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Martin Schlüter, Meik Dörpinghaus, and Gerhard P. Fettweis
Vodafone Chair Mobile Communications Systems, SFB 912 HAEC,

Technische Universität Dresden, Dresden, Germany,
{martin.schlueter, meik.doerpinghaus, gerhard.fettweis}@tu-dresden.de

Abstract—Designing digital receivers based on 1-bit quanti-
zation and oversampling w.r.t. the transmit signal bandwidth
enables lower power consumption and a reduced circuit com-
plexity compared to conventional amplitude quantization, since
high resolution in time domain is less difficult to achieve than
high resolution in amplitude domain. However, standard receiver
synchronization algorithms cannot be applied, since 1-bit quan-
tization is a highly non-linear function.

This paper is a first step to understand the influence of 1-bit
quantization on the estimation of the channel parameters (e.g.,
timing, phase, and frequency offset). We will derive the Fisher
Information (FI) matrix of phase and frequency, considering a
known timing error and white Gaussian noise. Moreover, we
propose to apply a uniformly distributed phase dither at the
receiver, prior to 1-bit quantization, in order to reduce the non-
linear effect. The same effect can be achieved in practice by
sampling at a low intermediate frequency. We obtain analytical
results for the FI matrix with uniform phase dithering at the
receiver and derive tight closed form upper bounds for the low
and high SNR case.

I. INTRODUCTION

With the increasing demand for faster communication sys-
tems, soon data rates in the terabit per second regime are
required. It has recently been understood that analog-to-digital
conversion forms a bottleneck at the receiver w.r.t. the power
consumption. In particular in wireless short range scenarios,
e.g., communication between computer boards [1], [2] an
analog-to-digital converter (ADC) with a sampling rate of
multiple gigasamples per second has a major impact on the
overall power consumption of the wireless link. An annually
compiled survey on recent advances in ADC design shows that
power limited high sampling rates come at the price of coarse
quantization [3]. Having this in mind, using an ADC with 1-
bit quantization can be beneficial as the low resolution can
be compensated by higher sampling rates. It was reported in
[2, Section IV.D-E] that 1-bit quantization and oversampling
is still more energy-efficient than conventional high resolution
sampling at Nyquist rate, since neither an automatic gain con-
trol, nor linear amplification is required.

Numerical studies have found that when using suitable
modulation schemes and sequence design, oversampling is
beneficial in terms of the achievable rate [4], [5]. Moreover,
a bound on the achievable rate of the continuous time (i.e.,
infinite oversampling) additive white Gaussian noise (AWGN)
channel with 1-bit output quantization and strict bandlimita-
tion was derived in [6]. These analytical results confirmed the

aforementioned numerical studies. On the other hand, litera-
ture on synchronization with 1-bit quantization at the receiver
is still very rare. In [7] the joint synchronization of phase and
frequency in a QPSK and Nyquist rate based communication
system with coarse phase quantization and perfect timing was
considered.

However, a full investigation on joint timing, phase, and
frequency synchronization has not been conducted yet. In or-
der to understand the problem under 1-bit quantization, a first
step is to analyze the fundamental limits of channel parameter
estimation, which are determined by the Fisher Information
(FI) and the Cramér-Rao lower bound (CRLB). Unfortunately,
oversampling w.r.t. signal bandwidth results in noise correla-
tion and it is a mathematically open problem to find an analyt-
ical description for the likelihood function of system models
with colored Gaussian noise and 1-bit quantization, since there
is no analytical description of the orthant probabilities [8].
Thus a lower bound on the FI was derived that requires only
the first and second order moments [9], [10].

Unfortunately, this bound can only be computed numerically
and is thus not well suited for the purpose of understanding
the effect of 1-bit quantization on the channel parameter es-
timation. Hence, in this work we will consider white noise
by adapting the receive filter bandwidth to the sampling fre-
quency. Based on the example of phase estimation, it was
shown in [10] that this method is inferior to considering
colored noise, since increasing the receive filter bandwidth
increases the noise power, and thus decreases the SNR. Hence,
for white noise the performance loss compared to the unquan-
tized case converges to the low SNR limit of 2

π [11], [12]
when the oversampling rate is increasing. If the receive filter
bandwidth is fixed to the bandwidth of the transmit signal, the
noise is correlated and oversampling can decrease the perfor-
mance loss beyond 2

π [10]. However, considering white noise
allows for an analytical treatment and it is known from the
unquantized case that the system with colored noise behaves
very similar to the system with white noise [13, Chapter 6.2].

This paper takes an important step into understanding the
impact of 1-bit quantization by computing the FI matrix of
phase and frequency, considering a known timing error. We
will show that the performance of the parameter estimation
from complex valued signals is strongly influenced by the
phase of the signal. Therefore, we propose a uniform phase
dither to remove this dependence and give analytical results



for the average FI. In order to obtain closed form solutions,
we derive tight upper bounds on the FI (i.e., lower bounds on
the CRLB) for the cases of low and high SNR.

II. SYSTEM MODEL

We consider the linearly modulated transmit signal

u(t) =

(N/2)−1∑
n=−(N/2)

ang (t− nT − εT ) . (1)

The N symbols {an} are chosen from an arbitrary signal
constellation over the complex plane and g(t) is the impulse
response of the pulse shaping filter of single sided bandwidth
Wg = α+1

2T , where T is the symbol duration and α ∈ [0, 1]
is the roll-off factor. Our derivations do not require a specific
pulse form, but for numerical evaluations we consider raised-
cosine pulses. Moreover, the pulse g(t) contains a time shift
ε ∈ [−0.5, 0.5] w.r.t. the time reference of the receiver, which
we assume to be known in the present work. This signal is
modulated onto the carrier frequency fc, where it is disturbed
by white Gaussian noise with power spectral density N0/2.
Furthermore, the channel introduces a deterministic but un-
known phase rotation φ and frequency offset Ω. At the receiver
the signal is demodulated and filtered with a rectangular re-
ceive filter of single sided bandwidth Wr ≥Wg . The receiver
samples with a period of Ts and introduces a known phase
dither ϕk such that the sampled receive signal is given by

rk = sk + ηk

=

(N/2)−1∑
n=−(N/2)

ang (kTs − nT − εT ) ej(ΩkTs+φ+ϕk) + ηk,

(2)
where ηk is zero mean circularly-symmetric complex Gaussian
noise with independent real and imaginary part and covariance
matrix

[Rη]ij = 2N0Wrsinc (2WrTs |j − i|) . (3)

If we match the receive filter bandwidth to the sampling
period, i.e., Wr = 1/(2Ts), the noise is white with Rη =
(N0/Ts)I = σ2I. In this case, the SNR is given by SNR =
Es

N0/Ts
= Es

σ2 , where Es = E [a∗nan]
∫
|g(t)|2 dt is the symbol

energy. Since the noise is circularly-symmetric, it is not in-
fluenced by the phase dithering. In case of 1-bit quantization,
the receiver only has access to

yk = sign (Re {rk}) + j · sign (Im {rk}) (4)

with the signum function

sign (x) =

{
1 x > 0

−1 x ≤ 0
. (5)

In the subsequent sections, we will denote r as the vector that
contains the 2K = MN samples rk, where M = T

Ts
is the

oversampling factor w.r.t. the symbol rate. Other sample vec-
tors are named accordingly. Moreover, we consider the follow-
ing assumptions: {an} is a random sequence of N statistically
independent known symbols, the phase dither realizations ϕk
are known, and ϕk = 0 in the unquantized case.

III. FISHER INFORMATION

For the unquantized observation vector r, the FI matrix is
given by

[Fr]θiθj = 2Re

{
∂sH

∂θi
R−1
η

∂s

∂θj

}
, (6)

where θ = [φ,Ω] is the vector of the parameters that shall
be estimated. For any unbiased estimator θ̂(r), the variance is
lower bounded by the CRLB

Var
[
θ̂i(r)

]
≥
[
F−1

r

]
θiθi

. (7)

In case of white noise, statistically independent known sym-
bols {an}, large N , and a symmetrical summation interval
[13, Chapter 6.2], one obtains the fairly simple closed form
solutions1

[Fr]φφ =
2

σ2

K−1∑
k=−K

s∗ksk = 2
Es
N0

N, (8)

[Fr]ΩΩ =
2

σ2

K−1∑
k=−K

k2T 2
s s
∗
ksk = 2

Es
N0

T 2

12
N3, (9)

and
[Fr]φΩ =

2

σ2

K−1∑
k=−K

kTss
∗
ksk = 2

Es
N0

NεT, (10)

where (10) only holds for symmetric transmit pulses, i.e.,
|g(t)| = |g(−t)|. Moreover, the cross term [Fr]φΩ is only
relevant for very short observation intervals, i.e.,

[
F−1

r

]
φφ
≈

[Fr]
−1
φφ and

[
F−1

r

]
ΩΩ
≈ [Fr]

−1
ΩΩ for large N .

From [10] we know that the FI matrix of y (i.e., after
quantization) under white Gaussian noise is given by

[Fy]θiθj =
1

πσ2

×
K−1∑
k=−K

e−
(Re{sk})2

σ2/2 ∂
∂θi

Re {sk} ∂
∂θj

Re {sk}

Q
(

Re{sk}
σ/
√

2

)
Q
(
−Re{sk}

σ/
√

2

)

+
e
− (Im{sk})2

σ2/2 ∂
∂θi

Im {sk} ∂
∂θj

Im {sk}

Q
(

Im{sk}
σ/
√

2

)
Q
(
− Im{sk}

σ/
√

2

)
 ,

(11)

with Q(x) being the Gaussian Q-function. Since there is no
closed form of the likelihood function under correlated Gaus-
sian noise and 1-bit quantization, only a numerically computed
lower bound on the FI can be given in this case [9], [10].
Since our aim is to derive simple expressions for the FI in
order to understand the impact of 1-bit quantization on the
channel parameter estimation performance, we will restrict the
discussion in this paper to the case of white noise.

In [7] and [10] the problem of phase estimation in QPSK
signaling was studied. It was found that the parameter estima-
tion accuracy is highly dependent on the phase of the receive
signal. If the samples rk are close to the decision boundary in
the complex plane, the FI is high, but when the samples lie

1As we consider large N , we omitted all terms of order O (N) in (9).
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Fig. 1. FI ratio χ(φ) of a single QPSK symbol (i.e., N = 1) with Ts = T ,
ϕk = 0 and ε and Ω are known to be zero.

within the middle of a quadrant, the FI is low. The higher the
SNR, the more pronounced is this effect. This is intuitive, since
at high SNR with every sample rk the same 1-bit quantized
measurement yk would be observed, which results in a poor
estimation performance. In Fig. 1 this effect is illustrated by
the loss function

χ(φ) =
[Fy]φφ
[Fr]φφ

(12)

for the observation of a single QPSK symbol. We see that the
phase dependency is high for high SNR and vanishes for low
SNR, where χ(φ) = 2

π , a fact well known [11], [12].
In order to remove the phase dependency, we propose the

application of uniformly distributed phase dither ϕk such that
arg (sk) ∼ U [0, 2π]. Due to the law of large numbers, for
large N this dithering will remove the phase dependency of the
FI since the phases of the samples sk are uniformly distributed
around the unit circle. As practical implementation of the
phase dither we propose low intermediate frequency (IF) sam-
pling, i.e., ϕk = kTsΩIF. If ΩIF is chosen such that the receive
signal is rotating at least once around the unit circle within
the observation interval, low IF sampling has the same effect
as a random dither. Moreover, since the receiver knows ΩIF, it
also knows ϕk, as we considered in our system model. Thus,
the remainder of this paper is concerned with the derivation of
closed form expressions for the FI and CRLB of φ and Ω under
white noise, 1-bit quantization and uniform phase dithering.

IV. FISHER INFORMATION WITH PHASE DITHERING

In order to enable an analytical treatment in the following
derivations, we will give a very close approximation to (11).
Since the function Q(x)Q(−x) is very close to a Gaussian
function we will use

e−x
2

Q(x)Q(−x)
≈ c1e−c2x

2

, (13)

where c1 and c2 are constants that are obtained by numerically
solving

[c1, c2] = arg min
c1,c2

∫ R

0

∣∣∣∣∣ e−x
2

Q(x)Q(−x)
− c1e−c2x

2

∣∣∣∣∣ dx. (14)

For R = 10 we obtain the values c1 = 4.0360 and c2 =
0.3930, which do not change for the considered numerical
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Fig. 2. Absolute approximation error

accuracy if we choose R even higher. The absolute approx-
imation error, shown in Fig. 2, is very small for all values
of x, with a maximum of 0.036 at x = 0. On the other
hand, for large x we observe that the error is larger than the
approximated function. However, this does not pose a problem
in our case. With (13) we can now approximate (11) with[

F̃y

]
θiθj

=
c1
πσ2

×
K−1∑
k=−K

(
e
−c2 (Re{sk})2

σ2/2
∂

∂θi
Re {sk}

∂

∂θj
Re {sk}

+ e
−c2 (Im{sk})2

σ2/2
∂

∂θi
Im {sk}

∂

∂θj
Im {sk}

)
.

(15)

In the signal model (2), the estimation parameter vector is
defined as θ = [φ,Ω] and with

sk = uke
j(ΩkTs+φ+ϕk)

=
[
Re {uk} cos (ΩkTs + φ+ ϕk)

− Im {uk} sin (ΩkTs + φ+ ϕk)
]

+ j
[
Re {uk} sin (ΩkTs + φ+ ϕk)

+ Im {uk} cos (ΩkTs + φ+ ϕk)
]

(16)

we easily obtain

∂

∂φ
Re {sk} = −Im {sk} = − |sk| sin (arg (sk))

∂

∂φ
Im {sk} = Re {sk} = |sk| cos (arg (sk)) .

(17)

Likewise, one can easily see that

∂

∂Ω
Re {sk} = −kTsIm {sk} = −kTs |sk| sin (arg (sk))

∂

∂Ω
Im {sk} = kTsRe {sk} = kTs |sk| cos (arg (sk)) .

(18)
From now on we will use the notation arg (sk) = γk such that[

F̃y

]
φφ

=
c1
πσ2

K−1∑
k=−K

(
e
−c2 |

sk|2cos2(γk)
σ2/2 |sk|2 sin2 (γk)

+ e
−c2 |

sk|2sin2(γk)
σ2/2 |sk|2 cos2 (γk)

)
.

(19)

Our aim is now to obtain an analytical result for the average
Eγk

[[
F̃y

]
φφ

]
, which is attained by (19) for large N , due to



uniform phase dither and the law of large numbers. To this
end, we need to solve the integrals

1

2π

∫ 2π

0

e
−c2 |

sk|2cos2(γk)
σ2/2 sin2 (γk) dγk (20)

and
1

2π

∫ 2π

0

e
−c2 |

sk|2sin2(γk)
σ2/2 cos2 (γk) dγk. (21)

In order to solve these integrals, we introduce the following
Lemma.

Lemma 1: For x ∈ C∫ 2π

0

e−xcos2(γ)sin2 (γ)dγ=πe−
x
2

(
I0

(x
2

)
+I1

(x
2

))
=

∫ 2π

0

e−xsin2(γ)cos2 (γ)dγ,

(22)

where Iv(x) are the modified Bessel functions of the first kind.

The proof of Lemma 1 is given in the Appendix. The applica-
tion of approximation (13) above allows us to apply Lemma
1 such that for large N[

F̃y

]
φφ
≈ Eγk

[[
F̃y

]
φφ

]
=

1

πσ2

K−1∑
k=−K

κ

(
|sk|2
σ2

)
|sk|2 ,

(23)
where

κ(x)=c1e
−c2x (I0 (c2x)+I1 (c2x)) . (24)

To the best of our knowledge, it would not have been possible
to find a closed form solution for κ(x) without the approx-
imation (13). Using (17) and (18), and applying the same
derivation steps, we obtain for large N[

F̃y

]
ΩΩ
≈ 1

πσ2

K−1∑
k=−K

κ

(
|sk|2
σ2

)
k2T 2

s |sk|2 (25)

and [
F̃y

]
φΩ
≈ 1

πσ2

K−1∑
k=−K

κ

(
|sk|2
σ2

)
kTs |sk|2 . (26)

At first we find that (23), (25) and (26) are independent of
φ and Ω, but are still dependent on the data symbols {an}
through |sk|. However, we are more interested in the average
E{an}

[[
F̃y

]
θiθj

]
, which has no closed form solution to the

best of our knowledge. Nevertheless, due to the law of large
numbers, the FI will attain its average E{an}

[[
F̃y

]
θiθj

]
for

any random sequence {an}, if N is large. Thus, we can es-
timate the average E{an}

[[
F̃y

]
θiθj

]
by computing

[
F̃y

]
θiθj

for a single long random sequence {an}.
In Fig. 3 we show

[
F̃−1

y

]
φφ

and
[
F̃y

]−1

φφ
exemplary for

the parameters α = 0.5, T = 1, M = 2, and ε = 0.5.
We chose ε = 0.5 because we observed that the cross term[
F̃y

]
φΩ

vanishes for symmetric pulses and ε = 0, like in the
unquantized case (10). Based on

[
F̃−1

y

]
φφ

we see that only
for very small N , the cross term

[
F̃y

]
φΩ

is of relevance. The
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same observation can be made for
[
F̃−1

y

]
ΩΩ

, but we omitted
the curves to keep the figure clear. Thus, like in the unquan-
tized case, one can omit

[
F̃y

]
φΩ

when computing the CRLB
for sufficiently large N . Furthermore, in Fig. 4 we compare[
F̃y

]−1

θiθi
and [Fy]

−1
θiθi

both obtained from a single random
sequence {an} and uniform phase dither in the latter. We
obverse that the obtained analytical results for phase dithering
using the approximation (13) are accurate. Furthermore, high
SNR requires larger N to average out the phase dependency
than low SNR, since the phase dependency increases with
increasing SNR. If we increase N , the deviations of the blue
dashed curves in the high SNR regime will vanish.

V. LOW AND HIGH SNR BOUNDS

Although we found a closed form solution for the average
behavior under uniform phase dither, there is no closed form
solution to the sums in (23) and (25) that gives the average
behavior over all possible sequences {an}. Thus we will give
closed form low and high SNR upper bounds, i.e., lower
bounds on the CRLB. We omit a discussion on the behavior
with very small N , and thus do not consider [Fy]φΩ in this
section. A low SNR upper bound is easily obtained, indepen-
dently of the signal s and the target estimation parameter θ,
using the fact that χ(θ) (see (12)) attains its maximum 2

π at
SNR = 0 [11], [12], i.e.,

[Fy]θiθj ≤
2

π
[Fr]θiθj ∀i, j. (27)



Thus, in the low SNR regime 1-bit quantization does not in-
fluence the channel parameter estimation performance, except
for a constant loss factor of 2

π .
To obtain an upper bound for high SNR, we first derive an

high SNR approximation for (23) and (25). To this end, for
x→∞ we use [14, Eq. (10.30.4)]

Iv(x) ≈ ex√
2πx

(28)

such that

κ(x) ≈ 2c1√
2πc2x

. (29)

Thus, with σ2 = N0

Ts
we obtain the high SNR approximation

[
˜̃Fy

]
φφ

=
1

πσ2

K−1∑
k=−K

2c1√
2πc2

|sk|2
σ2

|sk|2

=
2c1
√
Ts√

2N0π3c2

K−1∑
k=−K

|sk| .
(30)

Since there is still no closed form solution to this sum, we
exploit that |sk| =

√
s∗ksk, and

√· is a concave function. Thus,
with Jensen’s inequality we obtain

[
˜̃Fy

]
φφ

=
2c1
√
Ts√

2N0π3c2

K−1∑
k=−K

√
s∗ksk

≤ 2c1
√
Ts√

2N0π3c2
2K

√∑K−1
k=−K s

∗
ksk

2K

=
2c1
√
Ts√

2N0π3c2

√
MN

√
N0

2Ts
[Fr]φφ

=
2c1√
2π3c2

√
Es
N0

N
√
M.

(31)

Like in the unquantized case (8) we observe that
[ ˜̃Fy

]
φφ

is in-
dependent of the transmit pulse g(t) and the timing parameter
ε as well. On the other hand, while it also grows with O (N),
a major difference is that

[ ˜̃Fy

]
φφ

only grows with O
(√

Es
N0

)
as opposed to O

(
Es
N0

)
in the unquantized case. Furthermore,

it grows with O
(√

M
)

, while oversampling has no influence
in the unquantized case, see (8). In Fig. 5 we see that the
CRLB has different slopes in the low and high SNR case,
as predicted by the closed form low and high SNR bounds.
Moreover, we observe that oversampling is moving the high
SNR bound of the CRLB downwards, which also moves the
crossing point with the low SNR bound to a higher Es

N0
point.

This is due to the fact, that oversampling is decreasing the
SNR, since the receive filter must be wider if the noise is
required to be white as in the present study. However, the low
SNR bound is obviously independent of M , see (27).
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Using again the high SNR approximation (29) and Jensen’s
inequality, we obtain[

˜̃Fy

]
ΩΩ

=
2c1
√
Ts√

2N0π3c2

K−1∑
k=−K

k2T 2
s

√
s∗ksk

≤ 2c1
√
Ts√

2N0π3c2

(
K−1∑
k=−K

k2T 2
s

)√√√√∑K−1
k=−K k

2T 2
s s
∗
ksk∑K−1

k=−K k
2T 2
s

=
2c1
√
Ts√

2N0π3c2
Ts

√√√√ K−1∑
k=−K

k2

√
N0

2Ts
[Fr]ΩΩ.

(32)
Now, using Faulhaber’s formula, K = (MN)/2, and (9), the
RHS of (32) can be bounded by[

˜̃Fy

]
ΩΩ
≤ 2c1

√
Ts√

2N0π3c2
Ts

√
MN(MN+2)(MN+1)

EsN3T 2

144Ts

=
2c1√
2π3c2

√
Es
N0

TsT

12
N2
√
M3N2+3M2N+2M

=
2c1√
2π3c2

√
Es
N0

T 2

12
N2

√
MN2+3N+

2

M
.

(33)
For large N , it is sufficient to only consider the dominant
O
(
N3
)

term such that[
˜̃Fy

]
ΩΩ
≤ 2c1√

2π3c2

√
Es
N0

T 2

12
N3
√
M. (34)

We observe that like in the case of phase estimation, the major
difference to the unquantized case is that

[ ˜̃Fy

]
ΩΩ

only grows

with O
(√

Es
N0

)
, but in return grows with O

(√
M
)

while
oversampling has no effect in the unquantized case. Fig. 6
shows

[
F̃y

]−1

ΩΩ
and its bounds. We see that the qualitative

behavior is identical to
[
F̃y

]−1

φφ
, as predicted by the closed

form low and high SNR bounds.

VI. CONCLUSION

The channel parameter estimation performance of a receiver
with 1-bit quantization is highly dependent on the phase of
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Fig. 6. High and low SNR bounds on
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ΩΩ
for N = 100 and T = 1

the input signal. To overcome this problem, we proposed uni-
formly distributed phase dithering before 1-bit quantization,
which can be implemented in practice by low IF sampling.
We analytically derived the FI matrix of phase offset φ and
frequency offset Ω, considering a known timing error ε, white
Gaussian noise, and uniform phase dither. Moreover, we de-
rived closed form upper bounds (i.e., lower bounds on the
CRLB) for the case of low and high SNR. Compared to the un-
quantized case, many properties are preserved under uniform
phase dithering and 1-bit quantization. The major difference
is that for high SNR the FI of φ and Ω only grows with
O
(√

Es
N0

)
in case of 1-bit quantization, but in return increases

with oversampling. This study is a first step to understand the
effect of 1-bit quantization on the joint estimation of phase,
frequency and timing offset. The presented results will be
helpful to understand the more realistic system where also the
timing error is unknown and the noise is correlated due to
oversampling.

APPENDIX
PROOF OF LEMMA 1

Proof: With cos2 (γ) = 1
2 (1 + cos (2γ)) and sin2 (γ) =

1
2 (1−cos (2γ)) we can rewrite the integral on the LHS of (22)
to∫ 2π

0

e−xcos2(γ)sin2 (γ)dγ=
1

2
e−

x
2

(∫ 2π

0

e−
x
2 cos(2γ)dγ

−
∫ 2π

0

e−
x
2 cos(2γ)cos(2γ)dγ

)
.

(35)

Now, the first integral on the RHS of (35) solves to∫ 2π

0

e−
x
2 cos(2γ)dγ =

1

2

∫ 4π

0

e−
x
2 cos(t)dt

= 2πI0

(
−x

2

)
= 2πI0

(x
2

)
,

(36)

where the first equality is obtained with the substitution t =
2γ, and the second and the third can be found in [14, Chapter

10]. Equivalently, we find that the second integral on the RHS
of (35) solves to∫ 2π

0

e−
x
2 cos(2γ)cos(2γ)dγ=

1

2

∫ 4π

0

e−
x
2 cos(t)cos(t)dt

=2πI1

(
−x

2

)
=−2πI1

(x
2

)
,

(37)
where again the first equality is obtained with the substitution
t = 2γ, and the second and the third can be found in [14,
Chapter 10]. If we now put (36) and (37) into (35), we have
proved the first equality in (22). The integral in the second
equality in (22) can be solved by using exactly the same steps.
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