
RASPBERRY PI BASICS

System on Chip (SoC)

• What is System on Chip?
– A complex IC that integrates the major functional elements

into a single chip or chipset.
• programmable processor

• on-chip memory

• accelerating function hardware (e.g. GPU)

• both hardware and software

• analog components

• Benefits of SoC
– Reduce overall system cost

– Increase performance

– Lower power consumption

– Reduce size

SoC in Raspberry Pi: Broadcom

BCM2835 SoC Multimedia processor
• CPU

– ARM 1176JZF-S (armv6k) 700MHz

– RISC Architecture and low power draw

– Not compatible with traditional PC software

• GPU
– Broadcom Video IV

– Specialized graphical instruction sets

• RAM
– 512MB (Model B rev.2)

– 256 MB (Model A, Model B rev.1)

SoC in Raspberry Pi:

Broadcom BCM2835 SoC

BCM2835 SoC (right) and Samsung K4P2G324ED Mobile DRAM (left)

Connecting a Display and Audio

• HDMI
– Digital signal

– Video and audio signal

– DVI cannot carry audio signal

– Up to 1920x1200 resolution

• Composite RCA
– Analog signal

– 480i, 576i resolution

• 3.5mm jack

RPi Remote Connections

http://pihw.wordpress.com/guides/direct-network-connection/

Universal Serial Bus

• Two USB 2.0 ports in RPi

• Buy a powered USB hub

Passive models are cheaper and smaller, but lack the ability to run current-
hungry devices like CD drives and external hard drives.

Storage: Secure Digital (SD)
• Form factor

– SD, Mini SD, Micro SD

• Types of Card

– SDSC (SD): 1MB to 2GB

– SDHC: 4GB to 32 GB

– SDXD up to 2TB

The card should be at least 2GB in
capacity to store all the required files

Storage: Continue

SD Formatter:

https://www.sdcard.org/downloads/formatter_4/

How to mount USB flash drive from

command line:

http://linuxcommando.blogspot.co.uk/2007/12/how-to-mount-usb-flash-
drive-from.html

Networking

Ethernet (IEEE 802.3)

USB Ethernet Converter

Wi-Fi Adapter

Networking - wireless

• IEEE 802.11 Wi-Fi

– Protocols

• 802.11 b, up to 11Mbps

• 802.11 g, up to 54Mbps

• 802.11 n, up to 300Mbps

• 802.11 ac (draft), up to

1Gbps

– Frequency band

• 2.4GHz, 5GHz

Low Speed Peripherals

• General Purpose

Input/Output (GPIO)

– Pins can be configured to

be input/output

– Reading from various

environmental sensors

• Ex: IR, video,

temperature, 3-axis

orientation, acceleration

– Writing output to dc

motors, LEDs for status.

Power Consumption

• microUSB power connector

– 2.5W (model A)

– 3.5W (model B)

• Powered USB hub

– To provide more power for USB peripherals

Useful links

• Raspberry Pi official website

– http://www.raspberrypi.org/

• Raspberry Pi wiki

– http://elinux.org/RaspberryPiBoard

• Raspberry Pi verified peripherals

– http://elinux.org/RPi_VerifiedPeripherals

• The MagPi

– http://www.themagpi.com

• Raspberry Pi on Adafruit Learning System:

– http://learn.adafruit.com/category/learn-raspberry-pi

• 1. Download the Raspberry Pi operating system
– Linux releases compatible with the Pi:

http://www.raspberrypi.org/downloads

– The recommended OS is Raspbian:

http://downloads.raspberrypi.org/raspbian_latest

• 2. Unzip the file that you just downloaded
– Right click on the file and choose “Extract all”.

– Follow the instructions—you will end up with a file
ending in .img

Raspberry Pi Setup

• 3. Download the Win32DiskImager software

– a) Download win32diskimager-binary.zip

(currently version 0.6) from:

https://launchpad.net/win32-image-

writer/+download

– b) Unzip it in the same way you did the Raspbian

.zip file

– c) You now have a new folder called

win32diskimager-binary

• 4. Writing Raspbian to the SD card
– a) Plug your SD card into your PC

– b) In the folder you made in step 3(b), run the file
named Win32DiskImager.exe

– c) If the SD card (Device) you are using isn’t found
automatically then click on the drop down box and
select it

– d) In the Image File box, choose the Raspbian .img file
that you downloaded

– e) Click Write

– f) After a few minutes you will have an SD card that
you can use in your Raspberry Pi

• 5. Booting your Raspberry Pi for the first time

– On first boot you will come to the Raspi-config window

– Change settings such as timezone and locale if you want

– Finally, select the second choice: expand_rootfs and say
‘yes’ to a reboot

– The Raspberry Pi will reboot and you will see raspberrypi
login:

• Username: pi, password: raspberry

– Start the desktop by typing: startx

– The desktop environment is known as the Lightweight X11
Desktop Environment (LXDE)

Re-mapping Keyboard:

• sudo vi /etc/default/keyboard

XKBLAYOUT=”gb”

Change “gb” to “us”

• (This assumes you want a us mapping, if not

replace the gb with the two letter code for

your country)

Install and Start SSH

• Update apt-get package index files:

– sudo apt-get update

• Install SSH:

– sudo apt-get install ssh

• Start SSH server:

– sudo /etc/init.d/ssh start

• To start the SSH server every time the Pi boots
up:

– sudo update-rc.d ssh defaults

• SSH client for Windows:

– PuTTY

– http://www.putty.org/

• SSH Secure File Transfer

– http://www.utexas.edu/learn/upload/ssh_client.h

tml

Install Java

• 1. JDK 8 (with JavaFX) for ARM Early Access

http://jdk8.java.net/fxarmpreview/

– Download from Raspberry pi

– Download from your own PC and copy it (scp) to

Raspberry pi

• Extract the JDK tar.gz file

– tar –zxvf fileToExtract.tar.gz

– You will get a folder “jdk1.8.0”

Set Java PATH

• If you put the folder “jdk1.8.0” in the home
directory (i.e. /home/pi), you will see the java
executables (e.g. javac, java, appletviewer) in the
directory: /home/pi/jdk1.8.0/bin

• open /etc/profile
add:

PATH=$PATH:/home/pi/jdk1.8.0/bin
export PATH

• Reboot:

sudo reboot

Linux System Administration

29

Kernel and Distribution

30

Kernel and Distribution

31

Although only the kernel itself is rightly

called Linux, the term is often used to

refer to a collection of different open-

source projects from a variety of

companies. These collections come

together to form different flavors of

Linux, known as distributions.

File System Logical Layout

boot: This contains Linux kernel and other packages needed to start the Pi

bin: OS-related binary files, like those required to run the GUI, are stored

here.

dev: Virtual directory, which doesn’t actually exist on the SD card. All devices

connected to the system can be accessed from here.

etc: This stores miscellaneous configuration files, including the list of users

and their encrypted passwords

home: Each user gets a subdirectory beneath this directory to store all their

personal files

lib: This is a storage space for libraries, which are shared bits of code

required by different applications.

lost+found: A special directory where file fragments are stored if the system

crashes.

media: A special directory for removable storage devices, like USB memory

sticks or external CD drives.

32

File System Logical Layout

mnt: This folder is used to manually mount storage devices, such as
external hard drives.

opt: This stores optional software that is not part of the OS itself. If
you install new software to your Pi, it will usually go here.

proc: Another virtual directory, containing information about running
programs which are known in Linux as processes.

selinux: Files related to Security Enhanced Linux, a suite of security
utilites originally developed by the US National Security Agency.

sbin: Stores special binary files, primarily used by the root account for
system maintenance.

sys: This directory is where special OS files are stored.

tmp: Temporary files are stored here automatically.

usr: This directory provides storage for user accessible programs.

var: This is virtual directory that programs use to store changing
values or variables.

33

Software

LXTerminal and Root Terminal: use the Linux command line in a window without
leaving the GUI.

Midori & NetSurf: Lightweight web browser

IDLE and IDLE 3: IDE for Python 2.7 and 3

Task Manager: Checks the available memory, processor workload, closes crashed
or unresponsive programs

Music player at the console: moc

OpenOffice.org: sudo apt-get install openoffice.org

Image Editing: Gimp

LAMP (Linux, Apache, MySQL and PHP) stack

Sudo apt-get install apache2 php5 php5-mysql mysql-server

34

Installing, Uninstalling and Updating Software

• Package manager in Debian: apt
• GUI for apt, Synaptic Package Manager doesn’t work well on Pi due to the

lack of memory

• Make sure that the apt cache is up to date:
• apt-get update

• Finding software:
• apt-cache search emacs

• Installing software and dependencies:
• sudo apt-get install emacs

• Uninstalling software:
• sudo apt-get remove emacs

• sudo apt-get purge emacs (removes everything including configurations)

• Upgrading software:
• Sudo apt-get upgrade

• Sudo apt-get install emacs

35

Troubleshooting

36

Keyboard and Mouse Diagnostics

Power Diagnostics

Display Diagnostics

Network Diagnostics

Emergency Kernel

Wired Networking Configuration

37

sudo nano /etc/ntework/interfaces

iface eth0 inet static

[tab] address 192.168.0.10

[tab] netmask 255.255.255.0

[tab] gateway 192.168.0.254

sudo /etc/init.d/networking restart

sudo nano /etc/reslov.conf

nameserver 8.8.8.8

nameserver 8.8.4.4

sudo /etc/init.d/networking restart

ping –c 1 www.raspberrypi.org

Wireless Networking Configuration

38

• USB Wi-Fi adapters are very power-hungry. Connect a powered USB

hub to the Pi, and then insert the Wi-Fi adapter into that.

• Print out the entire kernel ring buffer and find out the company that

makes the actual chip: mesg | grep ^usb

Atmel-firmware

Firmware-atheros

Firmware-brcm80211

Firmeware-intelwimax

Firmware-ipw2x00

Firmware-iwlwifi

Firmware-ralink

Firmware-realteck

Zd1211-firmware

• Check the current status of the network: iwconfig

Configurating the Raspberry Pi

39

RPi doesn’t have a BIOS menu. It relies on

text files containing configuration strings that

are loaded by the chip when powers on.

• Hardware settings: config.txt

• Memory Partitioning: start.elf

• Software Settings: cmdline.txt

References for Python

Beginner’s Guide to Python

http://wiki.python.org/moin/BeginnersGuide

A free, interactive tutorial

http://www.learnpython.org

Learn Python the Hard Way (Shavian Publishing,
2012)

Dive Into Python 3 (APRESS, 2009)

40

General Purpose Input/Output

(GPIO)

41

• General Purpose Input/Output (GPIO) is a

generic pin on a chip whose behavior can be

controlled by the user at run time.

42

• The GPIO connector has a number of different
types of connection:

– True GPIO (General Purpose Input Output) pins
that you can use to turn LEDs on and off etc.

– I2C interface pins that allow you to connect
hardware modules with just two control pins

– SPI interface with SPI devices, a similar concept to
I2C but uses a different standard

– Serial Rx and Tx pins for communication with
serial peripherals

43

• GPIO pins can be used as both digital outputs
and digital inputs.

• Output: turn a particular pin HIGH or LOW.

– Setting it HIGH sets it to 3.3V; setting it LOW sets
it to 0V.

• Input: detect the pin being at HIGH or LOW

– we can connect switches and simple sensors to a
pin and check whether it is open or closed (that is,
activated or not)

44

All the pins have 3.3V logic levels and are not 5V-safe so the output levels are

0-3.3V and the inputs should not be higher than 3.3V. 45

To use the pin numbers from the ribbon cable board:

GPIO.setmode(GPIO.BCM)

To use the pin numbers on raspberry pi board

GPIO.setmode(GPIO.BOARD)

Electronic Equipment

• Breadboard
– Components in the same row are connected together without wires

• Jumper Wires
– Try to use different colors to differentiate different purposes

• Resistors

• Push-Buttons

• LEDs

46

47

GPIO setup on Raspberry Pi

• Install Python 2 library Rpi.GPIO.

– A library that will let us control the GPIO pins.

• https://pypi.python.org/pypi/RPi.GPIO

• Install commands:

sudo apt-get update

sudo apt-get install python-dev

sudo apt-get install python-rpi.gpio

48

GPIO as Output

• Experiment 1: Controlling LED

– LED

– Breadboard

– Jumper wire

49

Breadboard

• Build circuit easily without soldering

50

Use Cobbler kit to extend the GPIO to

breadboard

51

Light-emitting diode (LED)

• Current flows from the anode to cathode.

– Anode: longer pin

– Cathode: shorter pin

• Use a multimeter to test the polarity

– Check resistance

– In both directions.

52

Multimeter

53

Task 1: Turn LED on for 2 seconds and

off for 1 second, loop forever

• In this example, we control the LED

by controlling the voltage at the

anode (+).

54

Code for task 1

import RPi.GPIO as GPIO

import time

def main():

GPIO.cleanup()

GPIO.setmode(GPIO.BOARD) # to use Raspberry Pi board pin numbers

GPIO.setup(11, GPIO.OUT) # set up GPIO output channel

while True:

GPIO.output(11, GPIO.LOW) # set RPi board pin 11 low. Turn off LED.

time.sleep(1)

GPIO.output(11, GPIO.HIGH) # set RPi board pin 11 high. Turn on LED.

time.sleep(2)

main()

55

GPIO as Input

• When the switch is

not pushed: GPIO

detects Vcc (HIGH)

• When the switch is

pushed: GPIO

detects GND (LOW)

56

Pull up resistor

GPIO Input Sample Code

• import RPi.GPIO as GPIO

• # Use the pin numbers from the ribbon cable board
GPIO.setmode(GPIO.BCM)

• # Set up this pin as input.
GPIO.setup(17, GPIO.IN)

• # Check the value of the input pin
GPIO.input(17)

• # Hold down the button, run the command again. The
output should be "true".
GPIO.input(17)

57

Check input using polling

input = True

prev_input = True

while True:

input = GPIO.input(17)

if (prev_input and (not input)):

print("Button pressed")

#update previous input

prev_input = input

#slight pause to debounce

time.sleep(0.05)

58

Check input using call back

RPi.GPIO version 0.5.1a

59

GPIO.setup(17, GPIO.IN)

def my_callback():
global time_stamp # put in to debounce
time_now = time.time()
if (time_now - time_stamp) >= 0.05:

print “Button Pressed"
time_stamp = time_now

GPIO.add_event_detect(17, GPIO.FALLING, callback=my
_callback)

Experiment 2: Display digit on 7-

segment LED

60

Experiment 2: Display digit on 7-

segment LED

• Most direct way to control display:

– Connect pin 3/8 of 7-seg-LED to Vcc

– Connect the other 8 pins to 8 GPIO pins

– Configure the 8 GPIO pins as output

61

Experiment 2: Display digit on 7-

segment LED

• For example: display “2”

– Turn on segments A, B, D, E G.

and turn off segments C, F, DP

– Set A,B,D,E,G to LOW

and set C, F, DP to HIGH

– Set Pin 7, 6, 2, 1, 10 LOW

Set pin 4, 9, 5 HIGH

62

• The most direct way uses 8 GPIO pins.

• If we only display 0-9 digits, this is inefficient.
– Use BCD to 7-segment decoder to display digit

• How to display multiple digits?

63

Using I2C:

Control 4 digit 7-segment display

• How to do multiple 7-

segment display?

– Multiplexing

• The driver chip behind

it will do this for us

• We can control it

through I2C

64

Configure I2C

• Add modules
– Add two modules to the end of file /etc/modules :

i2c-bcm2708

i2c-dev

• Install I2C tools utility
sudo apt-get install python-smbus

sudo apt-get install i2c-tools

– If we have file: /etc/modprobe.d/raspi-blacklist.conf,
comment the following two lines:

blacklist spi-bcm2708

blacklist i2c-bcm2708

• To see all the connected devices:
– sudo i2cdetect -y 1

65

Control 4-digit 7-Segment Display

• Connect the 4 digit 7-segment display:

– Four pins

– Vcc, GND, SDA (Serial Data Line), SCL (Serial Clock)

• Use Adafruit’s library to control the display:
http://learn.adafruit.com/matrix-7-segment-led-backpack-with-the-raspberry-

pi/using-the-adafruit-library

• All the low level I/O: Adafruit_LEDBackpack.py

• 7-Segment Library: Adafruit_7Segment.py

– writeDigit(charNumber, value, dot=False)

– setColon(state)

66

Experiment 3: Temperature Sensor

• Maxim: DS18B20+

• Operating temperature: -55 °C to +125 °C

• Accuracy: 0.5 °C (-10 °C to +80 °C)

• Datasheet:

http://datasheets.maximintegrated.com/en/d

s/DS18B20.pdf

• Request free sample at:

http://www.maximintegrated.com/

67

68

DS18B20+ Features

• Unique 1-Wire® Interface Requires Only One
Port Pin for Communication

• Each Device has a Unique 64-Bit Serial Code
Stored on an On-Board ROM

• Requires No External Components

• Thermometer Resolution is User Selectable
from 9 to 12 Bits

• Convert temperature to 12-Bit Digital Word in
750ms (max)

69

DS18B20+ connection diagram

This is a BOTTOM view. Identify GND and POWER
correctly before you connect.

!!! Wrong connection of GND and POWER will burn the
chip instantly.

70

How to read data from DS18B20+?

• Look at DS18B20+. Follow the 1-wire protocol.

– 1-Wire is a device communications bus
system designed by Dallas Semiconductor
Corp. that provides low-speed data, signaling, and
power over a single signal.

– Multiple 1-wire sensors can share the same pin

– See http://en.wikipedia.org/wiki/1-Wire for
details

– http://datasheets.maximintegrated.com/en/ds/DS
18B20.pdf

71

Read temperature

• We do not need to implement the 1-wire
protocol ourselves.

• We can read temperature from a file

– sudo modprobe w1-gpio

– sudo modprobe w1-therm

– cd /sys/bus/w1/devices

– ls

– cd 28-xxxx (may need change to match serial no.)

– cat w1_slave

72

Read temperature

• In Python, we can read the temperature by

parsing that file:
import os

import glob

import time

os.system('modprobe w1-gpio')

os.system('modprobe w1-therm')

base_dir = '/sys/bus/w1/devices/'

device_folder = glob.glob(base_dir + '28*')[0]

device_file = device_folder + '/w1_slave'

73

Python Socket Programming

• Two types of sockets:

– Stream & datagram

– streamSock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

– dgramSock = socket.socket(socket.AF_INET,

socket.SOCK_DGRAM)

74

Sample Code: Stream Client

75

import socket

clientSocket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
clientSocket.connect((‘192.168.2.10',23000))
clientSocket.send("Hello World\n")

data receive from server and print
print clientSocket.recv(100)

clientSocket.close()

Sample Code: Stream Server

76

import socket

serverSocket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
serverSocket.bind(('',23000))
serverSocket.listen(5)

while 1:
wait for client’s connection
clientSocket, (remoteHost, remotePort) =

serverSocket.accept()
receive data from client
s = clientSocket.recv(100)
send data back to server
clientSocket.send(s)
clientSocket.close()

Experiment:

LED controlled by remote sensor

• 1st Raspberry Pi board houses temperature
sensor

• 2nd Raspberry Pi board houses an LED.

• The sensor reports the temperature to the 2nd

Raspberry Pi board. LED will be turned on
when the temperature is higher than a
threshold.

77

IP Camera Setup

• Turn a USB-based camera to an IP camera

• Install “motion” package

– sudo apt-get install motion

• Start “motion” service

– sudo services motion start

• Configure “motion” in /etc/motion/motion.conf

Daemon = OFF to ON
webcam_localhost = ON to OFF
webcam_port = desired port number or 8088
control_port = desired port number or 8089

78

IP Camera Setup

• Let the motion service start automatically:

sudo vi /etc/default/motion:
“start_motion_daemon=no” to “yes”

• sudo service motion restart

• View video from webcam

– http://192.168.0.85:8088

• Remotely control the web cam settings:

– http://192.168.0.85:8089

79

References

• http://en.wikipedia.org/wiki/Breadboard

• http://robig.net/blog/

• http://www.societyofrobots.com/electronics_led_tutor
ial.shtml

• http://macao.communications.museum/eng/exhibitio
n/secondfloor/moreinfo/Displays.html

• See http://en.wikipedia.org/wiki/1-Wire for details

• http://datasheets.maximintegrated.com/en/ds/DS18B
20.pdf

• http://learn.adafruit.com/category/raspberry-pi

80

