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System on Chip (SoC)

• What is System on Chip?
– A complex IC that integrates the major functional elements 

into a single chip or chipset. 
• programmable processor 

• on-chip memory 

• accelerating function hardware (e.g. GPU)

• both hardware and software 

• analog components 

• Benefits of SoC
– Reduce overall system cost 

– Increase performance 

– Lower power consumption 

– Reduce size 



SoC in Raspberry Pi: Broadcom 

BCM2835 SoC Multimedia processor
• CPU 

– ARM 1176JZF-S (armv6k) 700MHz

– RISC Architecture and low power draw

– Not compatible with traditional PC software

• GPU
– Broadcom Video IV

– Specialized graphical instruction sets

• RAM
– 512MB (Model B rev.2)

– 256 MB (Model A, Model B rev.1)



SoC in Raspberry Pi:

Broadcom BCM2835 SoC

BCM2835 SoC (right) and Samsung K4P2G324ED Mobile DRAM (left)



Connecting a Display and Audio

• HDMI
– Digital signal

– Video and audio signal

– DVI cannot carry audio signal

– Up to 1920x1200 resolution

• Composite RCA
– Analog signal

– 480i, 576i resolution

• 3.5mm jack



RPi Remote Connections

http://pihw.wordpress.com/guides/direct-network-connection/



Universal Serial Bus

• Two USB 2.0 ports in RPi

• Buy a powered USB hub

Passive models are cheaper and smaller, but lack the ability to run current-
hungry devices like CD drives and external hard drives.



Storage: Secure Digital (SD)
• Form factor

– SD, Mini SD, Micro SD

• Types of Card

– SDSC (SD): 1MB to 2GB

– SDHC: 4GB to 32 GB

– SDXD up to 2TB

The card should be at least 2GB in 
capacity to store all the required files



Storage: Continue

SD Formatter:

https://www.sdcard.org/downloads/formatter_4/

How to mount USB flash drive from 

command line:

http://linuxcommando.blogspot.co.uk/2007/12/how-to-mount-usb-flash-
drive-from.html



Networking

Ethernet (IEEE 802.3)

USB Ethernet Converter

Wi-Fi Adapter



Networking - wireless

• IEEE 802.11 Wi-Fi

– Protocols

• 802.11 b, up to 11Mbps

• 802.11 g, up to 54Mbps

• 802.11 n, up to 300Mbps

• 802.11 ac (draft), up to 

1Gbps

– Frequency band

• 2.4GHz, 5GHz



Low Speed Peripherals

• General Purpose 

Input/Output (GPIO)

– Pins can be configured to 

be input/output

– Reading from various 

environmental sensors 

• Ex: IR, video, 

temperature, 3-axis 

orientation, acceleration

– Writing output to dc 

motors, LEDs for status.





Power Consumption

• microUSB power connector

– 2.5W (model A)

– 3.5W (model B)

• Powered USB hub

– To provide more power for USB peripherals



Useful links

• Raspberry Pi official website

– http://www.raspberrypi.org/

• Raspberry Pi wiki

– http://elinux.org/RaspberryPiBoard

• Raspberry Pi verified peripherals

– http://elinux.org/RPi_VerifiedPeripherals

• The MagPi

– http://www.themagpi.com

• Raspberry Pi on Adafruit Learning System:

– http://learn.adafruit.com/category/learn-raspberry-pi



• 1. Download the Raspberry Pi operating system
– Linux releases compatible with the Pi: 

http://www.raspberrypi.org/downloads

– The recommended OS is Raspbian:

http://downloads.raspberrypi.org/raspbian_latest

• 2. Unzip the file that you just downloaded
– Right click on the file and choose “Extract all”. 

– Follow the instructions—you will end up with a file 
ending in .img

Raspberry Pi Setup







• 3. Download the Win32DiskImager software 

– a) Download win32diskimager-binary.zip 

(currently version 0.6) from:

https://launchpad.net/win32-image-

writer/+download

– b) Unzip it in the same way you did the Raspbian

.zip file

– c) You now have a new folder called 

win32diskimager-binary



• 4. Writing Raspbian to the SD card
– a) Plug your SD card into your PC

– b) In the folder you made in step 3(b), run the file 
named Win32DiskImager.exe

– c) If the SD card (Device) you are using isn’t found 
automatically then click on the drop down box and 
select it

– d) In the Image File box, choose the Raspbian .img file 
that you downloaded

– e) Click Write

– f) After a few minutes you will have an SD card that 
you can use in your Raspberry Pi



• 5. Booting your Raspberry Pi for the first time

– On first boot you will come to the Raspi-config window

– Change settings such as timezone and locale if you want

– Finally, select the second choice: expand_rootfs and say 
‘yes’ to a reboot

– The Raspberry Pi will reboot and you will see raspberrypi
login: 

• Username: pi, password: raspberry

– Start the desktop by typing: startx

– The desktop environment is known as the Lightweight X11 
Desktop Environment (LXDE)





Re-mapping Keyboard:

• sudo vi /etc/default/keyboard

XKBLAYOUT=”gb”

Change “gb” to “us” 

• (This assumes you want a us mapping, if not 

replace the gb with the two letter code for 

your country)



Install and Start SSH

• Update apt-get package index files:

– sudo apt-get update

• Install SSH:

– sudo apt-get install ssh

• Start SSH server:

– sudo /etc/init.d/ssh start

• To start the SSH server every time the Pi boots 
up:

– sudo update-rc.d ssh defaults



• SSH client for Windows:

– PuTTY

– http://www.putty.org/

• SSH Secure File Transfer

– http://www.utexas.edu/learn/upload/ssh_client.h

tml





Install Java

• 1. JDK 8 (with JavaFX) for ARM Early Access 

http://jdk8.java.net/fxarmpreview/

– Download from Raspberry pi

– Download from your own PC and copy it (scp) to 

Raspberry pi

• Extract the JDK tar.gz file

– tar –zxvf fileToExtract.tar.gz

– You will get a folder “jdk1.8.0”



Set Java PATH

• If you put the folder “jdk1.8.0” in the home 
directory (i.e. /home/pi), you will see the java 
executables (e.g. javac, java, appletviewer) in the 
directory:   /home/pi/jdk1.8.0/bin

• open /etc/profile
add:

PATH=$PATH:/home/pi/jdk1.8.0/bin 
export PATH

• Reboot:

sudo reboot



Linux System Administration
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Kernel and Distribution
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Kernel and Distribution

31

Although only the kernel itself is rightly 

called Linux, the term is often used to 

refer to a collection of different open-

source projects from a variety of 

companies. These collections come 

together to form different flavors of 

Linux, known as distributions. 



File System Logical Layout

boot: This contains Linux kernel and other packages needed to start the Pi

bin: OS-related binary files, like those required to run the GUI, are stored 

here.

dev: Virtual directory, which doesn’t actually exist on the SD card. All devices 

connected to the system can be accessed from here.

etc: This stores miscellaneous configuration files, including the list of users 

and their encrypted passwords

home: Each user gets a subdirectory beneath this directory to store all their 

personal files

lib: This is a storage space for libraries, which are shared bits of code 

required by different applications.

lost+found: A special directory where file fragments are stored if the system 

crashes.

media: A special directory for removable storage devices, like USB memory 

sticks or external CD drives.
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File System Logical Layout

mnt: This folder is used to manually mount storage devices, such as 
external hard drives.

opt: This stores optional software that is not part of the OS itself. If 
you install new software to your Pi, it will usually go here.

proc: Another virtual directory, containing information about running 
programs which are known in Linux as processes.

selinux: Files related to Security Enhanced Linux, a suite of security 
utilites originally developed by the US National Security Agency. 

sbin: Stores special binary files, primarily used by the root account for 
system maintenance.

sys: This directory is where special OS files are stored.

tmp: Temporary files are stored here automatically. 

usr: This directory provides storage for user accessible programs.

var: This is virtual directory that programs use to store changing 
values or variables. 
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Software

LXTerminal and Root Terminal: use the Linux command line in a window without 
leaving the GUI.

Midori & NetSurf: Lightweight web browser

IDLE and IDLE 3: IDE for Python 2.7 and 3

Task Manager: Checks the available memory, processor workload, closes crashed 
or unresponsive programs

Music player at the console: moc

OpenOffice.org: sudo apt-get install openoffice.org

Image Editing: Gimp

LAMP (Linux, Apache, MySQL and PHP) stack

Sudo apt-get install apache2 php5 php5-mysql mysql-server

34



Installing, Uninstalling and Updating Software

• Package manager in Debian: apt
• GUI for apt, Synaptic Package Manager doesn’t work well on Pi due to the 

lack of memory

• Make sure that the apt cache is up to date: 
• apt-get update

• Finding software: 
• apt-cache search emacs

• Installing software and dependencies: 
• sudo apt-get install emacs

• Uninstalling software: 
• sudo apt-get remove emacs

• sudo apt-get purge emacs (removes everything including configurations)

• Upgrading software:
• Sudo apt-get upgrade

• Sudo apt-get install emacs
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Troubleshooting
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Keyboard and Mouse Diagnostics

Power Diagnostics

Display Diagnostics

Network Diagnostics

Emergency Kernel



Wired Networking Configuration
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sudo nano /etc/ntework/interfaces

iface eth0 inet static

[tab] address 192.168.0.10

[tab] netmask 255.255.255.0

[tab] gateway 192.168.0.254

sudo /etc/init.d/networking restart

sudo nano /etc/reslov.conf

nameserver 8.8.8.8

nameserver 8.8.4.4 

sudo /etc/init.d/networking restart

ping –c 1 www.raspberrypi.org



Wireless Networking Configuration

38

• USB Wi-Fi adapters are very power-hungry. Connect a powered USB 

hub to the Pi, and then insert the Wi-Fi adapter into that.

• Print out the entire kernel ring buffer and find out the company that 

makes the actual chip: mesg | grep ^usb

Atmel-firmware

Firmware-atheros

Firmware-brcm80211

Firmeware-intelwimax

Firmware-ipw2x00

Firmware-iwlwifi

Firmware-ralink

Firmware-realteck

Zd1211-firmware

• Check the current status of the network: iwconfig



Configurating the Raspberry Pi
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RPi doesn’t have a BIOS menu. It relies on 

text files containing configuration strings that 

are loaded by the chip when powers on.

• Hardware settings: config.txt

• Memory Partitioning: start.elf

• Software Settings: cmdline.txt



References for Python

Beginner’s Guide to Python

http://wiki.python.org/moin/BeginnersGuide

A free, interactive tutorial

http://www.learnpython.org

Learn Python the Hard Way (Shavian Publishing, 
2012)

Dive Into Python 3 (APRESS, 2009)
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General Purpose Input/Output 

(GPIO)
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• General Purpose Input/Output (GPIO) is a 

generic pin on a chip whose behavior can be 

controlled by the user at run time.
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• The GPIO connector has a number of different 
types of connection:

– True GPIO (General Purpose Input Output) pins 
that you can use to turn LEDs on and off etc.

– I2C interface pins that allow you to connect 
hardware modules with just two control pins

– SPI interface with SPI devices, a similar concept to 
I2C but uses a different standard

– Serial Rx and Tx pins for communication with 
serial peripherals

43



• GPIO pins can be used as both digital outputs 
and digital inputs. 

• Output: turn a particular pin HIGH or LOW. 

– Setting it HIGH sets it to 3.3V; setting it LOW sets 
it to 0V.

• Input: detect the pin being at HIGH or LOW

– we can connect switches and simple sensors to a 
pin and check whether it is open or closed (that is, 
activated or not)
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All the pins have 3.3V logic levels and are not 5V-safe so the output levels are 

0-3.3V and the inputs should not be higher than 3.3V. 45

To use the pin numbers from the ribbon cable board: 

GPIO.setmode(GPIO.BCM) 

To use the pin numbers on raspberry pi board

GPIO.setmode(GPIO.BOARD)



Electronic Equipment

• Breadboard
– Components in the same row are connected together without wires

• Jumper Wires
– Try to use different colors to differentiate different purposes

• Resistors

• Push-Buttons

• LEDs
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GPIO setup on Raspberry Pi

• Install Python 2 library Rpi.GPIO. 

– A library that will let us control the GPIO pins.

• https://pypi.python.org/pypi/RPi.GPIO

• Install commands:

sudo apt-get update

sudo apt-get install python-dev

sudo apt-get install python-rpi.gpio
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GPIO as Output

• Experiment 1: Controlling LED

– LED

– Breadboard

– Jumper wire
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Breadboard

• Build circuit easily without soldering

50



Use Cobbler kit to extend the GPIO to 

breadboard

51



Light-emitting diode (LED) 

• Current flows from the anode to cathode.

– Anode: longer pin

– Cathode: shorter pin

• Use a multimeter to test the polarity

– Check resistance 

– In both directions.
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Multimeter
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Task 1: Turn LED on for 2 seconds and 

off for 1 second, loop forever

• In this example, we control the LED 

by controlling the voltage at the 

anode (+).
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Code for task 1

import RPi.GPIO as GPIO   

import time

def main():

GPIO.cleanup()

GPIO.setmode(GPIO.BOARD)    # to use Raspberry Pi board pin numbers

GPIO.setup(11, GPIO.OUT)    # set up GPIO output channel

while True:

GPIO.output(11, GPIO.LOW) # set RPi board pin 11 low. Turn off LED.

time.sleep(1)

GPIO.output(11, GPIO.HIGH) # set RPi board pin 11 high. Turn on LED.

time.sleep(2)

main()
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GPIO as Input

• When the switch is 

not pushed: GPIO 

detects Vcc (HIGH)

• When the switch is 

pushed: GPIO 

detects GND (LOW)
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Pull up resistor



GPIO Input Sample Code

• import RPi.GPIO as GPIO

• # Use the pin numbers from the ribbon cable board
GPIO.setmode(GPIO.BCM)

• # Set up this pin as input.
GPIO.setup(17, GPIO.IN)

• # Check the value of the input pin
GPIO.input(17)

• # Hold down the button, run the command again. The 
output should be "true".
GPIO.input(17)
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Check input using polling

input =  True

prev_input = True

while True: 

input = GPIO.input(17) 

if (prev_input and (not input)): 

print("Button pressed") 

#update previous input 

prev_input = input 

#slight pause to debounce

time.sleep(0.05)
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Check input using call back

RPi.GPIO version 0.5.1a
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GPIO.setup(17, GPIO.IN)

def my_callback():
global time_stamp # put in to debounce
time_now = time.time()
if (time_now - time_stamp) >= 0.05:

print “Button Pressed"
time_stamp = time_now

GPIO.add_event_detect(17, GPIO.FALLING, callback=my
_callback)



Experiment 2: Display digit on 7-

segment LED
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Experiment 2: Display digit on 7-

segment LED

• Most direct way to control display:

– Connect pin 3/8 of 7-seg-LED to Vcc

– Connect the other 8 pins to 8 GPIO pins

– Configure the 8 GPIO pins as output
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Experiment 2: Display digit on 7-

segment LED

• For example: display “2”

– Turn on segments A, B, D, E G.

and turn off segments C, F, DP

– Set A,B,D,E,G to LOW

and set C, F, DP to HIGH

– Set Pin 7, 6, 2, 1, 10 LOW

Set pin 4, 9, 5 HIGH
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• The most direct way uses 8 GPIO pins.

• If we only display 0-9 digits, this is inefficient.
– Use BCD to 7-segment decoder to display digit

• How to display multiple digits?
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Using I2C: 

Control 4 digit 7-segment display

• How to do multiple 7-

segment display?

– Multiplexing

• The driver chip behind 

it will do this for us

• We can control it 

through I2C
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Configure I2C

• Add modules
– Add two modules to the end of file /etc/modules :

i2c-bcm2708

i2c-dev

• Install I2C tools utility
sudo apt-get install python-smbus

sudo apt-get install i2c-tools

– If we have file: /etc/modprobe.d/raspi-blacklist.conf, 
comment the following two lines:

blacklist spi-bcm2708

blacklist i2c-bcm2708

• To see all the connected devices:
– sudo i2cdetect -y 1
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Control 4-digit 7-Segment Display

• Connect the 4 digit 7-segment display:

– Four pins

– Vcc, GND, SDA (Serial Data Line), SCL (Serial Clock)

• Use Adafruit’s library to control the display:
http://learn.adafruit.com/matrix-7-segment-led-backpack-with-the-raspberry-

pi/using-the-adafruit-library

• All the low level I/O: Adafruit_LEDBackpack.py

• 7-Segment Library: Adafruit_7Segment.py

– writeDigit(charNumber, value, dot=False)

– setColon(state)

66



Experiment 3: Temperature Sensor

• Maxim: DS18B20+

• Operating temperature: -55 °C to +125 °C 

• Accuracy: 0.5 °C (-10 °C to +80 °C)

• Datasheet: 

http://datasheets.maximintegrated.com/en/d

s/DS18B20.pdf

• Request free sample at: 

http://www.maximintegrated.com/
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DS18B20+ Features

• Unique 1-Wire® Interface Requires Only One 
Port Pin for Communication

• Each Device has a Unique 64-Bit Serial Code 
Stored on an On-Board ROM

• Requires No External Components

• Thermometer Resolution is User Selectable 
from 9 to 12 Bits

• Convert temperature to 12-Bit Digital Word in 
750ms (max)
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DS18B20+ connection diagram

This is a BOTTOM view. Identify GND and POWER 
correctly before you connect. 

!!! Wrong connection of GND and POWER will burn the 
chip instantly. 
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How to read data from DS18B20+? 

• Look at DS18B20+. Follow the 1-wire protocol.

– 1-Wire is a device communications bus 
system designed by Dallas Semiconductor 
Corp. that provides low-speed data, signaling, and 
power over a single signal.

– Multiple 1-wire sensors can share the same pin

– See http://en.wikipedia.org/wiki/1-Wire for 
details

– http://datasheets.maximintegrated.com/en/ds/DS
18B20.pdf
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Read temperature

• We do not need to implement the 1-wire 
protocol ourselves.

• We can read temperature from a file

– sudo modprobe w1-gpio

– sudo modprobe w1-therm

– cd /sys/bus/w1/devices

– ls

– cd 28-xxxx (may need change to match serial no.)

– cat w1_slave
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Read temperature

• In Python, we can read the temperature by 

parsing that file:
import os

import glob

import time

os.system('modprobe w1-gpio')

os.system('modprobe w1-therm')

base_dir = '/sys/bus/w1/devices/'

device_folder = glob.glob(base_dir + '28*')[0]

device_file = device_folder + '/w1_slave'
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Python Socket Programming

• Two types of sockets: 

– Stream & datagram

– streamSock = socket.socket( socket.AF_INET, 

socket.SOCK_STREAM ) 

– dgramSock = socket.socket( socket.AF_INET, 

socket.SOCK_DGRAM )
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Sample Code: Stream Client

75

import socket

clientSocket = socket.socket(socket.AF_INET, 
socket.SOCK_STREAM)
clientSocket.connect((‘192.168.2.10',23000))
clientSocket.send("Hello World\n")

# data receive from server and print
print clientSocket.recv(100)

clientSocket.close()



Sample Code: Stream Server
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import socket

serverSocket = socket.socket(socket.AF_INET, 
socket.SOCK_STREAM)
serverSocket.bind(('',23000))
serverSocket.listen( 5 )

while 1:
# wait for client’s connection
clientSocket, (remoteHost, remotePort) = 

serverSocket.accept()
# receive data from client
s = clientSocket.recv(100)
# send data back to server
clientSocket.send(s)
clientSocket.close()



Experiment: 

LED controlled by remote sensor

• 1st Raspberry Pi board houses temperature 
sensor

• 2nd Raspberry Pi board houses an LED. 

• The sensor reports the temperature to the 2nd

Raspberry Pi board. LED will be turned on 
when the temperature is higher than a 
threshold.
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IP Camera Setup

• Turn a USB-based camera to an IP camera

• Install “motion” package

– sudo apt-get install motion

• Start “motion” service

– sudo services motion start

• Configure “motion” in /etc/motion/motion.conf

Daemon = OFF to ON
webcam_localhost = ON to OFF
webcam_port = desired port number or 8088
control_port = desired port number or 8089
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IP Camera Setup

• Let the motion service start automatically:

sudo vi /etc/default/motion:
“start_motion_daemon=no” to “yes”

• sudo service motion restart

• View video from webcam

– http://192.168.0.85:8088

• Remotely control the web cam settings:

– http://192.168.0.85:8089
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