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Abstract—Low latency and high energy-efficiency will be key
features of many future communication systems. It is known that
feedback coding like the well known Schalkwijk and Kailath
(SK) coding scheme outperforms feedforward coding in terms of
the decoding error probability. In the present paper, the addi-
tional gain by combining the capacity-achieving feedback coding
scheme by SK with sequential decision-making based on the
multiple hypotheses test by Baum et al. is studied. An analytical
approximation for the minimum Eb/N0 to transmit k bits is de-
rived under a given constraint on the decoding error probability.
The theoretical results are compared to Monte Carlo simulations.
With this approach a significant reduction in blocklength or
latency and a further reduction of the required Eb/N0 w.r.t. the
original SK scheme can be achieved. For evaluation the results
are compared to the analytical results of Polyanskiy et al. for the
additive white Gaussian noise channel with and without feedback.

I. INTRODUCTION

In future communication systems low latency and high
energy-efficiency will be key. Applications in the area of
cyber-physical systems, e.g., in remote health care, demand la-
tencies below the reaction time of a human being. Moreover, in
a multi-chip multi-board high performance computing cluster,
researchers are aiming for replacing the wired board-to-board
interconnects with wireless links [1]. To compete against wired
links, ultra low latency and high energy efficiency coding
schemes are required. Current communication schemes mainly
adapt a feedfoward error correction (FEC) scheme to the
current channel quality. With this approach they are able to
increase the energy-efficiency and concurrently increase the
throughput. The underlying protocol is called hybrid-ARQ,
which combines FEC with automatic repeat requests (ARQ).
However, hybrid-ARQ exploits only one benefit of feedback
based channel coding. Namely, the feedback link is used to
communicate to the transmitter when decoding was successful.
Thus, it enables early stopping on favorable channel realiza-
tions. By using more extensively the feedback link, e.g., to in-
form the encoder about the current decoder state, various feed-
back coding schemes showed a significant reduction in latency,
a higher decay rate of error-probability, and simplifications in
the encoding and decoding process [2]–[4]. Furthermore, in [5]
it is proven that feedback based channel coding outperforms
any feedforward coding scheme in the non-asymptotic block-
length regime in terms of rate, latency, and energy-efficiency.

Now, the idea proposed in this paper is the combination of
the well-known feedback coding scheme by Schalkwijk and
Kailath (SK) [2], which uses full feedback of the channel
output, with a sequential decoding strategy, i.e., combining the
ideas of feeding back decoder information and using a random
blocklength to stop as soon as the decoder is able to decode.

Sequential decision-making allows to reduce the number of
observations to decode with a given reliability. In his seminal
paper Wald [6] introduced a binary probability ratio test
which is optimal in the sense that it minimizes the number
of observations to decide with a given probability of error.
Later this test has been generalized to multiple hypotheses
[7]–[9]. Hence, the proposed combination of feedback coding
with sequential decision-making is promising for low latency
communication and concurrently it allows to reduce the
amount of transmit power in comparison to the original SK
feedback coding scheme. In this paper, the performance w.r.t.
the required Eb/N0 and the required blocklength (latency) to
transmit k bits is evaluated. While the studied system uses
full feedback of the channel output to the transmitter, the
results also give a bound on the performance gain for rate
limited feedback schemes.

The rest of the paper is structured as follows. In Section
II the considered system model is introduced. In Section III
the basic SK coding scheme is presented, followed by an
introduction into sequential decision-making in Section IV.
In Section V the combination of the SK feedback coding
scheme with sequential decoding is described and analyzed
w.r.t. Eb/N0 and latency. In Section VI the performance
gain by combining the SK coding scheme with sequential
decision-making is numerically evaluated based on the
required Eb/N0. Finally, Section VII concludes the paper.

The following notation is used in the paper. Capital letters
denote random variables (e.g. Y ) and lower case letters their
realization (e.g. y). Analogously, bold face upper case letters
(e.g. Y) denote random vectors and bold face lower case
letters (e.g. y) denote the realization of the corresponding
random vector. Moreover, a sequence, e.g., yn1 = (y1, . . . , yn),
is a realization of a random vector containing the random
samples {yk} from 1 to n. The hat symbol is used to
denote an estimate of a random variable. Logarithms without
subscript denote natural logarithms.

II. SYSTEM MODEL

The forward channel considered in this paper is a discrete-
time additive white Gaussian noise (AWGN) channel with

Yn = Xn + Zn (1)

where Xn, Zn, and Yn are the channel input, the zero-mean
normal distributed noise with variance σ2, i.e., N (0, σ2),
and the corresponding channel output at time instant n,
respectively. The feedback link is modeled as a noiseless and
delayless one-way link from the receiver to the transmitter



without quantization or rate limitation. In general the variable
length feedback (VLF) code (E,M, ε) for the AWGN forward
channel consists of a sequence of encoding functions {fn}∞n=1

producing the channel input symbols Xn, where E is the
energy constraint, M is the number of messages, and ε is the
error constraint. The encoding function fn = f(W,Y n−11 ) is
based on all the prior channel output symbols Y n−11 and the
message W . Finally, the decoding function g(Y n−11 ) maps
the received channel output symbols to an estimate Ŵ of W ,
where P [Ŵ 6= W ] ≤ ε with Ŵ = g(Y n−11 ).

For this specific scenario various coding strategies have
been invented [2]–[4] and theoretical results on the achievable
rate have been derived. Here, especially the work by
Polyanskiy et al. [5], [10] needs to be mentioned, as they
give theoretical results and bounds for VLF coding in the
non-asymptotic regime. In [5] they studied the achievable
rate for non-asymptotic blocklengths while in [10] the
minimum energy to transmit k bits for an asymptotically large
blocklength has been studied. These results give detailed
information on the convergence of the achievable rate towards
the capacity for increasing code blocklength and on the
required minimum energy per bit depending on the number
of information bits. This is a highly valuable reference
to evaluate the performance of code designs in the short
blocklength regime. The question arises, how close practical
coding schemes approach these theoretical limits. A solution
to get closer to the theoretical results is described in this paper.

For this purpose the fixed-blocklength capacity-achieving
coding scheme by SK [2] is enhanced in this paper. The novel
idea is to introduce a sequential decision-making algorithm
at the decoder, which helps to further reduce the needed
blocklength, as the transmission can be stopped earlier for
favorable noise realizations. Before explaining the sequential
decision-making algorithm, the basic concept of the SK
coding scheme is summarized in the following section.

III. SCHALKWIJK AND KAILATH FEEDBACK
CODING SCHEME

An intuitive explanation of the Schalkwijk and Kailath
based feedback coding scheme is that the encoder tries to
steer the decoder to the position of the correct codeword, such
that the decoder makes a correct decision at the end of the
transmission. This steering approach is realized by calculating
the minimum mean square error (MMSE) estimate based
on all available observations at the decoder and informing
the encoder about the current estimate using the noiseless
feedback link. There are two versions of the SK scheme. Both
are capacity-achieving, however one fulfills for any number
of feedback iterations a given bandwidth constraint [3] and
for the other scheme the bandwidth scales with the number
of iterations [2]. In the following no bandwidth constraint
is assumed and, therefore, the presentation follows along the
lines of the algorithm given in [2].

Schalkwijk and Kailath Coding Scheme: The unit interval
from (−0.5, 0.5) is divided into M equal-length subintervals
with midpoints (θ1, . . . , θM ). The midpoints represent the

codewords of the feedback coding scheme. Each message
out of W ∈ {1, . . . ,M} is mapped to one of the predefined
midpoints θi. For encoding the following function fn is used
to generate the channel input Xn

fn(W,Y n−11 ) = Xn = α(θ̂n − θ) (2)

where θ corresponds to the codeword to be transmitted.
Moreover, α can be optimally chosen based on the channel
noise power, the given error constraint, and the blocklength
[2]. The estimate θ̂n = E

[
θ|Y n−11

]
with θ̂1 = 0 in (2) is

calculated by the decoder and fed back to the encoder. The
channel input symbols Xn are transmitted over the AWGN
channel (1). An interesting remark regarding (2) is that the
encoding function is only based on the current estimate as θ̂n
is a sufficient statistic of all the prior channel outputs Y n−11

w.r.t. θ. Furthermore, while θ̂n → θ the power of the transmit
symbol E[X2

n] decreases with increasing n. On the decoder
side the estimate θ̂n is determined by

θ̂n+1 = E [θ|Y n1 ] = θ̂n −
1

αn
Yn (3)

which can be rewritten as

θ̂n+1 = θ − 1

αn

n∑
k=1

Zk (4)

where θ̂1 = 0. From (4), one can easily derive that
θ̂n conditioned on θ is normally distributed with
θ̂n+1 ∼ N (θ, σ2

α2n ). After the predefined blocklength N
the decoding function g(Y N1 ) is based on the current estimate
θ̂N+1 and not explicitly on the channel output sequence Y N1 .
The decoder decides for the message Ŵ corresponding to the
subinterval in which θ̂N+1 is located. As it is known that θ̂N+1

is normally distributed, the probability of error is bounded by

P
[
Ŵ 6= W

]
= 2Q

(
α
√
N

2Mσ

)
≤ ε. (5)

where Q(·) is the tail probability of the standard
normal distribution. With (5) the required blocklength
N corresponding to the number of transmissions to achieve
the given error probability ε can be calculated. Furthermore,
assuming that θ is uniformly distributed over the unit interval
(−0.5, 0.5) with zero mean and variance M2−1

12 , the Eb/N0

can be derived using (2)-(5):

Eb
N0

=
1

N0 log2(M)
Eθ,Z

[
α2
(
θ̂1−θ

)2
+

N∑
i=2

α2
(
θ̂i−θ

)2]

=
1

log2(M)

(
α2

12N0

(
1− 1

M2

)
+

1

2

N−1∑
i=1

1

i

)
. (6)

The input power scaling parameter α cancels out by
substituting (5) with equality into (6) such that
Eb
N0

=
1

log2(M)

(
1

6N

(
M2−1

) [
Q−1

( ε
2

)]2
+

1

2
HN−1

)
. (7)

Here, HN−1 denotes the harmonic series from i = 1 to N −1
and the Eb/N0 is independent of α. The harmonic series in
(7) can be expressed as [11, 6.3.2]



HN−1 =

N−1∑
i=1

1

i
= γ + Ψ (0)(N), N ≥ 2, (8)

where γ ≈ 0.5772 is the Euler-Mascheroni constant and
Ψ (0)(x) denotes the psi-function, being the n-th derivative of
the digamma function. To minimize Eb/N0 for a given ε one
needs to take the derivative of (7) w.r.t. the blocklength N .
Note that this leads to an α which differently to the choice
in [2] does not maximize the rate. Substituting (8) into (7),
taking the derivate w.r.t. N , and setting it equal to 0 leads
to N2Ψ (1)(N) = 1

3

(
M2 − 1

) [
Q−1

(
ε
2

)]2
, which can be

numerically solved to get the blocklength N . One can show
numerically that this blocklength N minimizes the Eb/N0 as
the second derivative is positive.

IV. SEQUENTIAL DECISION-MAKING

Sequential decision-making algorithms collect observations
until they are able to stop and decide with a given reliability.
Such algorithms have been studied in statistics in the context
of sequential hypothesis testing.

For a binary hypothesis testing problem Wald invented
the sequential probability ratio test or Wald test [6], which
performs optimal in terms of minimizing the average number
of observations to achieve a given decision error probability
[12]. To explain the principle, a feedforward repetition coding
scheme without feedback is assumed in the following. The
test is based on discrete channel input symbols generated by a
repetition-like encoding function X = Xn = fn(W ) = θ, θ ∈
{θ1, θ2} for n = 1, 2, . . .. A decision on the channel input
symbol X should be taken based on a sequence of independent
and identically distributed (i.i.d.) observations of X disturbed
by AWGN. Wald proposes to accumulate the log-likelihood
ratios of the binary hypotheses given by the sequence of
observations and compare it against two predefined thresholds.
Once one of the thresholds is reached the test decides for the
corresponding hypothesis. These thresholds can be calculated
solely based on the given constraints on the decision error
probabilities. The accumulated log-likelihood process corre-
sponds to a random walk and the whole test is a first passage
level crossing problem with two absorbing boundaries [6].

As in the present setup the number of messages M is larger
than 2, instead of a binary hypotheses test a multi hypotheses
test is needed. Optimal tests on multiple hypotheses, if
available at all, have larger computational complexity [9] than
the binary Wald test. Hence, a lot of effort has been put on
finding sub-optimal low complexity multi hypotheses tests.
The works by Draglia et al. [7] and Baum et al. [8] targeted
this topic and the authors came up with tests showing a good
performance. However, there exist only loose bounds on the
expected required number of observations. Especially, when
the hypotheses are a-priori equally likely, which holds for the
codewords in feedback coding, the bounds on the expected
number of observations are not tight [7]–[9].

In the following, for M ≥ 2 and the discrete channel
input symbols X = Xn = fn(W ) = θ for n = 1, 2, . . . and
θ ∈ {θ1, . . . , θM} the sequential test by Baum et al. [8] is
applied. This approach works for any number of hypotheses

M ≥ 2 and reduces for M = 2 to the optimal Wald test. The
approach by Baum et al. is based on a maximum likelihood
(ML) decision given the received observations sequence
Y = [Y1, Y2, . . .]. The probability of θ = θi can be expressed
by using Baye’s rule as

P (θ = θi|Y) =
p(Y|θ = θi)P (θ = θi)∑
j p(Y|θ = θj)P (θ = θj)

(9)

where p(·) denotes a probability density function of a
continuous random variable and P (·) denotes the probability
of a discrete random variable. The probability in (9) can
be further simplified if all θi are a-priori equally likely,
i.e., P (θ = θj) = 1/M , ∀j ∈ {1, . . . ,M}, which will be
assumed in the following. Now this approach is applied to the
Gaussian system model (1) without feedback. The receiver
collects n observations Y n1 of the same input signal X until
it stops and decides for one of the input signals. Based on the
received sequence yn1 one can write the posterior probability
for each θi ∈ 1 . . .M using (9) as

P (θ = θi|yn1 )=

 ∑
j=1,...,M

e
θj−θi
σ2

(∑n
k=1 yk−n

θj+θi
2

)−1.(10)

Then the set of all posteriori probabilities {P (θ = θi|yn1 ) :
i ∈ 1, . . . ,M} is tested against a set of pre-calculated
thresholds {Ai}

P (θ = θi|yn1 ) ≥ 1

1 +Ai
. (11)

The sequential test stops at time τ with

τ = min
i
{τi}

τi = min
n

{
n ≥ 1 : P (θ = θi|yn1 ) ≥ 1

1 +Ai

}
(12)

and decides for hypothesis θm, where m is

m = arg max
i
P (θ = θi|yτ1 ) . (13)

The thresholds {Ai} can be derived from the given
error constraint ε. Knowing that all θi are equally likely
and the probability of an incorrect decision needs to be
smaller than ε, the thresholds {Ai} are the same for each
hypotheses, i.e., Ai = A. From [8, Sect. VII.], the threshold
A is given by A = ε/γ, where γ can be computed as

γ = 1
δ exp

(
−2

∞∑
k=1

1
kΦ

(
−
√

δk
2

))
, see [7], with Φ(·) as

cumulative distribution function of the standard normal dis-
tribution and δ = mini 6=j D(p(Y|θi)||p(Y|θj)) where D(·||·)
denotes the Kullback-Leibler divergence. The corresponding
expected average sample size E[τ ] is given by [8, Eq. (5)-(7)]

E[τ ] ≈ − logA

δ
. (14)

The derived E[τ ] is only an approximation for the simulated
sample size. The gap between simulated sample sizes and the
analytically expected sample sizes E[τ ] will be evaluated in
the simulation results in Section VI.



V. COMBINATION OF FEEDBACK CODING AND
SEQUENTIAL DECISION-MAKING

The combination of the sequential multi-hypotheses test
by Baum described in Section IV and the SK coding
scheme from Section III is presented in this section. The
statement that the Wald test minimizes the average number of
observations holds only for i.i.d. observations [12]. However,
the SK coding scheme produces random variables yn and
θ̂n at the decoder which depend on the prior realizations
yn−1 and θ̂n−1. With the following approach an i.i.d. random
variable is generated at the decoder side. Let

Wn = θ̂n+1 −
(

1− 1

n

)
θ̂n (15)

for n = 1, 2, . . . , which can be calculated by the decoder
without additional information. Using (2) in (1) and substitute
Yn in (3) one gets θ̂n+1 = θ̂n

(
1− 1

n

)
+ 1

nθ −
Zn
αn and the

new random variables

nWn = n

(
θ̂n+1 −

(
1− 1

n

)
θ̂n

)
= θ − Zn

α
(16)

for n = 1, 2, . . . , are i.i.d. Gaussian distributed with N (θ, σ
2

α2 ).
This leads to an alternative Gaussian system model based on
the i.i.d. random variables nWn, noise Zn, and θ.

For the new system model in (16) the results on
sequential decision-making from the prior section can be
applied. In this regard, the sequence of nWn defined as
Un1 = {1W1, . . . , nWn} replaces Y n1 in (10). Moreover, Un
is Gaussian distributed with variance σ2

Un
= σ2

α2 and mean
θ, i.e. N (θ, σ

2

α2 ). For each midpoint θi for i ∈ {1, . . . ,M}
based on the sequence Un1 the sequential test as in (12)
and (13) is performed with A = Ai = ε/γ. To derive the
expected sample sizes, the Kullback-Leibler divergences
D (p (Un1 |θi) ||p (Un1 |θj)) need to be calculated. For this
purpose, one has to take the expectation w.r.t. p(Un1 |θi) of
the corresponding log-likelihood ratio Lijn between θi and θj

Lijn = log
p (Un1 |θi)
p (Un1 |θj)

=
θi − θj
σ2
Un

Un1 −
θ2i − θ2j
2σ2

Un

(17)

such that D(·||·) is EUn1 |θi
[
Lijn
]

=
(θi−θj)2
2σ2
Un

. The minimum
δ = mini 6=j D (p (Un1 |θi) ||p (Un1 |θj)) is because of the sym-
metric distribution of θ over the real unit interval (−0.5, 0.5)
and the zero-mean Gaussian noise independent of i and j
and given by δ = 1

M22σ2
Un

= α2

2M2σ2 . With (14), the expected
sample size which corresponds to the more meaningful
expected code blocklength in this example becomes

E [τ ] ≈ − logA

δ
=
−2M2σ2 logA

α2
. (18)

The corresponding expected Eb/N0 for the SK feedback
coding scheme with sequential decision-making can be

calculated with (6) yielding

Eb
N0

=
1

N0log2(M)
Eθ,Z,τ

[
α2
(
θ̂1−θ

)2
+

τ∑
i=2

α2
(
θ̂i−θ

)2]
(19)

=
1

N0log2(M)

α21− 1/M2

12
+EZ,τ


τ∑
i=2

(
i−1∑
k=1

Zk

)2

(i− 1)
2


 (20)

where τ denotes the random blocklength of the sequential
feedback coding scheme. For (20) equation (4) has been used.
The second term of the RHS of (20) is difficult to calculate.
Here, τ in the limit of the sum depends on the realization
of the noise sequence Z1, Z2, . . .. Neglecting the statistical
dependency of τ and the noise sequence Z1, Z2, . . ., one may
substitute the random quantity τ in the limit of the sum by
its expected value and approximate (20) with

Eb
N0
≈ 1

log2 (M)

α2 1− 1/M2

12N0
+

1

2

E[τ ]−1∑
i=1

1

i

 . (21)

In Section VI, an evaluation of this approximation is presented
when comparing the performance of the original SK feedback
coding scheme and the SK feedback coding with sequential
decision-making.

VI. NUMERICAL RESULTS

In the following, the performance gain of the combination
of SK feedback coding and sequential decision-making for
decoding in terms of the required Eb/N0 and the required
blocklength N to send k bits is evaluated. In Fig. 1a - Fig. 1b
the Eb/N0 for the original SK scheme and for the sequential
SK scheme are shown. For this purpose, an error probability
ε of 10−3 is considered and with (5) α is given by

α =
2Mσ√
N
Q−1

( ε
2

)
. (22)

The derived α is used for both coding schemes, the original
SK coding scheme and sequential SK coding scheme. Note
that the derived α is only optimal for the standard approach
without sequential decoding. In Fig. 1a the Eb/N0 is shown
over the information bits k = log2M and in Fig. 1b over the
number of channel uses corresponding to the (average) block-
length/latency. Moreover, an analytical bound for no feedback
and the result on the minimum Eb/N0 to transmit k informa-
tion bits with feedback, both for the case of N → ∞, from
[10] are included. The following conclusion can be drawn from
the simulation results. It can be observed that the analytical
expression for the Eb/N0 (Orig. SK (Analytical, (6))) and the
simulation results (Orig. SK (Simulated)) for the original SK
coding scheme perfectly match. Moreover from Fig. 1a the re-
duction of the required Eb/N0 can be divided into a feedback
gain and an additional gain due to sequential decision-making.
The original SK coding scheme easily outperforms the lower
bound by Polyanskiy et al. for coding schemes with no feed-
back leading to the aforementioned feedback gain. Introducing
a sequential decision-making algorithm at the decoder a further
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Fig. 1: Comparison of feedback vs. no feedback and original SK vs. seq. SK
in terms of Eb/N0 over the number of information bits k in (a) and over the
blocklength N or E[τ ] in (b); corresponding markers in (a) and (b) belong to
the same operating point as exemplary highlighted for k = 2 and N ≈ 54;
block error rate ε = 10−3; Note that in (b) the curve ‘Feedback (asymptotic
blocklength N )’ just act as an asymptote for N →∞.

gain can be seen. The additional sequential gain (Seq. SK
(Simulated)) reduces for an increasing number of messages M .
This is the case because the average transmit energy reduces
with 1/n over the sequence of iterations. In case one aims for
a minimum Eb/N0, only for a very small number of bits k to
be communicated the sequential decision-making overhead is
reasonable. However, if latency is also critical one can see in
Fig. 1b that a significant reduction of the average blocklength
E[τ ] and thus a reduction of latency is achievable with sequen-
tial decision-making. Likewise, less iterations on the forward
link also means less usage of the feedback link, which will be
beneficial when the feedback signaling overhead is included in
the power calculations. However, this is part of further inves-
tigations as the current feedback link is assumed to be noise
free and the transmit power on the feedback link is neglected.

Finally, Fig. 1a and Fig. 1b allow to evaluate the quality of
the approximation of (20) by (21). The actual average Eb/N0

is obtained by simulating (20) (Seq. SK (Simulated)). One

approximation of (20) is given by (21), where the average
E [τ ] from (14) is used (Seq. SK (Analytical approx. (21))).
Moreover, (21) is shown where the simulated sample size τ
instead of E [τ ] is used (Seq. SK (Analytical approx. (21) with
E[τ ] simulated)). Note that even here independency between τ
and the realization of the noise sequence Z has been assumed.
Fig. 1a and Fig. 1b indicate that both approaches lower-bound
(20). However, an analytical proof remains for future work.

VII. CONCLUSION

A sequential decision-making SK feedback coding scheme
was presented. The results show that the combination of
the SK feedback coding and sequential decision-making
for decoding leads to a further reduction in latency and
required Eb/N0 to transmit k bits compared to the original
SK scheme. On the one hand, this behavior has been shown
by Monte Carlo simulations and, on the other hand, by
analytical approximations for the required Eb/N0. Due to
the approximation of the expected sample sizes (18) and the
approximation of the expected value for the Eb/N0 (20) a
gap exits between the analytical derivation and the simulation
results. Giving a rigorous analytical lower bound for the
achievable Eb/N0 with SK feedback coding in combination
with sequential decoding remains for further study.
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