979]. A heuristic is proposed to simplify this process. This
is shown as a pseudo-code in Algorithm 2. The algorithm has two sections — remapping
the mandatory actors (lines 2-3) and search for the minimum energy mapping (lines 5-
17). The mandatory mappings are generated by remapping only the tasks on the faulty
core (cy). This is done in a brute force manner by selecting |V ()| cores from the set of
operating cores V. \ sy to remap all @; € ¥(¢). The number of such mappings is equal

6A fault-scenario (0,1) implies fault occurring first at core ¢o and then at core ¢;. Thus, fault-scenario (0,1)
is different from fault-scenario (1,0) implying a permutation in the fault-scenario computation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A1

Algorithm 2 GenMinEnergyMap(): Energy aware mapping

Input: Mapping M., graphs Gapp and Garc, throughput constraint C, fault ID + and the fault-scenario s ¢
Output: New mapping M, _1

1: //mandatory section: move actors from faulty core to other operating cores

2: 'y = Set of mappings generated from M, by remapping all @; € ¥ (%) to some ¢; € Varc \ s¢

3: sort(I'y) in ascending order of communication energy

4: //[performance section: remap for minimum energy satisfying throughput

5: numlter = 0; Mpest = My = Uy[numlter]; Epest = calcEnergy(Mz)
6
7
8
9

: while numlter < maxMap do
la; ¢; wi] = RemapActor(My, Gapp, Gare, C,s5)
if a; # 0 then
Mt.fb(ai) =Cj; Mt.Q(ai) = Wg

10: else

11: E = calcEnergy(My)

12: if £ < Epes then

13: Mpest = Mt Epest = E

14: end if

15: numlter + +; My = T'y[numlter]
16: endif

17: end while
18: Return M,,—1 = Mpest

Algorithm 3 RemapActor(): Remap actors to minimize energy

Input: Mapping M;, graphs Gupp and Gare, throughput constraint C, fault-scenario s
Output: Determine an actor to be remapped, the corresponding core and frequency
1: E; = CalCEnergy(Mi); T; = SDF]?/[(MZ)? Gpest = 05 @pesy = Q)’ Chest = (D; Whest = 0
2: for all a; € V,p, do

3 for allc; € Vorc \ sy do
4 for all wy, € F; do
5: M = M;; M.¢(a;) =c;; M.Q(a;) = wi; T = SDF]:\"/I(M); E = calcEnergy(M)
6 if (T > C) && (E < E;)) then
7 G=52L
T—T,
8: if G > Gbest then Gbest = Gr Apest = QAj; Chest = Cj; Whest = Wk
9: end if
10: end for
11: end for
12: end for

13: return [abest Chest wbest}

to the number of ways of choosing a sample of |¥(¢)| balls with replacement from a set
of |V \ 55| balls. This is equal to |V, \ s¢|[Y(?)l. These mappings are pruned according
to standard speed-up techniques (such as processor load [Jiashu et al. 2012]). These
mappings are stored in an array I'y and is sorted in terms of communication energy
(line 3). The maxMap best mappings are selected and used in the next stage. This
number (maxMap) is equal to the number of iterations of the performance section and
determines the termination (and hence the execution time) of the algorithm. It is to be
noted that the communication energy based sorting provides better result (less energy)
than migration overhead or throughput-based mappings.

The performance section of the algorithm remaps one or more actors selectively to
determine the minimum energy. At each iteration, the starting mapping is one of the
mapping of the set T'y. The RemapActor() routine selects an actor to be remapped sat-
isfying the throughput requirement. If the return set is non-empty (implying actors
can be remapped without violating the throughput constraint), the actor is remapped
to a core at a frequency as determined by the RemapActor() routine (line 9). The pro-
cess is continued as long as no actors can be found to be remapped without violating
the throughput. When this happens (line 10), the total energy of the mapping is calcu-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Das et al.

Algorithm 4 Generate initial mapping

Input: Gaupp and Gare
Output: Minimum energy initial mapping M,,,..
1: M = SDFg(Gapp,Garc)§
2: while true do
la; e wi] = RemapActor(M¢, Gapp, Gare, C,0)
if a; # (then
Mt.cb(ai) =Cy; Mt.Q(ai) = Wk
else
break
end if
9: end while
10: Return My, = M;

lated using the calcEnergy() routine which incorporates the two energy components’
— computation (Equation 9) and communication (Equation 12). If this is less than the
minimum energy (Ej.;) obtained so far, the best values are updated (line 13).

Algorithm 3 provides the pseudo-code for the RemapActor() subroutine which uses
a gradient function to evaluate each actor to core assignment. The total energy and
the throughput is evaluated by moving every actor on every core at every frequency
supported (line 5). The SDF3, is the SDF? engine of [Stuijk et al. 2006b] modified to
compute the schedule and throughput from a given mapping®. If the throughput for
this move is greater than the throughput constraint and the energy is lower than the
energy of the initial mapping ();), the gradient is computed (line 7). If the gradient is
higher than the best gradient obtained so far, the best values are updated (line 8). The
best actor, core and frequency values are returned.

5.3. Generate initial mapping

In the existing reactive fault-tolerant techniques, the starting mapping is determined
by searching the design space exhaustively. The computation time grows exponentially
with the number of actors and cores. The problem becomes computationally infeasible
beyond a certain number of cores and actors. The situation becomes even worse for
heterogeneous architecture where the infeasibility point settles in at a much lower
value of actors and cores. Algorithm 4 provides the pseudo-code for the initial mapping
generation procedure of the proposed methodology. The initial mapping (M; at line 1)
is obtained by any deterministic task mapping and scheduling algorithm e.g. HEFT
of [Topcuoglu et al. 2002] for DAGs or the unmodified SDF? engine for SDFGs. The
RemapActor() routine selects one actor to be remapped to a core at a frequency such
that energy is minimized with least degradation of throughput. This follows the same
principle as the performance section of Algorithm 2 with the all working cores i.e.
setting sy = 0.

6. SCHEDULING

An important aspect of any application graph (cyclic and acyclic) is the scheduling of
actors on cores. There are different scheduling schemes proposed both for DAGs and
SDFGs [Kwok and Ahmad 1999; Sriram and Bhattacharyya 2000; Davis and Burns
2011; Damavandpeyma et al. 2012]. None of the existing fault-tolerant techniques ad-
dress scheduling. If the run-time schedule is different from that used for analysis at
design-time, the throughput obtained will be significantly different than what is guar-
anteed at design-time. There are therefore two approaches to solve the problem.

"The migration energy component (Equation 13) is ignored as justified in Section 7.5.

8For DAGs, multiple iterations are usually executed sequentially (in a non-overlapped fashion). For these
graphs C' PTO routine of [Goh et al. 2009] can be used to compute the performance measured as makespan.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy-Aware Task Mapping and Scheduling for Reliable Embedded Computing Systems A:13

| Initial (uni-processor) steady-state schedule

@ | a | a [a [a [a | aJal]al]alala
Initial (uni-processor) transient schedule
|EZ|Eu|33|as|as|a7|31|ai|a7|az|34|as|ao|33|31|35|
Actors [ap | an [a | a [a a
Processor | 0 | o [3 [o [1

-

|

(o [o [] Processer® ActorMapping [2o | & | @] Froeesser®
2 2 2

--- Constructed Schedule “---

Processor 1 Actor Mapping Processor 1

Constructed Schedule “-“

Processor 2 Actor Mapping Processor 2
3

L3] Constructed Schedule

“ Processor 3 Actor Mapping m Processor 3

Constructed Schedule ““

Transient Schedule Steady-state Schedule

Fig. 4: Schedule construction from an initial schedule and actor allocation

— store the actor mapping and scheduling for all fault-scenarios and for all applications
from design-time (storage-based)

— constructs the schedule at run-time based on the mappings stored from the design-
time (construction-based)

The former is associated with high storage overhead and the latter with longer exe-
cution time. Both storage and execution time overhead are crucial for streaming appli-
cations. A self-timed execution based scheduling is proposed to solve the two problems.

Based on the basic properties of self-timed scheduling, it can be proven that if the
schedule of actors on a uni-processor system is used to derive the schedules for a
multiprocessor system maintaining the actor firing order, the resultant multiproces-
sor schedule will be free of deadlocks [Blazewicz 1976]. However, throughput obtained
using this technique can be lower than the maximum throughput of a multiproces-
sor schedule constructed independently. Thus, as long as this throughput deviation is
bounded, the schedule for any processor can be easily constructed from the mapping of
actors to this processor and a given uni-processor schedule.

Figure 4 shows the operation of the proposed scheduling technique. The actor-
processor mapping indicates that actors ay, @; and a3 are mapped to processor 0. The
initial steady-state schedule indicates that there are two instances of a; and one each
for actors ay and aj respectively. The steady-state order of actor firing on processor
0 is determined from this initial schedule by retaining only the mapped actors. In a
similar way the steady-state schedules are constructed for all other processors. The
transient part of the schedules are constructed from the given initial uni-processor
transient schedule by retaining the mapped actors. However, the only difference of the
transient phase schedule construction with the steady-state phase is that for the tran-
sient phase, the number of actors firing is important and not the exact order. This is
indicated by a number against each actor for each processor as shown in the figure.

During the steady-state operation, every processor maintains counts of the number
of remaining steady-state firings for the actors mapped to the core. These numbers are
updated when an actor completes its execution. When a fault occurs, the mapped actors
on the faulty core are moved to new location(s) (cores) along with the remaining firing
count. On such cores, which have at least one incoming migrated actor, all actors are

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Das et al.

Algorithm 5 Schedule generation

Input: Gapp, Ns, A
Output: Schedule for all fault-scenarios
1: forall f € [1--- Fldo S = genFaultScenarios(f)
2: mazlter = |ST|; sDB = constructUniSchedule(Gapp, Ns); sDB; = sDB
3: while S/ +# 0 do
4 /lcompute rank of each initial schedule
5 for all schedule [; € sDB do
6: Initialize count = 0
7
8
9

for all sy ¢ Sf do
M; = HashMapl|sy].getMap(); P = SDF3, o(Mg,l;)
if P > C then count + +

16: end for
11: l;.rank = count
12: end for

13: lmin = getHighestRankSchedule(sDB)
14: foralls; € S/ do

15: My = HashMaplsy].getMap(); P = SDF3 o(Mt,1;)
16: if P > C then

17: Schelsf] = lymin; S7.eliminate(sy)

18: end if

19: end for

20: numlter + +

21: //avoid stuck in loop

22: if numlIter > maxIter then numliter =0; C =C — A
23: end while

allowed to execute in a self-timed manner to finish the remaining firing counts of the
current pending iteration (similar to initial transient phase). From the subsequent it-
eration onwards, the steady-state order can be enforced for the moved actors. This will
prevent the application from going into deadlock when a fault occurs. In determining
the actor counting in the steady-state iterations, schedule minimization is disabled. As
an example, in Figure 4, the steady state schedule constructed for processor 2 consists
of two executions of actor a; as opposed to one in the otherwise minimized schedule.

Algorithm 5 provides the pseudo-code for the modified self-timed execution tech-
nique for generating the steady-state schedule. The first step towards this is the
construction of uni-processor schedules. A list scheduling technique is adopted for
this purpose along with several algorithms for tie-breaking e.g. ETF (earliest task
first), DLS (dynamic level scheduling) etc. These algorithms are implemented in the
constructUniSchedule() routine. The number of uni-processor schedules constructed
using this routine is a user-defined parameter N,. These schedules are stored in a
database in memory (sDB). The list of fault-scenarios possible with F' faults are also
listed in the set S/. Using each of the uni-processor schedules as the initial schedule,
throughput is computed for the given application for all fault-scenario mappings. The
SDF3, s computes the throughput of a mapping using a given uni-processor schedule.

For each uni-processor schedule from sDB, a count (termed as rank) is determined.
The value indicates the number of fault-scenarios for which the throughput constraint
is satisfied with this as the initial schedule. The schedule with the highest rank is
selected and assigned as the initial schedule for the successful fault-scenarios. A fault-
scenario is termed successful with respect to a schedule if the throughput constraint is
satisfied with the given schedule. The successful candidates and the selected schedule
are discarded from the list of fault-scenarios (S/) and schedule database (sDB) respec-
tively and stored in a 2-Dimensional database F'Sche. The process is repeated as long
as the set S7 is non-empty.

The limited set of uni-processor schedules does not guarantee throughput satisfia-
bility for all fault-scenarios. If such a fault-scenario exists, S/ is ne