High-Precision GNSS Positioning

Lambert Wanninger

Geodätisches Institut, TU Dresden, 01062 Dresden lambert.wanninger@tu-dresden.de

Abstract

High-Precision GNSS positioning results are based on carrier-phase measurements as the primary observables. Accuracies in the range of better than 1 centimetre and up to 1 decimetre can not be achieved with code observations. They require processing of the much more accurate but ambiguous carrier-phase observations. Presently, there are three satellite systems which make signals available for GNSS positioning: the US-American GPS, the partly rebuilt Russian GLONASS, and the several satellite-based augmentations systems (SBAS) like WAAS, EGNOS, GAGAN and MSAS. High-precision positioning can be achieved in various modes of operation: baseline-based differential positioning in the form of Real-Time Kinematic (RTK), network-based differential positioning in the form of Network-RTK, or Precise Point Positioning (PPP) either in post-processing or in real-time. All techniques have in common that accuracy and reliability increases if observations are performed in static mode. This paper discusses and compares the various techniques of high-precision GNSS positioning and gives an outlook into further improvements expected for the near future.

In: Proceedings of the International SatNav User Congress POSITIONs 2008, 07.-09.10.2008, Dresden. GZVB (Hrsg.), Braunschweig, ISBN 978-3-937655-18-5, S. 92-102.

Overview

High-Precision GNSS Positioning

- Carrier-Phase Observations
- Status of GNSS Systems
- Positioning Methods real-time differential: RTK, Network-RTK Precise Point Positioning (PPP)
 - static mode
- Outlook

Lambert Wanninger
High-Precision GNSS Positioning

Code and Carrier-Phase Observations

Observable	Multipath + Noise	Pseudorange
Code	dm m	unambiguous
Carrier- Phase	mm cm	ambiguous (dm)

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

3

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

Status of GPS Satellite Segment (August 2008)

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

Status of GLONASS Satellite Segment (August 2008)

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

6

7

GLONASS in Comparison to GPS

GPS

Code Division Multiple Access (**CDMA**): identical transmitting frequency, individual PRN codes

GLONASS

Frequency Division Multiple Access (**FDMA**): same PRN-code for all satellites, but individual frequencies

→ Inter-channel biases,

which need to be estimated, complicate ambiguity resolution

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

SBAS Satellites and their Orbits (March 2008)

SBAS Coverage (March 2008)

Lambert Wanninger High-Precision GNSS Positioning

9

POSITIONs 2008, 08.10.2008

SBAS in Comparison to GPS/GLONASS

GPS/GLONASS

- orbital periods ~ 12 h
- dual-frequency signals

SBAS

- geostationary, (almost) fixed
- presently single-frequency
- signals GPS-like, but less accurate code measurements

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

10

RTK

Real-Time Kinematic

- differential (baseline lengths: ... several km)
- carrier-phase primary observable •
- ambiguities fixed to integer values •

POSITIONs 2008, 08.10.2008

Network RTK Services in Germany

Precise Point Positioning (PPP)

- absolute positioning
- use of precise satellite orbits and clock corrections
- continuous carrier-phase observations
- usually no ambiguity fixing
 - → *float*-solution, **convergence time**

Precise Point Positioning (PPP)

Post-Mission Processing Orbits and clocks by the Internat. GNSS Service (IGS), time delay of at least ~1 day, free of charge	Real-Time Processing real-time orbits and clocks, by NASA's Jet Propulsion Lab
→ CSRS-PPP Service: online-service for automized data processing, free of charge	→Commercial service by StarFire (NavCom Tech.), distribution by comm. sat.s

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

15

Precise Point Positioning (PPP)

Convergence Time

tremendous decrease if more satellite signals are available

16

Precise Point Positioning (PPP)

Achievable Accuracies horizontal/vertical

as a function of time of continuous carrier-phase observations

	Kinematic		Static
1 h	0.10/0.15		0.05/0.10
4 h	0.03/0.05	[m]	0.02/0.04
24 h	0.03/0.05		0.01/0.02

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning

Static Mode

Increase in accuracy for long-term continuous and static observations

3D-Position Error (Standard Deviations)

Outlook High-Precision GNSS

Expected improvements in satellite systems and in signals

- re-completion of GLONASS satellite segment
- GPS-L2C
- GPS-L5
- SBAS-L5
- GLONASS CDMA-signals
- GLONASS-L3
- Galileo

 \rightarrow many more satellites+signals, more accurate code meas.

High-precision GNSS: faster, higher availability, more reliable, more accurate

POSITIONs 2008, 08.10.2008

Lambert Wanninger High-Precision GNSS Positioning