TECHNISCHE UNIVERSITAT DRESDEN

FACULTY OF COMPUTER SCIENCE
INSTITUTE OF SOFTWARE AND MULTIMEDIA TECHNOLOGY
CHAIR OF COMPUTER GRAPHICS AND VISUALIZATION
PROF. DR. STEFAN GUMHOLD

Minor Thesis

Point Cloud Based Interactive Global [llumination

Mirko Salm
(Mat.-No.: 3753374)

Tutor: Nico Schertler, M.Sc.
Dipl.-Medieninf. Joachim Staib

Dresden, 09.03.2015

Aufgabenstellung

Globale Beleuchtungseffekte wie indirekte Beleuchtung und Verschattung sind ein signifikanter Faktor
fiir die Realitdtsnihe von gerenderten Bildern. AufSerdem tragen sie zum besseren Verstindnis der Szene
bei, indem bspw. die Relationen von Objekten zueinander durch Schatten deutlich werden. Obwohl eine
physikalisch korrekte Berechnung der indirekten Beleuchtung mdglich ist, sind solche Verfahren sehr
rechenintensiv und damit nicht fiir interaktive Darstellungen geeignet. Ansitze, die Teile der Lichtaus-
breitung vorberechnen, kdnnen zur Beschleunigung beitragen, jedoch sind diese oft auf statische oder
teil-statische Szenen beschrinkt. Stattdessen sollen in dieser Arbeit Verfahren untersucht werden, die
optisch ansprechende Ergebnisse erzielen. Dabei soll der Fokus auf Effekte der indirekten Beleuch-
tung gelegt werden. Nachdem ein fundierter Uberblick iiber solche Verfahren gegeben wurde, soll ein
Programm fiir die Visualisierung von Punktwolken mittels Voxel Cone Tracing implementiert werden.
Dabei ist darauf zu achten, dass die Implementierung mit dynamischen Szenen umgehen kann und eine
geniigend kurze Berechnungszeit aufweist, sodass eine interaktive Visualisierung moglich ist. Die Im-
plementierung soll in dem Umfang, den die gewiéhlten Algorithmen erlauben, auf der Grafikkarte laufen.
AbschlieB3end ist diese beziiglich Performanz und Qualitét zu evaluieren.
Teilaufgaben:

e Literaturrecherche zu globalen Beleuchtungsmodellen und deren effiziente Implementierung (Light

Propagation Volumes, Voxel Cone Tracing, Virtual Point Lights, Instant Radiosity).
e Uberblick iiber wesentliche Verfahren zur indirekten Beleuchtung.
e Erstellen oder Sammeln von geeigneten Test-Szenen unterschiedlicher Komplexitit.

e Implementierung der Beleuchtungsberechnung fiir direkte und indirekte Beleuchtung mittels Voxel

Cone Tracing iiber einem adaptiven Octree auf der Grafikkarte.
o Effiziente Implementierung, die eine interaktive Visualisierung ermoglicht.

e Evaluation der Performanz der Implementierung in Bezug auf Speicherbedarf und erreichter Fram-

erate abhiingig von der Szenenkomplexitit.

e Evaluation der Qualitét durch:

— Plausibilitét der optischen Erscheinung

— Unterstiitzung der folgenden Effekte (Klassifizierung in ’ist vollstandig/teilweise implemen-
tiert’, "’kann noch implementiert werden’, *wird vom gewihlten Verfahren nicht unterstiitzt’):

Ambient Occlusion, Farbbluten, gerichtet diffuse (spekulare) Reflexionen.

e Analyse moglicher Probleme der Implementierung (bspw. Ausleuchtung von schmalen Géngen)

und Skizzierung von Losungsmoglichkeiten.

Optionale Aufgaben:
e Implementierung einer Flidchenlichtquelle.

e Implementierung von Light Propagation Volumes

Selbststandigkeitserklarung

Hiermit erklire ich, dass ich die von mir am heutigen Tag dem Priifungsausschuss der Fakultéit Infor-

matik eingereichte Arbeit zum Thema:
Point Cloud Based Interactive Global Illumination

vollkommen selbststindig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-

nutzt sowie Zitate kenntlich gemacht habe.

Dresden, den 09.03.2015

Mirko Salm

Contents

1 Introduction

1.1 Thesis Structure e e

2 Global illumination

2.1 BasicRadiometry
2.2 The Rendering Equation
23 Rendering e

3 Previous Work

4 The Algorithm

4.1 Scene geometry rendering L. ..o e e e e e
4.2 Directillumination L L
4.3 Hierarchical voxel structure e
431 Description e e e e
4.3.2 General purpose COmMputations ot e
433 ConstruCtion v v vt e e e e e e e e e
434 Antialiasing e e e
4.4 Lightinjection and propagationot e e
4.4.1 Radiance injection i e e
442 MIpmapping it e e e e e e e
443 Diffuse light propagation
4.5 Dynamicupdates e e e e e
4.6 Finalrendering e

5 Implementation
5.1 Application OVerview e e e e e e e e e e
5.2 Software OVerview e e e e e e e e e e e e e

5.2.1 Resource formats and SIZ€So e

5.3 Profilingresults

6 Discussion

6.1 Feature set SUMmMAry e e e e e e e
7 Conclusion

Bibliography

53
55

57

59

Nomenclature

BRDF
ESMs
GI
GPGPU
GPU
ISMs
LPVs
NDF
Rol
SVO
VCT
VPL
VSMs

bidirectional reflectance distribution function
exponential shadow maps

global illumination

general purpose computing on the GPU
graphics processing unit

imperfect shadow maps

(cascaded) light propagation volumes
normal distribution function

range of influence (of a scene sample)
sparse voxel octree

voxel cone tracing

virtual point light

variance shadow maps

1 Introduction

Figure 1.1: A high quality offline rendering of a simple, virtual scene demonstrating the importance of a
comprehensive light propagation simulation. Left image: complex light paths resulting from
multiple reflections of light at surfaces are considered. Right image: only simple light paths
that do not account for more than a single light reflection are simulated. As a result, the
right image lacks important visual cues. Due to the missing light inside the shadows, it is
not clear whether the spheres touch the floor or not while the small sphere is not visible at
all. Furthermore, in the left image the reflected light from the vertical walls partially colors
the spheres and shadows in their respective colors improving the perception of the relative
spatial positioning of the objects in the scene as well as hinting the presence of a green wall

behind the virtual camera.

The computation of photo-realistic images from virtual scene descriptions belongs to the primary ob-
jectives of 3d computer graphics. An accurate simulation of light propagation is essential to produce
synthetic images of natural appearance. Unfortunately, the high complexity of the underlying mathemat-
ical models makes comprehensive simulations computational expensive which is particularly problematic
for interactive or even real-time applications where individual images have to be generated in a matter
of milliseconds. A large amount of this complexity is induced by the complicated paths that the light
can take through the scene before being detected by the virtual sensor. Therefore, real-time applications

traditionally consider only simple light paths whose computation maps well to graphics hardware. As

6 1. INTRODUCTION

illustrated in figure 1.1, this is insufficient when attempting to achieve realistic results since many impor-
tant visual cues are missing. Consequently, additional heuristics are often used to improve the appearance
of interactively rendered scenes. With increasingly more potent graphics hardware, these heuristics are
gradually substituted by less restrictive and more accurate techniques. In this thesis, a light propagation
approach derived from the work of Crassin et al. ((CNS™*11]) is presented that attempts to capture many
important visual effects originating from multiple light reflections while maintaining interactive frame
rates. The original algorithm is modified to support a large amount of progressively built light bounces
as well as to reduce memory consumption and to simplify the overall approach. In addition, an antialias-
ing scheme for the construction of the structure which the light propagation simulation is based on is
proposed. This allows, to some degree, to build the structure from a scene sampling of adaptive density

without introducing regions of degenerated quality in the resulting scene description.

1.1 Thesis Structure

First, an overview of the effects due to light propagation inside a scene as well as the underlying physical
concepts and mathematical models employed for rendering purposes is given. Subsequently, previous
work in the field of interactive light propagation simulation is reviewed before the algorithm developed
in the context of this work is described. The general description of the approach is followed by a presen-
tation of the implementation. At last, the achieved results are evaluated and possible improvements are

outlined before a conclusion of the work is given.

2 Global illumination

This chapter provides a fundamental understanding of how light affects the appearance of a scene and
how its effects can be mathematically modeled and simulated for computer graphics purposes which in

turn is a central objective of the algorithm presented in this work.

In the context of computer graphics, global illumination (GI) [DBB06] describes the behavior of light
in a virtual scene where all light events local to the objects surfaces are modeled as well as the thereby
induced effects on a global scale. For example, the global implication of light being locally reflected
at a red surface might be that an object occluded by the surface receives no light while a nearby object
appears red due to the reflected light (see figure 2.5). In contrast, local illumination models only a single
local light event at every surface point under consideration of the light sources and the observer while

completely ignoring the geometry in the scene.

When light is emitted by light sources into a scene, it can undergo, among others, reflection, refraction,
absorption, and scattering events before a fraction eventually reaches the sensor of the virtual camera,
effectively forming the final image. Most prominent of these local events are diffuse and glossy light
reflections. Glossy reflections (often also called specular reflections) account for the portion of light that
is directly reflected and, due to imperfections, scattered at the surface of the material (see figure 2.2). In
contrast, the portion of light, that actually enters the body of the material, where it then gets scattered
and partially absorbed before being re-emitted at approximately the point of incidence, is modeled by
the diffuse reflection [AMHHOS]. In the following, only the ideal diffuse reflection which ignores imper-
fections at the surface is considered (see figure 2.1). The color appearance that a material exhibits under
lighting is on the one hand determined by the color of the light and on the other hand by the reflection
behavior of the material itself. For rendering purposes, materials are commonly classified as either met-
als or insulators (dielectrics) or combinations of both [Burl12][Kar13][LdR14]. Insulators usually exhibit
both diffuse and glossy reflections to a certain degree. The coloring of highlights resulting from glossy
reflections at the surfaces of ideal insulators are entirely determined by the color of the light since the
reflections itself do not exhibit any wavelength dependencies. However, the light portion that does not
undergo glossy reflections and is instead diffusely reflected changes its color according to the albedo

which corresponds to the wavelength dependent amount of light that is re-emitted instead of being ab-

8 2. GLOBAL ILLUMINATION

sorbed by the material [JMLHO1]. In contrast, pure metals absorb all light that is entering their body and
therefore do not produce diffuse reflections. Their coloring is instead entirely determined by the glossy
reflections at their surfaces which are, in contrast to the glossy reflections at the surfaces of insulators,

wavelength dependent.

D ° o D

Figure 2.1: Ideal diffuse reflection. The amount Figure 2.2: Glossy reflection. The reflected
of light reflected in each direction is light approximately focuses around
independent of the direction of the the reflection direction of the light
incoming light. direction.

Figure 2.3: A non-metallic sphere of brown albedo illuminated from the top-right by a white light source.
From left to right: diffuse reflections, glossy reflections resulting in a highlight, and the
combined effect of both. Note that these images are only intended to outline the different

effects and are not physically correct rendered.

The concept of global illumination, building upon the local effects outlined so far, is commonly divided
into direct lighting, which considers only the first interaction of light with the scene, and indirect lighting,
handling all successively occurring events. This distinction is on the one side made because the compu-

tation of indirect lighting is in general substantially more involved than the one of direct lighting, and

on the other side, because both concepts exhibit their own distinctive effects. Shadows, for example, are
a characteristic feature of direct lighting. They are the result of light being blocked by occluders before
reaching the subsequently shadowed geometry. In the case of mostly diffuse indirect lighting, occluded

regions tend to be rather generally darkened instead of distinctively shadowed (see figure 2.4). Scenes

Figure 2.4: Comparison of the characteristics of direct and indirect lighting. From left to right: direct
and indirect lighting, only direct lighting, only indirect lighting. Note how the indirect light-
ing lacks distinct shadows and instead produces, among other effects, a very soft darkening
under the spheres. This effect is often approximated by ambient occlusion [Fer04] in cases

where full global illumination is too expensive.

exclusively rendered with direct lighting often exhibit unnaturally high contrast due to the coherent na-
ture of the primary light paths. Furthermore, the brightness of the resulting images presents only a lower
bound to the real one since light that is not reflected towards the camera by the first bounce is completely
ignored. Indirect lighting accounts for that by considering potential subsequent light bounces. During
diffuse reflection events, parts of the light are absorbed, effectively tinting the re-emitted light in the
color of the material. This gives rise to the so called color bleeding, where brightly lit surfaces appear to

illuminate their surroundings with light of their own coloring (see figure 2.5).

Another distinction is made with respect to light sources. In reality, light sources like light bulbs or the
sun emit their photons from surfaces of finite extents. In computer graphics they are therefore referred
to as area lights. However, in practice area lights are often approximated by point lights whose accurate
simulation is substantially less expensive. Point lights, in contrast to area lights, emit all photons from a
single point in space. This property allows their direct lighting contribution to be computed analytically
which is in general not possible for area lights. The most commonly used point light variants include
omni-directional point lights, which emit light in all directions equally, spotlights, which are addition-
ally parametrized by a primary emittance direction and an angular falloff, and directional light sources.
Directional lights provide a further approximation by principally assuming infinite distance to the point
light source. Their spatial positioning can therefore be described by a simple direction, hence the name.

Even though they are convenient to work with in terms of computation, point lights produce unnaturally

10 2. GLOBAL ILLUMINATION

hard shadows due to their binary visibility from any point in the scene (see figure 2.6).

Figure 2.5: Color bleeding. The light reflected from the right sphere partially colors the large sphere red.

Figure 2.6: Comparison between the direct lighting from a spherical area light (left) and from an omni-
directional point light (right). The shadows cast by the spheres in the left image feature
penumbras, smooth transitions from shadowed to the illuminated regions. These gradients

are not apparent in the right image due to the infinitesimal size of the point light.

2.1 Basic Radiometry

Radiometry provides mathematical tools to model light transport under the assumption that light travels
along straight paths or rays [PH10]. By largely ignoring the wave properties of the light, several less
dominant effects like polarization, interference, diffraction, fluorescence, and phosphorescence can not

be modeled. Since our perception of color is wavelength depended [TFCRS11], the wave character can-

2.1. BASIC RADIOMETRY 11

not be disregarded completely. All radiometric computations are therefore performed independently for a
number of distinct wavelengths or for a number of representative wavelength ranges. At each pixel of the
virtual sensor, the resulting values are eventually converted into a SRGB triple which in turn is interpreted
by the monitor to determine the intensities of the color components of the respective pixel of the display.
Moreover, the wavelength property is also relevant for the definition of energy since the amount of energy
light holds is not only proportional to the number of photons it consists of but also to the frequency of
these photons [AMHHOS8]. While energy constitutes the conceptional basic quantity in radiometry from
which all other quantities are directly or indirectly derived, it is usually only used to determine the final
color of the pixels in a rendered image due to its lack of descriptive power with respect to time. More
practical quantities are therefore provided by flux, which measures the total amount of energy emitted
by a light source per time interval and by irradiance which in turn is defined as the flux density with
respect to area. To illustrate the relation between flux and irradiance, consider an omni-directional light
source surrounded by a sphere of varying scale. While the total amount of flux measured at the surface
of this sphere remains equal irrespective of the chosen radius, the received irradiance falls off inversely
proportional to the squared radius since the flux is distributed over an increasingly larger area (see figure
2.7). This also explains why the brightness of a diffuse surface falls off with increasing distance to the
light source. A similar situation occurs when a diffuse surface is illuminated under increasingly acute
angle, which likewise distributes the energy of the incoming light over a larger surface area (see figure
2.8). This effect is sometimes confused with Lambert’s cosine law [Lam92], which states that under ideal
diffuse reflection at a surface, the amount of light re-emitted in a certain direction falls off proportional
to the cosine of the angle between this direction and the normal of the surface (see figure 2.1). The direc-
tional dependent quantity referred to by Lambert’s law is called intensity and is among others useful to
describe the emission behavior of point light sources. More precisely, intensity is defined as flux density
with respect to solid angle. Solid angle is a two dimensional analog to the concept of one dimensional
angles. As a two dimensional object projects to an arc on the unit circle whose length corresponds to an
angle in radians (see figure 2.9), a three dimensional solid projects to a surface patch on the unit sphere,
with the area corresponding to a solid angle measured in steradians (see figure 2.10). In conclusion,
the maximal solid angle of 47 steradians can only be subtended by an object completely enclosing the
point of reference. Solid angle is also used to account for the directional dependency in the definition
of radiance, which provides a natural quantity to simulate light transport by rays since it measures the
amount of light traveling along a straight path parametrized by position and direction. Radiance is there-
fore defined as flux density with respect to solid angle and projected area or alternatively as intensity
per projected area. The projection property of the area ensures that the differentiation is performed in a

plane perpendicular to the direction in which the intensity is measured. This differentiation of intensity

12 2. GLOBAL ILLUMINATION

o ? o
o o
y ° o0%o 5 % oo %A
(o]
o Oo <1V<A>q[> (:) o °o %
& bvd 3 o]
o o
o o o
Figure 2.7: An omni-directional light source. Figure 2.8: The acute incident angle of the
The flux density with respect to light distributes the photons over
area (irradiance) decreases in- a larger surface area, leading to
versely proportional to the squared a decrease in irradiance propor-
distance to the light source while tional to the cosine of the incident
the total flux remains constant. angle.
T
p
Figure 2.9: A two dimensional solid seen from Figure 2.10: A three dimensional solid seen
point p subtends an angle (ma- from point p subtends a solid an-
genta), corresponding to a distance gle (magenta), corresponding to

on the unit circle. an area on the unit sphere.

2.2. THE RENDERING EQUATION 13

with respect to projected area can be intuitively understood as picking a single light ray from a set of rays
that perpendicularly pass through the backside of a plane of reference whose normal corresponds to the
direction in which the intensity is measured. Radiance can be particularly convenient to work with since

all other radiometric quantities can be derived by integration from it.

2.2 The Rendering Equation

Lo(z,wo) = Le(x,w,) —l—/ fr(x, wi,wo)Li(x, w;)(w; - n)dw; 2.1
Q

Based on the radiometric quantities outlined previously, the light propagation in a scene can be modeled
by the rendering equation [ICG86][Kaj86] (equation 2.1) which constitutes the mathematical basis for
global illumination under the assumption that light is only affected on interaction with surfaces but not
when traveling through the space separating them. The rendering equation relates the definite radiance
L, along a given direction w, at some surface point x to the light L. that the material of the surface
produces on its own and to the light L; that the whole scene directly or indirectly reflects or emits to-
wards this point of reference and the fashion in which the material subsequently reflects the light. This
relation is expressed by an integral over the hemisphere defined by the normal n at point x. The scalar
product of w; and n accounts for the projection of the incoming light into the plane defined by the point
z and normal n. The local reflection behavior at each point in the scene is modeled by the bidirectional
reflectance distribution function (BRDF) [Nic65] f,.. The BRDF converts differential irradiance arriv-
ing from a given direction w; at the surface point x to an amount of reflected differential radiance in
an outgoing direction w; of interest. In order to be considered physically plausible, a BRDF must meet
certain requirements. One such an important property it must exhibit is the preservation of energy. En-
ergy preserving BRDFs never reflect more light than arrives at the surface, or in other words, they do not
produce any energy on their own. This must hold for any incoming direction and is usually ensured by
a normalization constant that corresponds to the reciprocal maximum amount of totally reflected inten-
sity. The simplest BRDF is the Lambertian BRDF [AMHHO08] which models the ideal diffuse reflection
described earlier and is depicted in figure 2.1. It consists only of the normalization constant (%) and an
albedo value which accounts for the absorption behavior of the surface at the given point. More complex
BRDFs, like the ones used to realize glossy reflections, however, have to additionally consider incoming
and outgoing direction. Those BRDFs are not further discussed here since the approach presented in
this work primarily focuses on the simulation of diffuse light propagation by approximately solving the

rendering equation while using the Lambertian BRDF.

14 2. GLOBAL ILLUMINATION

2.3 Rendering

The difficulty of computing global illumination by solving the rendering equation stems from its recur-
sive nature. To determine the radiance at some point, the reflected radiance towards this point from
everywhere in the scene must be known, which again requires knowledge of the radiance at every other
point, including the point for which the radiance is supposed to be computed in the first place. A closed
solution to the rendering equation does consequently not exit in general. Approaches to global illu-
mination often substantially differ depending on the render times aimed for. Computationally heavy
algorithms like path tracing [Kaj86] or radiosity [Spe93] are traditional representatives in the field of
non-interactive applications. There, single images are rendered by offline processes and are not required
to be available in the fraction of a second as is usually the case for interactive or real-time applications
like visualizations or games. Path tracing attempts to find an approximate solution to the rendering equa-
tion by adding up light contributions of a large amount of paths that the light takes through the scene to
reach the sensor of the virtual camera. The paths itself are constructed outgoing from the the image pixels
into the scene. Every path segment corresponds to a straight connection between two surface points or
between a pixel and a surface point in the case of the first segment. The light contribution along a path is
then calculated by virtually backwards propagating the radiance every surface point emits to the screen
pixel while accounting for the amount of reflected light at each surface by evaluating its corresponding
BRDF. For every path, the contribution due to direct lighting is implicitly computed along the first two
path segments (image pixel to first surface point, first surface point to potential light source surface),
while all successive segments gather indirect light. Radiosity takes a different approach where the scene
is first discretized into flat surface patches. Diffuse light propagation is then realized by gathering the
incoming irradiance at each patch from every other patch and converting it to reflected radiance. This
gathering process is iterated where every iteration computes an additional bounce of diffusely reflected
light. Direct lighting is therefore realized by the first iteration and indirect lighting by the subsequent
ones. The caching of the light information directly at the geometry instead of at the image pixels like
in the case of path tracing allows to move the observer without having to recompute the global illumi-
nation. On the downside, following the original design only diffuse light propagation can be simulated.
Any extensions to support more complex BRDFs would inevitably introduce view dependencies which
require the observer to be fixed. The algorithm presented later in this work will apply similar ideas to

construct multiple diffuse light bounces.

Interactive applications traditionally avoid the costly computation of dynamic global illumination al-
together by only evaluating local illumination models or merely extend those by visibility terms that

account for shadowing to at least simulate interactive direct illumination. While the local lighting mod-

2.3. RENDERING 15

els used in real-time rendering often do not differentiate anymore from the ones considered, for example,
for film production [Burl2][Kar13], it is still necessary to handle shadow computations by dedicated
algorithms like shadow mapping to fit the tight frame time budgets demanded by interactive or even
real-time frame rates. Traditional shadow mapping [Wil78] first renders the occluder depth, the distance
from scene geometry to a given light source as seen from the light itself, to a so called shadow map.
In a second pass the occluder depth is projected into the scene and compared against the receiver depth,
which likewise corresponds to the distance to the light source, but this time rendered from the perspective
of the observer. If for a certain point the receiver depth turns out to be greater than the occluder depth
the point is considered to be in shadow. This binary shadow test produces unnaturally hard shadows and
by that exaggerates the approximation character of point lights. Percentage closer filtering [RSC87] can
be used to address this problem by filtering over a set of shadow test, producing a penumbra of con-
stant size. Variance shadow maps (VSMs) [DLO06] and exponential shadow maps (ESMs) [AMS™T08],
in contrast, belong to a subset of shadow mapping algorithms, that allow their shadow map variants to
be pre-filtered to produce soft shadows by a single subsequent shadow test. VSMs replace the traditional
shadow test by a probabilistic one based on an occluder depth distribution parametrized by mean and
variance. ESMs, on the other hand, approximate the step function of the shadow test with exponential
terms for occluder and receiver depth. It can be shown, that, under some assumption, both solutions al-
low to pre-convolve the occluder depth without consideration of the receiver depth. However, due to the
involved approximations and assumption that do not always hold, both variants suffer from light leaking
artifacts. With VSMs, light leaking occurs in regions of high depth complexity, usually originating from
geometric discontinuities where mean and variance alone fail to accurately capture the actual depth dis-
tribution. ESMs, being based on a smooth approximation of the shadow test, cause light leaking artifacts
primarily behind occluders but also in some border cases where the receiver depth is actually smaller
than the occluder depth. A straightforward way to tackle these issues is to take the minimum of both
results. Although exponential variance shadow maps [Lau08] provide a more sophisticated way of com-
bining VSMs and ESMs to reduce light bleeding, a simple minimum already leads to distinct qualitative
improvements and is used to simulate the direct lighting from point lights for the approach presented in

this thesis.

In the following chapter, interactive solutions that additionally aim to capture the effects of dynamic

indirect lighting are discussed.

16

2. GLOBAL ILLUMINATION

17

3 Previous Work

Global illumination approaches like path tracing, radiosity, and photon mapping [Jen96], while achieving
high quality results, often exhibit computation times ranging from minutes to several hours. Direct
application of these solutions to interactive scenarios is therefore not feasible. A possible tradeoff is to
assume static geometry, static light sources, and view independent diffuse light propagation which makes
it possible to completely pre-process and store global illumination for later use at runtime. However, for
many interactive applications such strong limitations are inconvenient and less restrictive solutions are

desirable. In the following, several of such approaches are outlined.

Aiming for shorter computation times, instant radiosity [Kel97] employs the idea of virtual point lights
(VPLs), which are, outgoing from primary light sources, distributed into the scene by ray casting over
multiple bounces. These VPLs serve as a point based approximation of reflected radiance in the scene.
During a second pass, the contribution of this radiance to the final image is evaluated by accumulating
the direct light from all VPLs for each image pixel using hardware accelerated shadowing techniques
like shadow volumes or shadow mapping. By doing so, instant radiosity reaches rendering times in the
range of seconds to minutes, depending on scene complexity and chosen shadow algorithm. While con-
siderably faster than aforementioned approaches, the large number of costly VPLs required to produce
a single image makes instant radiosity not directly applicable to interactive scenes even when favoring
the faster shadow maps over high quality shadow volumes. Furthermore, while Instant Radiosity is well
suited to simulate diffuse light propagation, support for glossy materials is limited since strongly focused
reflections expose the VPLs to the viewer. The derived algorithms described in the following inherit this

limitation.

To reduce the number of VPLs and associated shadow maps that have to be rendered every frame,
[LSK™07] propose an incremental real-time capable approach for semi-static scenes and a single bounce
of indirect light where only a subset of VPLs has to be updated per frame. The actual number of newly
rendered shadow maps, however, strongly correlates with the light movement between frames and scene
complexity and can therefore lead to inconsistent rendering quality due to the amount of VPL updates
being limited by a fixed budget to ensure stable frame rates. Furthermore, since every additional light

source introduces its own set of VPLs and therefore results in a significant performance penalty, only

18 3. PREVIOUS WORK

a small number of lights is feasible. On the upside, even though only static geometry is considered for
VPL placement, dynamic geometry can still receive lighting from the VPLs. Nevertheless, the approach

remains too restrictive for many interactive scenarios while suffering from inconsistent quality.

[RGK™08] introduce imperfect shadow maps (ISMs) to tackle the issue of the costly shadow map ren-
dering. Instead of rasterizing continuous geometry, ISMs employ point based rendering to accelerate
shadow map generation, utilizing a sparse, splat based scene approximation. The resulting imperfect
shadow maps, while rendered substantially faster then common shadow maps, inevitably suffer from
imperfections in their depth description, hence the name. To improve their quality, a hole filling ap-
proach is applied that attempts to partially recover continuous depth values. Quality deficits in the ISMs
are further masked during accumulation of the VPL contributions since every ISM is rendered from a
unique set of scene samples, independent from the sets assigned to any other ISM. Although hundreds
of ISMs can be rendered at high frame rates, their coarse nature can be problematic for nearby geometry
and therefore indirect illumination over short distances. Moreover, even for dynamic scenes of relatively
low complexity only interactive frame rates are achieved since the number of scene samples and ISMs
has to be increased compared to static scenes to achieve temporally coherent results without flickering
artifacts. Another aspect worth considering is that while ISMs map naturally to point based rendering,
point clouds usually contain much more points than would be feasible to render for each ISM. Therefore
the use of an importance sampled scene description can in general not be avoided. In the context of their
point cloud based global illumination approach, [PW10] propose to use the original set of points for ISM

rendering but nonetheless render every scene sample only once for a single randomly selected VPL.

Cascaded light propagation volumes (LPVs) [KD10], designed to fit in the tight budget of real-time
applications, take a different approach compared to the previously described VPL-based techniques. In-
stead, a dense, volumetric representation of the scene is built around the observer where each voxel
serves as a VPL. For each voxel the light emission characteristic of the associated VPL is stored as a
directional distribution of intensity. Every frame the direct lighting in the scene is injected into a subset
of VPLs. This injected light is subsequently propagated inside the VPL volume by an iterative diffusion-
like process, potentially considering opacity information stored in a second set of grids to account for
occlusion and secondary reflection events. Afterwards, the resulting spatial and directional light distri-
bution is sampled per fragment to compute the diffusely reflected radiance due to indirect illumination.
In addition, one bounce of glossy reflections can be approximated by accumulating samples along the
reflection vector. Doing so effectively collects incompletely propagated light which suggests that the
effectiveness of this heuristic actually diminishes with increasing quality of the light propagation. In
practice, LPVs often exhibit light leaking artifacts and overall mediocre quality due to the discretizations

induced by limited volume resolution and flux distribution precision. Since memory consumption of

19

dense grids scales badly with increasing resolution, multiple nested grids of increasing scales but equal

voxel counts are used to cover larger scene portions.

[CNS™11] propose to discretize the scene in a sparse, hierarchical voxel grid that allows to continuously
query scene information at different levels of precision while avoiding to waste large amounts of memory
for empty voxels as is typically the case with dense grids. Every voxel approximates the scene geometry
in its neighborhood by a set of attributes that include albedo, opacity, and a distribution of normals. The
further down a voxel lives in the hierarchy, the narrower its corresponding neighborhood and therefore
more accurate, although locally more restricted, its scene description. Initial to the light propagation
stage, direct lighting is splatted into the leaf voxels and subsequently filtered up the hierarchy which
allows incoming radiance to be queried side by side with geometry attributes over scene regions of
arbitrary extent. Stepping through the volume along a straight path while sampling increasingly coarser
hierarchy levels, approximates the footprint of a cone. During the rendering phase, this voxel cone
tracing (VCT) scheme is used to estimate the incident radiance at each fragment by performing VCT
starting from the fragments positions into several directions to gather the lighting information stored in
the voxel structure. The gathered light is subsequently used to compute the reflected radiance at each
fragment. Based on the comprehensive surface and lighting information provided by the voxel hierarchy,
the cone tracing algorithm is able to produce not only the effects of diffuse light propagation but also
view dependent indirect glossy reflections. Where LPVs where only capable of approximating glossy
highlights of previously diffusely reflected light, this approach additionally captures the effect of twofold
glossy reflections. On the down side, the high memory requirements exhibited by the voxel structure
potentially exceed the budget of many interactive applications. Furthermore, even for moderate screen
resolutions only near real-time frame rates are achieved. Although the voxelization of static objects
is implemented as a pre-processing step, the high performance costs of dynamic voxelization and per
fragment VCT remain. It is, however, possible to omit the dynamic voxelization of selected objects.
While not being considered during light propagation, these objects can still receive indirect light from

their surrounding.

[McL14] also proposes to use VCT to simulate the light propagation but turns back to nested, dense
grids. Compared to [CNST11], the scheme is further simplified by storing diffusely reflected radiance
at each voxel instead of directional distributions of incoming radiance. While twofold glossy reflections
are consequently not supported, a single bounce of glossy reflected light can be added by cone tracing
into the volume along the reflection vector at each fragment. The dense nature of the volume structure
allows the surface voxelization to be substituted with a dense one to improve the quality of the scene
approximation of coarser hierarchy levels without introducing additional memory requirements. The

approach achieves real-time frame rates by the use of several auxiliary volumes to speed up the costly

20 3. PREVIOUS WORK

VCT pass. However, these additional volumes cause high memory requirements.

21

4 The Algorithm

This chapter describes the global illumination approach developed in this work in general before the
subsequent chapter outlines details of the implementation. The presented solution is primarily based
on the work of [CNS™11] and [Cral1] but also incorporates some ideas from [McL14] to simplify the
approach and to reduce memory consumption. The algorithm runs primarily on the GPU and can be
roughly subdivided into three phases: construction and updating of a sparse hierarchical voxel structure,
light injection and propagation based on this hierarchy, and the final rendering of the scene where the
global illumination information is sampled from the voxel structure and combined with analytically
evaluated lighting. The voxel hierarchy is directly built from point clouds which represent a sampling
of an either real or virtual scene, or a combination of both. Individual points are therefore referred to as
scene samples in the following. Every scene sample is at a minimum defined by a position, an opacity,
an albedo, and a normal distribution function (NDF) where the latter three are referred to as geometry
attributes. NDFs encode distributions of normals [Fou92]. Here, each NDF corresponds to a three
dimensional vector whose direction equals the mean normal while its length correlates with the variance
of the encoded normals [Tok0O4]. A set of normals can be converted into such a NDF by a simple average.
NDFs allow the scene samples to more accurately describe surface regions that exhibit variations in their
normals. This is, for example, useful to encode the normals of surfaces adjacent to edges along which
scene samples might be taken. The opacity, on the other hand, measures the amount of solid geometry
that a scene sample represents. An opacity of 1 corresponds to completely opaque and O to entirely
transparent. Scene samples can additionally store a radiance which allows them to describe surfaces of
area lights. Each point cloud is the result of an arbitrary sampling process. This could, for example, be a
GPU rasterizer based scene sampling as is proposed by [CNS™*11] or an irregular sampling of the scene
geometry generated on the CPU or even by a laser scanner. The here described approach assumes that the
scene sample attributes are kept in no particular order in a structure of arrays in global GPU memory. It
would be, however, theoretically possible to omit these buffers in the case that the sampling is generated

on the fly.

The following two sections first outline how the scene itself is rendered and how the direct lighting is

handled. Afterwards, all voxel structure related computations are described in detail. The last section of

22 4. THE ALGORITHM

this chapter deals with the rendering of the final image.

4.1 Scene geometry rendering

While the light propagation is simulated based on the voxel structure, the final rendering as well as the
computation of shadow maps still requires the original geometry of the scene to be rendered in some
way. An object is either rendered as a triangle based mesh or as spherical surfels (surface elements)
positioned at its scene sample locations (see figure 4.1). In general, for every object the faster method is
preferred. If an object is exclusively represented by its point cloud and no triangulation exists, as might
be the case when working with laser scanner data, the surfel based approach is applied in any case. The
spherical surfels are rendered with a simple ray casting approach, ignoring perspective distortion. While
the missing distortion results in slightly incoherent depth ordering, the heavy view angle dependent
inconsistencies that typically occur with flat, observer aligned geometry, are avoided. On the downside,
the resulting surface representation is not smooth since it is composed of intersecting spheres. If a smooth
result is desired, this simple approach, however, can be substituted by a more involved one like a splat

based blending [PJW12].

Figure 4.1: A section of a scene that consists of a large point cloud rendered with spherical surfels and a

pink emissive cube rendered as a triangle based mesh.

4.2. DIRECT ILLUMINATION 23

4.2 Direct illumination

Both point and area lights are supported by the proposed algorithm. Area lights are realized by emissive
scene samples that can represent surfaces of arbitrary shape. Their direct lighting is implicitly simulated
by the voxel structure based light propagation. Consequently, no additional steps need to be performed.
In contrast, direct illumination from point lights is evaluated analytically using a simple local illumination
model while accounting for occlusion by a minimum of VSM and ESM as explained in the Rendering
section of the Global illumination chapter. The shadow maps are pre-filtered with a 5x5 taps disk shaped
kernel to create approximate penumbras. Directly computing the first light bounce results in a much
higher quality than could be achieved by a voxel structure based simulation. The evaluation of direct
lighting of point lights needs to be performed twice, once during the light injection stage and a second
time for the final rendering of the scene as will be explained later. The local illumination is based
on a simple Lambertian BRDF since the algorithm focuses on diffuse light propagation. Therefore, a
position, an albedo, and a normal have to be provided additionally to the light source specific parameters

to compute the direct lighting from point lights at a given position.

4.3 Hierarchical voxel structure

The simulation of light propagation over multiple bounces is based on an alternative volumetric repre-
sentation of the scene. This voxel structure, in contrast to the original geometry, allows to continuously
sample geometry attributes and radiance in the scene. By building a mipmap pyramid over the leaf vox-
els, the base structure is turned into a hierarchical scene representation that is subsequently exploited
to simulate the diffuse light propagation. To reduce memory consumption, only voxels that represent
non-empty scene portions are explicitly stored, which, on the downside, makes sampling and updating

much more involved compared to a dense structure.

The following subsections first address the underlying design of the voxel structure and its construction

before the individual steps of the actual light propagation simulation are described subsequently.

4.3.1 Description

The voxel hierarchy is realized as a sparse voxel octree (SVO). Every node of this octree represents a
non-empty portion of the scene and might reference up to eight child nodes (see figure 4.2) which in
turn serve as a more precise, although more locally restricted scene description. Starting from the root

node which represents the hole scene, the nodes are successively subdivided into child nodes until either

24 4. THE ALGORITHM

a given tree depth is reached or the associated scene portion of the current node is empty. The deeper
the octree the more precise its scene representation on the lowest level. The nodes on this lowest level
are in the following referred to as leaf nodes (in contrast to the common definition of ’leaf nodes’). The
terms node and voxel are used interchangeably to some degree due to the volumetric scene description

associated with the nodes. The tree structure is stored in a linearly organized SVO-buffer that is pre-

=
B &

v \ 4 \ 4 v v
[] o [] L[] L[]
[] o [] [] []
[[] [[] []
Figure 4.2: 2d depiction of the first two SVO Figure 4.3: 2d depiction of the morton order
levels. Every non-empty node (red) of the nodes on the first two SVO
references up to 2x2 child nodes levels. Recursively applying the Z-
(2x2x2 in 3d). The thick, gray order curve to child nodes results in
frames and arrows illustrate the a linear enumeration of all nodes.

tree level hierarchy.

allocated in global GPU memory. To improve data coherency and compactness, child nodes are grouped
together in files of eight nodes. This way, a parent node can reference all its children by a single tile
pointer. In this context a pointer refers to an element-wise memory offset relative to the beginning of
the buffer that contains the target element. Due to the tile based layout, the root node is not explicitly

stored in memory since a corresponding tile does not exist. Instead, its children grouped together in the

4.3. HIERARCHICAL VOXEL STRUCTURE 25

pre-allocated root tile form the highest available tree level. Additional to the tile pointer, every node
also stores a couple of bit flags used during the construction phase and six neighbor pointers which are
useful to quickly visit spatially adjacent nodes without having to traverse the SVO. The memory layout

of the SVO is depicted in figure 4.4. Traversing the structure to find a specific node, however, can often

° ° o ° ° o ° ° o ° ° o
° ° o ° ° o ° ° o ° ° o
o o o o o o o o o o o o

0 O O [O L]

L—3Pp 000 —3Pp L—) eoe ——3P) o00

Figure 4.4: The linear layout of the nodes and tiles inside the SVO-buffer (bottom row). The buffer
contains the first two SVO levels as depicted in figure 4.2. Each tile consists of 4 nodes (8 in
3d). The tile pointer of each node also points to a brick in the brick pool (top row). The root
tile (the first from the left) references its brick implicitly. No tile is allocated for the empty

node in the root tile.

not be avoided due to the sparse nature of the tree. The traversal of the SVO starting from the root tile
down to a target node requires knowledge about the local id of the child node that has to be visited next
on each level. This local id is an integer in the range [0..7] since every node can reference up to eight
child nodes. In each tile, the eight nodes are enumerated in morton order [Mor66]. This means that the
three binary components of the node’s position in its tile are concatenated and interpreted as a single
integer which corresponds to the local id of the node (see figure 4.5). By not only considering the local
id of each individual node but also the ids of all their predecessors, it becomes apparent that the nodes are
consequently enumerated in morton order with respect to the whole tree and not just in their parent’s tiles
(see figure 4.3). The traversal down multiple tree levels, therefore, requires a sequence of local ids. This
sequence of bit triples is called the morton key of the target node. The morton key of a node is computed
by interleaving the bits of the components of its tree-local position. The coordinates of this position are
integers that range from 0 to 2 — 1 with [being the tree level on which the node resides. For example,
a leaf node in a tree of depth 8 would have a tree-local position with coordinates in the range [0..511].
Interleaving the bits of the coordinates then results in a single node index within a linear enumeration,

the morton key (see figure 4.6).

The local scene description associated with every node is based on a number of voxel attributes. In

the case of the leaf nodes, these attributes include RGB values for reflected radiance and the geometry

26

Figure 4.5: The local ids of nodes inside a tile. Concatenating the three binary components of the position

+Y

+Z

of each node results in the respective ids.

I
0 1 2 3 1 4 5 6 7
000 001 010 011 1 100 101 110 111
|
I
y: 0?)0 000000 000001 : 000100 000101 :010000 010001 : 010100 010101
I
I
0:)1 000010 000011 : 000110 000111 :010010 010011 : 010110 010111
[}
2 1
010 001000 001001 : 001100 001101 ' 011000 011001 : 011100 011101
I
I
3 I
011 001010 001011 : 001110 001111 ' 011010 011011 : 011110 011111
I
i B . e - - o - - - - - -—-
a I
100 100000 100001 : 100100 100101 ! 110000 110001 : 110100 110101
I
I
5 I
101 100010 100011 : 100110 100111 ! 110010 110011 '@ 110110 110111
[}
I
6 I
110 101000 101001 ; 101100 101101 | 111000 111001 ; 111100 111101
I
I
Vi I
111 101010 101011 ; 101110 1011111111010 111011 ; 111110 111111
I

Figure 4.6: 2d depiction of the construction of morton keys by interleaving the bits of the individual

components of the tree-local positions of the nodes on the third tree level. [Eppl10]

4. THE ALGORITHM

4.3. HIERARCHICAL VOXEL STRUCTURE 27

attributes of the scene samples, i.e., opacity, albedo, and NDF. In practice, only the mean normal of the
NDF is used. The mean normal can be derived from the NDF by normalization and is simply referred
to as the normal of a node, sample, or fragment in the following. By storing NDFs instead of plain
normals it is ensured that linear combinations of multiple nodes result in the correct mean normals
which is important for trilinear sampling. In contrast to leaf nodes, non-leaf nodes store only outgoing
radiance and opacity which are written into them during the mipmap construction phase as explained
later. The difference between reflected and outgoing radiance is that outgoing radiance includes the
amount of light the geometry might emit on its own additionally to any reflected light. Outgoing radiance
is only temporarily apparent in the leaf voxels and is overwritten with reflected radiance during the light
propagation phase. The voxel attributes are not directly stored in the SVO-buffer but are instead written
to 3d textures where they are grouped together in bricks of 2x2x2 voxels. These bricks are directly
referenced by the tile pointers that also reference their corresponding tiles in the SVO-buffer. This results
in linear addresses for the bricks which are in turn translated to 3d texture coordinates when reading or
writing the voxel attributes. This translation is necessary since 3d texture sizes are rather limited in each
dimension [D3Db] which makes a sequential ordering of a large amount bricks along a single dimension
inside the textures impossible. Contrary to the linear ordering of nodes inside tiles, the voxel positions
inside the bricks correspond to their actual relative spatial positioning. This brick scheme allows the fast
dedicated trilinear sampling of the GPU to be used to continuously query voxel attributes. However, a
boundary of redundant voxels around every brick is necessary to ensure correct sampling between voxels
that reside in different bricks. These boundary voxels mirror the adjacent voxels of the neighbor bricks
which are only spatially adjacent but not necessarily in memory. Building a complete boundary would
increase the brick size from 2x2x2 to 4x4x4 and therefore induce an increase in memory consumption
by a factor of 8. Instead, only positive boundaries are added leading to a 3x3x3 voxels layout and only
an increase in memory consumption by a factor of 3.375 (see figure 4.7). When a sample query falls on
the negative boundary of a brick, it is simply moved to the appropriate sampling position in an adjacent
brick where the positive boundary consists of the cloned voxels of the original brick (see figure 4.8).
To guarantee that the necessary neighbors in negative directions exist, additional empty border tiles are

added where required.

Due to the bricks being directly referenced by the tile pointers of the nodes in the SVO-buffer (see
figure 4.4), every node that references a tile of child nodes automatically holds a reference to a brick
of associated child voxels. The leaf tiles, containing the leaf nodes, are not explicitly allocated in the
SVO-buffer since their associated bricks are already referenced by their parent nodes. Instead, a leaf
node bit field referenced by the tile pointer of the parent indicates for every implicit leaf tile which leaf

nodes are existent. This bit field is referenced through the same pointer that the parent of the leaf tile

28 4. THE ALGORITHM

[

+Z|

> 0
> 0

Figure 4.7: 2d depiction of the brick layout. Every brick (black squares) consists of 3x3 voxels (dots
and circles, 3x3x3 in 3d). 5 of those are redundant boundary voxels (green circles, 19 in

3d) which are copies of the spatially adjacent voxels (red dots). The arrows illustrate this

mapping.
+X
'z ¥
K KX ° °
4
:'l ° 'QI' . ° Yo
K ,] e
. . [y
l' :I ‘\
. * [y
|3 Z
. ’ 0y
° Lo ° ,'IO ° o o
L A
- LY
% “
° ° ‘o) ° o
I \o
o o o o o o

Figure 4.8: 2d depiction of the brick pool sampling scheme. The image shows two spatially adjacent
tiles (top) and their respective bricks (bottom) which reside at random positions in the brick
pool. The blue dots and arrows illustrate the mapping from sampling positions in space
to bricks. Half-voxel-cell offsets ensure that the samples fall in the appropriate bricks and
are consequently surrounded by the proper voxels (illustrated by the dashed arrows). This
scheme moves the sample in the middle to the brick of its neighbor tile. If this neighbor tile
does not exist after the construction phase, it is added as a border tile in the case that one
of the two adjacent voxels of the right tile is non-empty. The final sampling positions of the

other two samples are unaffected by the offset scheme.

4.3. HIERARCHICAL VOXEL STRUCTURE 29

also uses to refer to the brick containing the leaf voxels.

The 3d textures that store the bricks are in the following referred to as brick pools. There are four different
brick pools in total: the geometry pool, the radiance pool, the mipmap pool, and the intermediate pool.
The mipmap pool keeps outgoing radiance and opacity values of the non-leaf nodes while both geometry
pool and radiance pool exclusively contain attributes of the leaves. The geometry pool stores albedos,
opacity values and NDFs of the leaf voxels while their reflected radiance is kept in the radiance pool. The
radiance pool also provides backup capabilities required for dynamic updates of the SVO. Voxel attributes
are often temporarily written to the intermediate pool which can become necessary due to GPUs being
currently not able to simultaneously read from and write to the same texture in a single pass except for
restrictive texture formats [D3Da]. Voxels with lower opacity are supposed to be weighted lower than
those with a higher opacity value in a trilinear sample. This is accounted for by pre-multiplying albedo,
NDF, and radiance with the opacity. The un-multiplied value of a sample is then recovered by division by
the opacity of the sample itself which usually only becomes necessary in cases where the opacity value is
guaranteed to be non-zero. Since the contributions of the scene samples are additively accumulated in the
leaf nodes, the opacity can exceed the physically plausible upper bound of 1 which implies a completely
opaque node. In practice the opacity of a trilinear sample is therefore clamped to 1 for usage other than

the retrieval of the un-multiplied albedo, NDF, and radiance.

4.3.2 General purpose computations

All SVO related computations described in the following are, to some degree, realized with the help
of general purpose computing on the GPU (GPGPU). Consequently, a short overview of how these
computations are handled by the algorithm appears appropriate. Frameworks like CUDA [CUD] and
OpenCL [Ope] make GPGPU capabilities accessible outside of graphics APIs. In the here considered
case, however, the general purpose computations are part of a graphics application which uses a graphics
API anyway. Therefore, shaders are used to construct and update the SVO as well as to simulate the
light propagation. Since graphics APIs currently provide no dedicated functionality to perform atomic
additions on resource formats other than int and uint without using the output merger stage of the
graphics pipeline [D3Da][OGL], general purpose computations are emulated by traditional shaders in-
stead of being handled by compute shaders which are specifically designed for GPGPU tasks in graphics
contexts but have no access to the output merger. Atomic additions become necessary when writing
geometry attributes and radiance to the brick pools, which are using floating point formats. The GPGPU
emulation is realized by performing (indirect) draw calls without having vertex or index buffers bound

to the pipeline. The number of desired threads is then passed by the CPU or GPU to the draw call as

30 4. THE ALGORITHM

the number vertices that is supposed to be processed. The vertex shader functions only as a pass-through
stage that forwards vertex ids to the following stages. The actual computations are then performed by
geometry or fragment shaders based on the bound resources and the vertex ids which are conceptually
interpreted as thread ids. For other computations that do not atomically write to the brick pools, like the

construction of the spatial base structure of the SVO, compute shaders could be used instead.

4.3.3 Construction

The construction of the SVO is separated into two major phases. First, the spatial base structure is built
inside the SVO-buffer from the positions of the scene samples. Afterward, the geometry attributes are
written to the bricks referenced by the nodes in the SVO-buffer. The radiance of emissive samples is

added later on a frame-wise basis during the radiance injection stage.

To construct the spatial structure in the SVO-buffer, for every scene sample a thread is created that
first computes the morton key of the leaf node to which the sample contributes. Based on the morton
key, every thread then traverses the SVO starting from the pre-allocated root tile. Every time a thread
encounters an empty non-leaf node, the node gets subdivided. A node is considered to be existent or
non-empty when it references a tile of child nodes and a brick in the brick pool. Subdivision of a node
therefore involves allocating a tile of child nodes and writing the tile pointer to the node. Allocations
inside the SVO-buffer are based on the incrementation of an atomic counter that all threads share. To
allocate a new tile when subdividing a node, a thread increments the counter and uses the returned
value as tile pointer. Race conditions between different threads that try to subdivide the same node are
prevented by two atomically accessed bits. When a thread visits a node it first checks the states of the
exist bit and the locked bit. Depending on these states, three different situations can occur. If the node
does not exist (exist bit not set) and is not locked (locked bit not set), the thread sets the locked bit,
subdivides the node, sets the exist bit, and continues its traversal. In the case that the node is currently
being subdivided by another thread (exist bit not set but locked bit set), the thread writes its morton key
and the reached position in the SVO-buffer to a queue buffer in preparation of deferred re-execution and
terminates. The third case occurs when the exist bit is set, that is, the node is existent. Then, the thread
simply continues its traversal, ignoring the locked bit. When a thread reaches a leaf node parent, it sets
the appropriate bit in the leaf node bit field referenced by the tile pointer to indicate that the leaf node
exists. If the leaf node parent itself does not exist yet, it gets subdivided similarly to the preceding nodes.
However, the allocation of leaf tiles uses its own dedicated atomic counter since their voxel attributes
are stored in different brick pools (geometry and radiance pool) than the ones of non-leaf tiles (mipmap

pool) and therefore require a separate address space.

4.3. HIERARCHICAL VOXEL STRUCTURE 31

This traversal/subdivision procedure is repeated for the prematurely terminated threads which are put
asleep in the queue buffer. In the worst case, a thread is repeatedly put asleep while descending the tree
one level per iteration. The upper bound of iterations required to ensure that the queue buffer is emptied
and the spatial structure of the SVO is completed, therefore, is given by the tree depth minus one (the
first level is pre-allocated). In practice often only a couple of iterations are required to empty the queue
buffer. The number of iterations depends, among others, on how the scene samples are distributed in
the scene. A more widely spread, even distribution results in less collisions than a set of samples that
contains clusters. Since GPUs are currently unable to autonomously issue draw or dispatch calls, the
maximal amount of iterations is performed, potentially resulting in some minor overhead for iterations

that do not generate any threads.

The neighbor pointers for every node are determined by simply traversing the tree top down to the
adjacent nodes. Every node searches its three potential neighbors in the positive directions. If a neighbor
is found, its address is set as the respective neighbor pointer in the reference node while the address of the
reference node itself is written to the neighbor as neighbor pointer in the negative direction. This way, all

neighbor pointers in positive as well as negative directions are set without requiring atomic operations.

To complete the spatial base structure of the SVO, the border tiles which are required to ensure correct
trilinear filtering need to be added. From the perspective of a single tile there are up to 26 tiles surround-
ing it. Seven of these tiles are neighbors in negative directions. This includes three direct neighbors (-X,
-Y, -Z) which can be visited by use of the neighbor pointers in the parent node. The other four tiles are
indirect neighbors (-XY, -XZ, -YZ, -XYZ). If one of these seven tiles does not exist, it has to be added as
a border tile because a trilinear sample taken in the brick associated with the reference tile can potentially
be moved to a brick of one of these neighbor tiles due to the lack of negative redundant boundary voxels
(see figure 4.8). The most straightforward way to add these border tiles is to create seven threads for
each tile which then traverse the SVO and check whether the necessary tiles exist and, if not, allocate
them. This approach, however, generates a large number of redundant threads that try to allocate the
same border tiles since many tiles share their direct and indirect neighbors with others. By exploiting the
neighbor pointers the number of this redundancy can be greatly reduced. The most obvious optimiza-
tion is to simply check whether a direct neighbor already exists with the help of the neighbor pointers.
This simple approach can be extended to visiting indirect neighbors by following two or three neighbor
pointers. Furthermore, depending on which nodes are actually existent in the reference tile, it might not
even be necessary to allocate certain tiles. In the extreme case where only the node with the local id
7 (binary relative position 1, 1, 1) exists in the tile (see figure 4.9), no border tiles have to be added at
all because the empty nodes already provide a natural boundary of completely transparent voxels in the

negative directions. Therefore, in a first pass a bit field indicating for each tile which boundary tiles are

32 4. THE ALGORITHM

required is generated depending on which nodes in the tile exist. During a second pass these bit fields are
used to make assumptions about what border tiles the direct and indirect neighbors of a reference tile try
to allocate. Based on these assumptions the number of generated threads is considerably reduced. After
allocation of the border tiles, the neighbor pointers of their parent nodes have to be set. This time, two
passes for every border tile are necessary; one for the positive and one for the negative neighbor pointers.
Otherwise, in border cases where a non-border tile is adjacent to a border tile in a negative direction, the

respective neighbor pointers would not be set for both tiles.

+Y

.

+Z

Figure 4.9: A tile (large cube) that contains only the node with the local id 7 (small cube). No border
tiles have to be added to ensure correct trilinear sampling since the empty nodes already
provide a seam of black auxiliary voxels in the negative directions. In the positive directions

auxiliary voxels are provided by the redundant boundary voxels in any case.

After finishing the construction of the spatial base structure, the albedo, opacity and NDF values are
additively written to the bricks referenced by the leaf nodes parents. The attributes are first rendered to
the intermediate pool and are copied to the geometry pool during a completion step which writes the
redundant boundary voxel with the help of the negative neighbor pointers (see figure 4.7). Thanks to
the border tiles it is always ensured that all existing indirect neighbors can be accessed over multiple

neighbor pointers.

At this point it is possible to trilinearly sample the geometry attributes at every point in the scene. For
static parts of the scene, the construction described so far is performed only once at initialization time.
Partial dynamic updates to the structure are realized on a frame-wise basis following a similar scheme.

A more detailed explanation is provided later in the Dynamic updates subsection.

4.3.4 Antialiasing

Up to now every scene sample exclusively contributes to the leaf node in whose cell its position falls
or with other words to the leaf node closest to its position. This binary assignment can lead to aliasing
in the scene description built during the construction process. The induced artifacts become especially

apparent for dynamic geometry. To tackle this problem, a cubical region of influence (Rol) aligned with

4.3. HIERARCHICAL VOXEL STRUCTURE 33

the main axes of the SVO is assigned to every scene sample. The maximal size of this Rol corresponds
to the size of the leaf node cells and shall be defined as 1. The amount a scene sample contributes to a
leaf node is then determined by the intersection volume of the sample’s Rol and the cell of the leaf node
(see figure 4.10). Following this scheme, every scene sample writes to up to eight leaf nodes while the
contributions correlate with the distances between samples and nodes. For each leaf node that a scene
sample tries to allocate, a new thread is created on the fly by generating additional point primitives in a
geometry shader preceding the fragment shader that handles the construction of the SVO. A meaningful
Rol size for a scene sample could, for example, correspond to the minimum distance to the next sample
normalized by division by the leaf node cell size of the SVO and clamped to 1. By using the maximum
norm as distance metric instead of the euclidean norm, this approach fills up the spaces between the scene
samples without producing overlaps in the Rols. For a dense scene sampling, this can result in small Rols
which in turn lead to small contributions by the individual samples. For a volumetric sampling, this does
not display a problem. However, in the case of a surface sampling, the overall contribution of all samples
to the leaf nodes approaches zero with increasing sampling density. To compensate for this effect, the
opacity values of the samples are allowed to become larger than 1. This is still physically plausible as
long as the values stay under the reciprocal of the volumes enclosed by the Rols since the opacity values
now actually represent opacity densities. The opacity of a sample is computed by integrating over parts
of its Rol which corresponds to the intersection volume calculations performed to determine the partial

contributions to individual leaf nodes by the sample.

Figure 4.10: 2d depiction of the Rol based antialiasing scheme. The intersection areas (volumes in 3d)
of the Rols (yellow squares) and the voxel cells (green squares) determine the contributions
of each scene sample (black dots) to the individual leaf voxels (red dots). For example, the
orange area corresponds to the amount the topmost sample contributes to the voxel pointed

out by the arrow.

34 4. THE ALGORITHM

4.4 Light injection and propagation

To simulate the propagation of light with the help of the SVO, the radiance from the light sources is
injected into the leaf nodes each frame. Afterwards, a hierarchical presentation of this radiance and the
opacity is built. By exploiting the resulting mipmap, the diffusely reflected radiance at each leaf node is

propagated into the scene. These three stages are described in more detail in the following.

4.4.1 Radiance injection

In preparation of the light propagation phase, the light contribution from all light sources is additively
rendered to the radiance pool which at that point already contains propagated radiance from previous
frames. This process differs depending on the light source type. Area lights are realized by scene
samples that keep an RGB value of emitted radiance additionally to their geometry information. This
radiance values are directly rendered to the radiance pool, following the same approach of how the ge-
ometry attributes are written to the geometry pool. In the case of point light sources, the direct lighting
is evaluated at every leaf node following the approach depicted earlier in the direct illumination section.
The necessary albedos and normals are provided by the geometry attributes of the leaf nodes. Alterna-
tively, it would also be possible to apply a splatting scheme where every shadow map texel of each light
is treated as a photon, a small light package that is, by traversing the SVO just like a scene sample during
the construction phase, added to the radiance of the leaf voxel in whose cell it falls. In cases where only
a small portion of leaf voxels is affected by direct lighting from point lights, the overhead that the gath-
ering approach produces by evaluating the direct lighting for completely shadowed leaf voxels would be
avoided. On the down side, if the photon coverage is not high enough, voxels that should be illuminated
can be missed and consequently receive no light. It might be, however, possible to reduce this artifact by

applying the Rol based antialiasing scheme to the photons as well.

Before the reflected radiance is added to the radiance in the brick pool, it is additionally multiplied by

the opacity of the node to ensure correct weighting during trilinear sampling.

4.4.2 Mipmapping

At this point, a hierarchical presentation of radiance and opacity in the form of a mipmap is built outgoing
from the leaf nodes by successively filtering these values to nodes of higher tree levels. During each
iteration, the nodes of the next higher tree level average the radiance and opacity of their child nodes and
write the result to the respective bricks in the mipmap pool. This process is repeated until the nodes in

the root tile, which provide the coarsest scene description, are filled.

4.4. LIGHT INJECTION AND PROPAGATION 35

After completion of the mipmap bricks, i.e., writing their boundary voxels, outgoing radiance and opacity
can be sampled at any position at different resolutions. The lower the resolution of a sample, i.e., the
higher the mipmap level it is taken on the larger the scene region it approximates. Continuous sampling
between mipmap levels is realized by taking two trilinear samples at the closest discrete mipmap levels

and blending them together to a single quadrilinear sample.

To improve the quality of the pre-integration provided by the mipmap, the isotropic voxels produced by
the simple average described so far are substituted with anisotropic ones. Such an anisotropic voxel con-
sists of six values instead of one, as is the case for isotropic voxels. Each of these six values corresponds
to the appearance of a voxel when viewed along one of the SVO’s main axes in positive or negative
direction. The computation of each value for a given voxel starts with a compositing of child voxel pairs
along the direction the value represents, i.e., -X, +X, -Y, +Y, -Z, or +Z. The applied compositing scheme
corresponds to a simple alpha blending with pre-multiplied values [PD84]. Afterwards, the four results
of this compositing step are averaged to the final value (see figure 4.11). Anisotropic voxels, therefore,
provide a directional pre-integration in addition to a spatial one. During sampling, the six values, each

stored in a separate brick, are weighted and blended together based on a given direction (see figure 4.12).

-X — +X
orll-8_g5 CE-8_g
B = N B =

Figure 4.11: 2d depiction of the anisotropic filtering scheme. 4 isotropic child voxels (8 in 3d) are pair-

wise blended together along the main axes (only -X and +X are shown). For each axis,
the resulting 2 values (4 in 3d) are subsequently averaged which accounts for the spatial

pre-integration. The visibility of the circles illustrates the opacity values.

When computing the value for a given direction from a set of child voxel that themselves are anisotropic,
only their values that correspond to that direction are used. For example, the +Z value of an anisotropic
voxel is exclusively computed from the +Z values of its anisotropic children. The first mipmapping step,
however, has to compute anisotropic voxels from isotropic ones. Therefore, the NDFs of the isotropic
leaf voxels are used to determine how much their radiance and opacity values contribute to each of their
six virtual directions. One possible approach would be to set the contribution for each direction whose
dot product with the voxel normal is greater zero to 1 and to O in the other cases. The approach used in
the implementation uses a falloff based on the cosine between normal and direction that starts by 1 where
the cosine is 1 and goes to O for a cosine of -1. This way, directions roughly orthogonal to the normal

are not assumed to be totally transparent. The chosen approach for this first mipmapping step can have

36 4. THE ALGORITHM

|8 X
O« ~0
-X @« -0 +X
(© O

¥)
040
+Z

Figure 4.12: 2d depiction of the directional sampling of an anisotropic voxel. The 4 directional values (6
in 3d) are blended together based on given sampling directions. In practice only 2 values

contribute to each sample (3 in 3d).

significant impact on the result of the light propagation simulation.

4.4.3 Diffuse light propagation

The outgoing radiance stored in every leaf node is now propagated to every other leaf node in the SVO
where it then contributes to the newly estimated reflected radiance. In practice, this propagation is real-
ized as a gathering process at every leaf node. At a given leaf node, the incoming radiance is determined
by integrating the outgoing radiance stored in every other leaf node over the hemisphere defined by the
normal of this reference node. A traditional approach to numerically estimate this integral is to send
a number of rays into the scene to gather the radiance at their intersection points with the geometry.
However, since the algorithm here works on a volumetric approximation of the scene geometry, intersec-
tions between scene and rays can not be computed. Instead, the discrete volumetric rendering approach
described in [Max95] that accounts for absorption and emission at every voxel is used to evaluate the
radiance gathered along rays. Max first presents an ordinary differential equation that describes how
the energy of light changes at every point in space when traveling along a ray in a volumetric medium
that absorbs but also emits light. He then derives a general solution that computes the final radiance at
the target position of the ray and shows that the approximation of the involved integral by a Riemann
sum results in the familiar back-to-front compositing scheme which in turn can be transformed into the

front-to-back compositing (algorithm 1).

While this model is usually employed to render participating media, here it serves to approximate partial

contributions and occlusions of radiance along rays due to solid geometry. This ray based approach,

4.4. LIGHT INJECTION AND PROPAGATION 37

Algorithm 1 Front-To-Back-Compositing
1: procedure COMPOSEFRONTTOBACK

2: fRadiance <— 0 {the final radiance is built in this value}
3: fOpacity < 0 {the final opacity is built in this value}

4: smpPosition < rayStartPosition

5: 140

6: while i < stepCount do

7: smpPosition <— smpPosition 4+ rayDirection {step along the ray}
8: smpRadiance < Sample Radiance At Position(smpPosition)

9: smpOpacity < SampleOpacity At Position(smpPosition)

10: fRadiance < fRadiance + smpRadiance x (1 — fOpacity)

11: fOpacity < fOpacity + smpOpacity x (1 — fOpacity)

12: 11+ 1.

13: fRadiance < fRadiance + bgRadiance x (1 — fOpacity) {consider background radiance}

however, either produces noisy results or becomes quickly too costly depending on the number of rays
used. Instead, the rays are substituted with cones by subdividing the hemisphere into a handful of conic
sections (four to ten) whose sub-integrals are approximately estimated by voxel cone tracing (VCT)
[Crall]. Directly computing the amount of radiance every leaf node emits into a given cone is not
feasible. Therefore, the previously built mipmap is used to approximate the radiance contribution of leaf
nodes inside the cone by a number of quadrilinear samples of different resolutions taken while stepping
along the cone’s axis and blended together by front-to-back compositing (see figure 4.13). The negated
cone axis also provides the direction for the sampling of the anisotropic voxels. To keep the shader
complexity low, only the anisotropic voxels from the mipmap are considered since the isotropic leaf
voxels require special handling. As a result, details only apparent in the leafs might be missed. To
include the leafs in the cone tracing process, the compositing loop can be split into two separate loops
where the first one builds quadrilinear samples from leaf and non-leaf voxels and the second one deals
with non-leaf voxels exclusively as usual. Another advantage of ignoring the leaf voxels is that the

radiance bricks do not need to be completed after radiance injection.

To calculate the reflected radiance under the assumption of a Lambertian BRDF, the contributions of
the individual cones are cosine weighted, summed up and multiplied with the albedo of the node. The
multiplication by the normalization factor of the BRDF and the reciprocal probability density, however,
is substituted with a multiplication by an empirical factor to compensate, to some degree, the errors in-

troduced by the approximation. This empirical factor is determined by comparing the overall brightness

38 4. THE ALGORITHM

Figure 4.13: The VCT sampling scheme. The footprint of the cone (green) is approximated by sam-
ples (black dots) of different resolutions taken along the cone’s main axis (dashed arrow).
The cone is partially under- as well as overestimated by the footprints of the samples (red

squares). The approximation error also depends on the direction of the axis.

of the final rendering with that of a high-quality reference rendering. The factor can heavily differ de-
pending on the approach chosen to virtually convert isotropic leaf voxels to anisotropic ones during the
first mipmapping iteration, as described in the Mipmapping subsection. For example, if no directional
dependencies are derived for the opacity values from the NDFs during this earlier stage, a larger normal-
ization to brighten up the result becomes necessary now due to self occlusion issues induced in exchange

for reduced light leaking artifacts.

To verify that the voxel based approach is able to produce plausible results in the first place, it is possible
to replace the cone tracing with a slow ray based variant that works exclusively on the leaf node level.
This ray based variant produces results with a brightness similar to the reference rendering without any

empirical adjustments (see figure 4.14).

After estimating the reflected radiance for a given node, the original radiance is overwritten. This in-
jection/propagation procedure is evaluated every frame. Doing so progressively builds up multiple light
bounces over time where every light bounce is completely re-computed every frame (see figure 4.15). As
a result of distributing the light propagation over multiple frames, the n-th bounce lags n — 1 and n — 2

frames behind the current states of the area and point lights, respectively.

In preparation of the final rendering, the radiance bricks are completed to ensure correct trilinear sam-

pling.

4.4. LIGHT INJECTION AND PROPAGATION 39

Figure 4.14: Left to right: VCT result with adjusted normalization, voxel ray tracing test rendering with-
out adjustments, path traced offline rendering used as reference to empirically adjust the
normalization of the VCT rendering. The slow ray based test rendering exhibits a simi-
lar brightness as the reference. Shadows missing in the VCT result are apparent in the
ray based rendering due to the higher integration quality. No tonemapping is used for the

comparison.

Figure 4.15: Comparison of different numbers of light bounces. Left to right: only direct lighting (one
bounce), two bounces (one direct, one indirect), many progressively built bounces. The right

most result exhibits the most natural appearance.

40 4. THE ALGORITHM

4.5 Dynamic updates

Scene samples that dynamically change their positions or other attributes are inserted into the same SVO-
buffer and brick pool as the static ones on a frame-wise basis. Doing so prevents the necessity to sample
twice from two separate structures for every query which would significantly increase the cost inflicted
by the voxel cone tracing. While the basic construction algorithm as described in the Construction
section remains the same, some occurring issues require to be handled specifically. For one, since the
dynamic scene samples can potentially write to already existing nodes that contain static information,
a backup of the affected geometry bricks needs to be made. Another problem arises in consequence
of the non-deterministic allocation of bricks which requires the radiance bricks to be zeroed at the end
of each frame. As a result, during the light propagation phase dynamic objects act as diffusers only
for the light injected in the current frame. The simulation of multiple light bounces at dynamic leaf
voxels, therefore, requires their reflected radiance to be extracted at the end of each frame before being
zeroed and re-injected in the next frame during the radiance injection stage. This process of extracting
radiance from the brick pool into a linear backup buffer at every dynamic scene sample works inversely
to inserting geometry or radiance information into the pool. At the end of the frame, all information
added by dynamic scene samples is removed from the SVO-buffer, the geometry backup is loaded into
the geometry pool and radiance bricks affected by dynamic samples are set to zero. Doing so recovers

the state of the SVO as it was before the dynamic update.

4.6 Final rendering

The final rendering of the scene uses deferred shading [ST90] to prevent an overhead due to shading
computations performed for occluded fragments and to reduce the amount of shader permutations. Con-
trary to forward shading, deferred shading does not perform the fragment-wise shading computations
directly after the fragments are generated by the rasterizer, i.e., when the scene geometry is rendered.
Instead, for every fragment a number of attributes that are necessary for the shading computations are
written to a G-buffer. In general, these attributes vary depending on the particular use case. Here they
include an albedo, a linear depth from which the world position of the fragment can be reconstructed, a
NDF, and an emitted radiance. A second pass then computes the actual shading for every screen pixel
based on the attributes in the G-buffer, the light sources, and the reflected radiance stored in the leaf
voxels of the SVO. During this shading pass, first the analytical lighting from the light sources is eval-
vated. For area lights this boils down to adding the emitted radiance stored in the G-buffer to the flux

of every screen pixel. Point lights, in contrast, add their direct lighting contribution which is evaluated

4.6. FINAL RENDERING 41

as described in the Direct illumination section. Then, the reflected radiance stored in the leaf voxels of
the SVO is trilinearly or tricubically sampled at the fragment positions and likewise added to the flux.
Additionally, it is possible to compute a bounce of glossy reflections from previously diffusely propa-
gated light by sending a single cone starting from the fragment’s position along the reflection vector into
the SVO (see figure 4.16). To cheaply simulate the integration over time which converts the flux of each
screen pixel to energy, the flux is multiplied with an empirical exposure duration. The resulting energy
is at last fonemapped and gamma-encoded [TFCRS11] to map more values into a displayable range and

to account for the conversion from RGB space to sSRGB space, respectively.

Figure 4.16: Comparison between the default rendering mode which exclusively produces diffuse reflec-
tions (left) and an additional glossy bounce (right) based on the outgoing radiance stored

in the mipmap.

42

4. THE ALGORITHM

43

5 Implementation

The implementation of the algorithm detailed in the previous chapter is presented in the following. First,
a short overview of the user level features of the application is given, followed by a description of the

underlying software design and the presentation of the profiling results.

5.1 Application overview

Figure 5.1: Various visualizations for debugging purposes. Top row, left to right: octree structure, bor-
der tiles, octree and border tiles, scene sample Rols and NDFs. Bottom row, left to right:

radiance of a selected mipmap level for -X and +X, opacity of the same level for -X and +X.

The application provides three different scenes to chose from: CornellBox, CornSnailBox, and Cave-
Cloud. CornellBox is a Cornell box-like [CBo] scene featuring a white area light and a yellow cube that
can be moved and rotated by the user. The CornSnailBox is a similar scene but instead of an area light it
uses a spotlight of adjustable orientation as primary light source. Unlike the Cornell box it has an open-
ing in the ceiling that allows the spotlight to illuminate the scene from the upper back. It additionally

contains a small dim area light that can be moved. The CaveCloud scene features a point cloud (about

44 5. IMPLEMENTATION

1.4 million points) of a portion of a real cave. The cave is illuminated by two moving spotlights and two

area light sources; one small and static, the other large and moveable (see figure 5.2).

Figure 5.2: Results of the CaveCloud scene.

Since the cave scene has relatively low albedo values, the implementation allows them to be blended
towards white by linear interpolation for the light propagation simulation to better show off the indirect
lighting (see figure 5.3). It is also possible to manually adjust the exposure duration to brighten up
the result which in contrast to the albedo adjustment is physically plausible but less suitable to adjust
the intensity falloff of the multiple light bounces. For comparison purposes, the radiance pool can be
optionally cleared every frame to suppress the accumulation of multiple light bounces, resulting in a
single bounce of indirect lighting for spotlights and direct lighting only for area light sources. Glossy
reflections and tricubic filtering can also be toggled on and off. Furthermore, the application provides
various options to visualize different parts of the SVO and the underlying scene sampling (see figure 5.1).
Depending on the scene, the observer either orbits around the center (CornellBox and CornSnailBox) or

can move freely (CaveCloud).

5.2. SOFTWARE OVERVIEW 45

Figure 5.3: Albedo adjustment. Left to right: no adjustment, with albedo adjustment of 0.33, with adjust-

ment but only a single bounce (note how little light reaches the floor in the foreground).

5.2 Software overview

This section provides a short overview of the general structure of the implementation and its most im-

portant classes and procedures.

The application is written in C* and HLSL using Direct3D 11 as graphics API. The D3D API is accessed
through SharpDX [Sha], a DirectX binding for C*. Additionally, the Coon framework is used as a base for
the project. Coon works on top of SharpDX and simplifies resource creation, provides commonly used
functionality like parametrized view matrices and streamlined shader (re-)compilation, and manages the
main loop of the application. The main loop is realized in the static Coon.MainLoop class and reg-
ularly calls the delegates MainLoop.UpdateEvent () and MainLoop.RenderEvent () which
can be set by the application using statement lambdas [Lam]. UpdateEvent () contains the program
logic like camera and object movement. RenderEvent (), on the other side, handles the graphic API
calls. This separation is motivated by Coon’s use of fixed time steps for integrations involved in the pro-
gram logic. All classes and functionality described in the following live in the namespace GIVoxels
outside of the Coon framework. The method Run() in the static class GIVoxelsMain provides the
entry point of the program. It first initializes Coon.Core, creates necessary resources, sets Coon’s
UpdateEvent () and RenderEvent () to statement lambda that contain the appropriate functional-

ity and eventually calls Core.Run () to start the main loop.

The functionality that realizes the SVO based global illumination simulation is encapsulated in the
GI_SVO class. Its constructor compiles the necessary shaders if they do not exist yet and allocates
the SVO-buffer and helper buffers which, among others, provide required queues and structures that
simplify the access to nodes of specific tree levels. The functionality of the most important methods of

GI_SVO is outlined in the following.

46 5. IMPLEMENTATION

BuildStaticPart () is called to (re-)initialize the SVO base structure by building it from the static

scene samples.

BuildDynamicPart () is the first method to be called every frame. It updates the static structure by
inserting the dynamic scene samples and copies the affected geometry bricks to the backup section of
the brick pool. The radiance re-injection of previously extracted radiance from dynamic voxels is also

handled here.

EvalFrameWiseComputations () first handles the light injection, then builds the mipmap and

finally simulates the light propagation by cone tracing (or by ray tracing for testing purposed).

InjectDirectLightForGI () and InjectDirectLightForRefGI () are virtual methods
which are called by EvalFrameWiseComputations () to handle the injection of direct light from
point lights for the default rendering and the ray tracing based test rendering, respectively. These methods

are implemented in the derived GIV_SVO class.

RemoveDynamicPart () is called at the end of the frame after the final rendering which is handled
outside the SVO class. It extracts the reflected radiance stored at dynamically affected leaf voxels and

reverses all changes to the SVO induced by BuildDynamicPart ().

These methods are called in the appropriate order in RenderEvent ().

After the call to EvalFrameWiseComputations (), the scene geometry is rasterized in a geometry
pass that fills the G-buffer. The G-buffer is then used to render the final image to the back buffer during
the deferred shading pass.

Scenes are represented by classes that inherit from SceneBase. SceneBase is an abstract class that
consists of a GIV_SVO instance, lights and lists of objects that store scene samples. A class that encapsu-
lates a scene sampling must implement one of four available interfaces. The list in which its instances are
stored depend on the interface the class implements. These interfaces are: IGIVoxelsStaticObJ,
IGIVoxelsStaticEmiObj, IGIVoxelsDynamicObj, and IGIVoxelsDynamicEmiObj.

Which one of these a scene sampling class implements depends on whether its sampling is static or dy-
namic and whether its samples emit light on their own or not. The GIV_SVO instance is constructed

from these four lists and various settings like position, tree depth and render mode (GI/RefGI).

The implementation currently provides two scene sampling classes, PointCloud and CubeBase.
During the construction of a PointCloud instance, a ’.cloud’-file is loaded which contains the scene
sample positions, NDFs, and albedos. The binary cloud format follows a simple structure. The first
value in the file is the count of samples (32 bit integer). Thereafter follow the scene sample attributes

in array-of-structures fashion: position (3 x 1 single precision float), NDF (3 x 1 single precision float),

5.2. SOFTWARE OVERVIEW 47

albedo in sSRGB (3 x 8 bit unsigned integer). Positions and NDFs reside in a right-handed coordinate
system with the y-axis pointing upwards. The Rols are hard coded to a single empirical value inside the
class. The CubeBase class, on the other hand, provides a regular sampling of the surface of a cuboid.
The Rols are derived from the adjustable sampling density to create a continuous surface representation

with overlaps as small as possible.

The only point light source type supported at the moment are spotlights which are implemented in the
SpotLights class and its nested Light class. Spotlights were chosen over omni-directional point
lights for being faster, easier to implement, and because they are more suitable to show off the indirect
lighting due to the focused nature of their direct lighting. Grouping all spotlights together in a single class
makes it easier to organize the rendering of their shadow maps to two shared texture arrays which in turn
allow to sample the VSM and ESM of a particular light by an id when evaluating its direct lighting in a
shader. The shadow maps are rendered at the beginning of the frame before BuildDynamicPart ()

of the SVO object is called.

Generic buffers like the SVO-buffer, the helper buffers and the scene sample attribute buffers are accessed
by unordered access views for read/write purposes in the shaders and by shader resource views for read-
only access. Some buffers like the SVO-buffer and the queue buffers have also a hidden atomic counter
attached to them that are used to manage allocations. Textures like the brick pools and the G-buffer are
accessed by shader resource views for reading purposes and are exclusively written by the render output

unit of the graphics pipeline.

5.2.1 Resource formats and sizes

The following list gives an overview of the formats and sizes of important resources. The formats are

specified in a per-element fashion.

Scene sample position array: 4 x [single precision float; the element count corresponds to the scene

sample count. Layout per element: position X, position Y, position Z, Rol.

Scene sample NDF array: 4 x [single precision float; the element count corresponds to the scene

sample count. Layout per element: NDF X, NDF Y, NDF Z, unused.

Scene sample albedo array: 4 x [single precision float; the element count corresponds to the scene

sample count. Layout per element: albedo R, albedo G, albedo B, opacity.

Scene sample radiance array: 4 x I single precision float; the element count corresponds to the scene
sample count. Layout per element: radiance R, radiance G, radiance B, opacity. The redundant opacity

value prevents the need to additionally read from the albedo array during the light injection stage. In

48 5. IMPLEMENTATION

practice, the application does not implement a scene sampling class that makes use of an extra radiance

buffer but instead injects the same radiance for every sample by using an appropriate shader.

SVO-buffer and helper buffers: [/ x [32 bit unsigned integer (re-interpreted in the shader); the ele-
ment counts are estimated heuristically from three manually specified values (maxStaticLeafNodeCount,

maxDynamicLeafNodeCount, fragmentQueueCapacity).

Brick pools: 4 x I half precision float; their sizes are derived from the estimated maximal brick count
which is itself derived from the manually specified values. The size in each individual dimension (X, Y,

and Z) is a power of two and for each of the four pools the same.

Shadow maps: 2 x [and [x I single precision float for VSMs and ESMs, respectively; their sizes must
match for all lights and has to be the same in both dimensions. They are hard coded in SceneBase to

256x256.

G-buffer: albedo: 4 x 8 bit unsigned normalized integer (sRGB), linear depth: [x I single precision
float, NDF: 4 x 1 half precision float, emitted radiance: 4 x 8 bit unsigned normalized integer; their sizes
correspond to the framebuffer resolution which in turn equals the output window or screen resolution for
windowed and full screen mode, respectively. The RGB value of the emitted radiance is actually split
into a ’direction’ part and a ’length’ part by division by the largest element. The ’length’ scalar is stored
in the alpha channel of the NDF buffer while the ’direction’ is kept in the RGB-channels of the radiance
buffer. In the deferred shading pass the original value is then recovered by multiplying the direction
component with the length. This prevents the need of another large floating point format for the radiance

buffer and utilizes the otherwise unused alpha channel of the NDF buffer.

5.3 Profiling results

In this section, the outcomes of the profiling are presented. The discussion and evaluation of this results

follow in the subsequent chapter.

The tables 5.1, 5.2, 5.3, and 5.4 show the profiling results of the CornellBox, CornSnailBox and Cave-
Cloud scenes. The upper part contains render times in milliseconds for various sections of the ren-
der process. These times are collected by averaging the measurements of 1000 rendered frames from
static camera perspectives (see figure 5.4). The lower part shows the allocated memory of important
resources in mega bytes. For every scene, all values are collected for two different framebuffer resolu-
tions (800x600 and 1600x900) and two SVO tree depths (7 and 8). Tree depth 7 is considered to be the
default depth for the CornellBox and CornSnailBox scenes while the CaveCloud scene uses a depth of

8 per default (these depth values are used throughout this work for all images). In all cases, four cones

5.3. PROFILING RESULTS 49
out res. 800x600 1600x900 out res. 800x600 1600x900
SVO depth 7 8 7 8 SVO depth 7 8 7 8
net 114 50.8 | 120 51.8 net 109 474|114 479
static 204 89.7 | 204 91.1 static 195 852|193 848
dynamic 1.2 3.1 1.1 3.2 dynamic 0.8 141 0.8 1.4
inj./mip 26 161 | 27 162 inj./mip 27 160 | 2.7 16.0
VCT 57 252 | 57 254 VCT 54 236 | 53 235
l.prop 9.7 472 | 98 475 l.prop 95 452 | 94 451
shadows - - - - shadows 0.1 0.1 0.1 0.1
g-pass 0.2 021 05 0.5 g-pass 0.2 02 04 04
ds 0.2 04| 05 0.7 ds 0.3 04| 07 0.8
final 0.5 0.6 | 1.0 1.2 final 0.5 0.6 | 1.1 1.3
ds(c) 2.7 34| 54 6.5 ds(c) 2.9 371 5.8 6.9
ds(g) 7.6 951|157 193 ds(g) 7.8 9.7 1159 196
ds(c/g) 108 119 | 219 235 ds(c/g) 1.1 139|226 279
SVO-buffer 2.1 87| 2.1 8.7 SVO-buffer 2.1 87| 21 8.7
SVO helpers | 2.2 86 | 2.2 8.6 SVO helpers | 2.2 8.6 | 2.2 8.6
brick pools | 64.0 256.0 | 64.0 256.0 brick pools | 64.0 256.0 | 64.0 256.0
SVO 68.3 2732 | 68.3 2732 SVO 68.0 2732 | 68.3 273.2
G-buffer 11.0 11.0 | 33.0 33.0 G-buffer 11.0 11.0 | 33.0 33.0

Table 5.1: CornellBox profiling results.

Table 5.2: CornSnailBox profiling results.

are used in the VCT pass. All cuboids are rasterized as triangles; only the point cloud in the CaveCloud

scene is rendered with surfels. The tests were performed on a Intel Core2 Quad Q9550 (2.83 GHz) and

a NVIDIA GeForce GTX 560 Ti. The following list explains the meaning of the individual values.

net: render time of the complete frame with trilinear sampling in the deferred shading pass.

static: time required for the construction of the static base structure of the SVO. This value is not

averaged over 1000 render frames but instead is the average of 10 construction times. It is also not

contained in the net value.

dynamic: time required for the dynamic update of the SVO including the reversal of the induced changes

at the end of the frame.

50

5. IMPLEMENTATION

out res. 800x600 1600x900

SVO depth 7 8 7 8
net 306 41.8 | 447 559
static 158.8 2489 | 1584 2494
dynamic 0.6 0.7 0.6 0.7
inj./mip 1.4 5.0 1.4 5.1
VCT 1.7 7.8 1.7 7.8
l.prop 35 145 35 145
shadows 7.8 7.9 7.8 7.8
g-pass 182 183 | 315 316
ds 0.5 0.5 1.3 1.3
final 187 18.7 | 328 329
ds(c) 3.1 3.6 8.7 9.9
ds(g) . . . -
ds(c/g) - - - -
SVO-buffer 1.8 29 1.8 29
SVO helpers 1.8 3.0 1.8 3.0
brick pools 64.0 128.0 | 64.0 128.0
SVO 67.6 1340 | 67.6 1340
G-buffer 11.0 11.0| 33.0 330

Table 5.3: CaveCloud(1) profiling results.

inj./mip: time requirement for the light injection and the subsequent mipmap construction.

VCT: runtime of the cone tracing pass.

out res. 800x600 1600x900

SVO depth 7 8 7 8
net 329 453 | 507 62.0
static 158.7 248.0 | 158.0 248.8
dynamic 0.6 0.7 0.6 0.7
inj./mip 1.4 5.0 1.4 5.0
VCT 1.7 7.8 1.7 7.8
l.prop 35 148 35 145
shadows 7.8 7.8 7.8 7.8
g-pass 205 21.8| 376 37.6
ds 0.5 0.5 1.2 1.3
final 21.0 222 | 38.8 389
ds(c) 3.1 3.6 9.0 10.2
ds(g) - . . .
ds(c/g) - - - -
SVO-buffer 1.8 2.9 1.8 2.9
SVO helpers 1.8 3.0 1.8 3.0
brick pools 64.0 128.0 | 64.0 128.0
SVO 67.6 1339 | 67.6 1339
G-buffer 11.0 11.0 | 33.0 330

Table 5.4: CaveCloud(2) profiling results.

Lprop: the simulation time of the complete light propagation process including inj./mip, VCT, and the

subsequent completion of the radiance bricks in preparation of the deferred shading pass.

shadows: runtime of the pass that renders the shadow maps.

g-pass: render time of the geometry pass which fills the G-buffer in preparation of the deferred shading

pass.

ds: render time of the deferred shading pass which writes the final image to the back buffer. Trilinear

sampling is used to sample the radiance.

5.3. PROFILING RESULTS 51

Figure 5.4: The scenes and perspectives from which the profiling data was collected. From left to right:
CornellBox, CornSnailBox, CaveCloud(1), CaveCloud(2).

final: runtime of the final rendering (sum of g-pass and ds).
ds(c): render time of the deferred shading pass when using tricubic sampling.

ds(g): render time of the deferred shading pass when using trilinear sampling and glossy reflections. Not

collected for the CaveCloud scene due to induced artifacts and generally little benefit.

ds(c/g): render time of the deferred shading pass when using tricubic sampling and glossy reflections.

Not collected for the CaveCloud scene.

SVO-buffer: memory consumption of the SVO-buffer.

SVO helpers: memory consumption of the SVO helper buffers.

brick pools: memory consumption of the brick pools.

SVO: memory consumption of the whole SVO (sum of SVO-buffer, SVO helpers and brick pools).

G-buffer: memory consumption of the G-buffer.

52

5. IMPLEMENTATION

53

6 Discussion

In the following, the results of the implementation are evaluated with respect to performance and quality.

A summary of the implemented features concludes the chapter.

The profiling results presented in the previous chapter show various correlations between runtimes and
framebuffer resolution and between runtimes and chosen SVO depth. As to be expected, the light prop-
agation simulation runtime is strongly dependent on the tree depth while being unaffected by the frame-
buffer resolution. It is furthermore dominated by the VCT pass. The estimation of a concrete complexity
would require more test scenes. By tricubically sampling the reflected radiance in the deferred shading
pass instead of trilinearly, a substantial runtime dependency from both, output resolution, as well as SVO
depth can be observed. This dependency becomes even more severe when using glossy reflections due
to the involved cone tracing for every fragment. The chosen resolution is an especially critical factor for
the rendering of surfels which makes up for a large part of the rendering costs in the CaveCloud scene.
This costs can vary depending on the observer position in the scene even when the cases appear to be
similar (compare g-pass of 5.3 and 5.4). It can be assumed that these differences are induced by the
order in which the surfels are rendered, leading to more occluded fragments being generated in some
cases than in others. The relatively high GPU memory consumption of the approach is in all presented
cases heavily dominated by the brick pools. For more complex applications, the memory requirements
of the SVO might be too high, even though scalar radiance values are used instead of distributions like

in the original approach of [CNST11].

When comparing the quality of the VCT based approach to high quality renderings, two types of light
leaking artifacts become apparent: light leaking at edges and light leaking through walls (see figure 6.1).
The edge light leaking is introduced by directly sampling the reflected radiance from the radiance pool
instead of performing a final gathering at every fragment as [CNS™11] did. However, per-fragment VCT
is very costly as can be seen in the case of glossy reflections. A possible solution could be to evaluate
a distribution over incoming radiance in addition to the reflected radiance in the VCT pass. By keeping
the radiance distribution monochromatic, it could fit in a three component vector like the NDF. In the
deferred shading pass, the NDF from the G-buffer in conjunction with this distribution would then be

used to evaluate the monochromatic amount of reflected radiance at each fragment while accounting for

54 6. DISCUSSION

——

-

Figure 6.1: Light leaking aritfacts. CornellBox: left, the VCT result, on the right, the reference rendering.
Light leaking along the edges of the cubes can be seen in the left image as well as missing
shadows. Direct sampling of the area light by an additional cone as suggested by [Cral2]
and [Kas13] could resolve the problem of the missing shadows. CornSnailBox: light from

the spotlight leaks through the wall into the box.

the coloring by the reflected radiance from the brick pool. Care must be taken to correctly handle the
redundant information contained in both, the monochromatic distribution of incoming radiance and the
colored scalar of reflected radiance. The distribution could be stored in the second half of the radiance
buffer where up to now the geometry backup resides which then would have to be moved to a dedicated
buffer. Doing so would also better utilize the capacity of the radiance buffer since the geometry backup
usually requires only a small portion of the available memory. However, the wall light leaking appears
to be the more critical artifact. It might be intensified by the simplifications introduced compared to the
original approach by [CNS™11] which used more expressive lighting information in the mipmap. As can
be seen in figure 4.14, the ray based approach captures shadows better which indicates that using more
and smaller cones in the VCT pass could reduce the light leaking significantly. Unfortunately, since four
cones already exceed the budget most real-time applications might allocate for global illumination, this

is not a feasible approach.

The mediocre performance of the VCT pass could be improved by additionally sorting the static base
structure of the SVO to improve data coherency for the SVO-buffer and the brick pools. Since albedos
and NDFs are usually sampled together, it is probably also beneficial to store them interleaved instead
of in separate sections of the geometry pool. Furthermore, it might be feasible to evaluate the reflected
radiance in an interleaved fashion where, for example, only two cones are used at every leaf voxel. The
result could then be filtered by averaging the radiance of adjacent voxels to virtually increase the amount

of utilized cones.

The aliasing induced by moving geometry displays another problem and is not resolved for all situations
by the antialiasing scheme. Flat surfaces that are perpendicular aligned to the main axes of the SVO are

particularly problematic. By moving along the respective axis, the contribution of such a surface to indi-

6.1. FEATURE SET SUMMARY 55

vidual leaf voxel changes abruptly, which in turn leads to frequent changes in the light propagation result.
This problem could be resolved by avoiding critical orientations of problematic geometry or by modi-
fying the surface sampling to provide additional gradients in the opacity values where necessary. This
artificial opacity could on the down side lead to more self occlusion in the VCT pass and consequently

to darker results.

The currently missing overflow handling for the SVO-buffer and helper buffers is also problematic. Over-
flows due to wrong buffer size estimations can result in permanent corruptions that propagate through
the whole SVO structure including the brick pools. Therefore, overflow handling can be considered a

mandatory feature for real-world application of the algorithm.

The current implementation of glossy reflections is rather incomplete. One the one side, hard coded
smoothness and normal incident reflection settings are used to show off the effect and on the other
side the albedo values in the SVO are not adjusted properly to account for the amount of light that is
not reflected in a diffuse way and therefore not captured by the simulation. This adjustment could be
implemented by simply reducing the albedos appropriately, effectively turning pure metals during the
light propagation black. To still account for glossy reflections in a very approximate way, the albedo
could be instead modified so that the estimated diffusely reflected light at each leaf voxel also contains

the total amount of glossy reflected light.

6.1 Feature set summary

The implementation realizes multiple bounces of ideal diffuse light reflections which are particular ben-
eficial to illuminate environments where direct lighting alone reaches only a small portion of the scene.
In addition, a single bounce of glossy reflections is implemented prototypically. Area light sources are
naturally handled by the simulation. However, point lights achieve a higher quality since their direct
illumination is evaluated analytically and therefore does not rely on the SVO based simulation which is

prone to light leaking artifacts.

Ambient occlusion [Fer04] is often employed as affordable approximation of the soft shadowing effects
originating from indirect lighting in diffusely reflecting environments (see figure 2.4) or from the light

of the sky in outdoor scenarios. These effects are implicitly handled by the presented approach.

The scenes are assumed to remain largely static due to the high costs induced by the SVO construction.

Dynamic geometry is added by frame-wise, temporary updates of the static structure.

56

6. DISCUSSION

57

7 Conclusion

This work presented a SVO based interactive global illumination approach derived from the work of
[CNS™11]. To reduce memory consumption and potentially improve the runtime of the algorithm, a
less puristic light propagation approach was proposed. The solution focuses primarily on the simulation
of diffuse light propagation and handles multiple bounces. A single bounce of glossy reflections can be
added at high performance costs. The SVO is directly built from a set of points which represents a regular
or irregular sampling of the displayed scene. The approach, therefore, maps well to the visualization of
point clouds, which was a primary objective of this thesis. The objective of reproducing the effects of

multiple light reflections to improve the realism of interactively rendered scenes was met as well.

Nevertheless, despite the introduced simplifications, the algorithm remains expensive with regard to
performance and memory consumption. Furthermore, the complexity introduced by the SVO leads to
a much higher implementation effort compared to techniques that work on dense grids. For completely
dynamic GI, LPVs and VCT on nested dense grids, therefore, potentially provide a better cost-benefit
ratio of development effort and GI performance at the moment. However, if dynamic GI with consistent
quality over a large scale is required, the use of a sparse structure can probably not be avoided. Besides,
SVO-based scene representations provide additional possible applications beyond full GI, for example,
for depth-of-field effects, antialiasing, soft shadows, ambient occlusion, volumetric effects, and even
collision detection or sound propagation simulations, making the expensive maintenance of the SVO

more worthwhile [Cral2].

58

7. CONCLUSION

59

Bibliography

[AMHHO08] Tomas Akenine-Mboller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd Edition.

[AMS108]

[Burl2]

[CBo]

[CNSt11]

[Crall]

[Cral2]

[CUD]

[D3Da]

[D3Db]

[DBBO06]

A. K. Peters, Ltd., Natick, MA, USA, 2008.

Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and Jan Kautz. Expo-
nential shadow maps. In Proceedings of Graphics Interface 2008, GI *08, pages 155-161,

Toronto, Ont., Canada, Canada, 2008. Canadian Information Processing Society.

Brent Burley. Physically-based shading at disney.
https://disney—-animation.s3.amazonaws.com/library/s2012_pbs_

disney_brdf_notes_v2.pdf, 2012.

The cornell box.

http://www.graphics.cornell.edu/online/box/.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Interac-

tive indirect illumination using voxel cone tracing, sep 2011.

Cyril Crassin. Gigavoxels: A voxel-based rendering pipeline for efficient exploration of

large and detailed scenes, July 2011. English and web-optimized version.

Cyril Crassin. In SIGGRAPH 2012 Course : Beyond Programmable Shading. ACM SIG-
GRAPH, 2012.

Cuda parallel computing platform.

http://www.nvidia.com/object/cuda_home_new.html.

Hardware support for direct3d 11 formats.
https://msdn.microsoft.com/en-us/library/windows/desktop/

£f£471325(v=vs.85) .aspx.

Resource limits (direct3d 11).
https://msdn.microsoft.com/en-us/library/windows/desktop/

f£819065 (v=vs.85) .aspx.

P. Dutre, P. Bekaert, and K. Bala. Advanced Global Illumination, Second Edition. Ak Peters

https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
http://www.graphics.cornell.edu/online/box/
http://www.nvidia.com/object/cuda_home_new.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471325(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471325(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff819065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff819065(v=vs.85).aspx

60

Bibliography

[DLO6]

[Epp10]

[Fer04]

[Fou92]

[ICGS86]

[Jen96]

[JMLHO1]

[Kaj86]

[Karl3]

[Kas13]

[KD10]

Series. Taylor & Francis, 2006.

William Donnelly and Andrew Lauritzen. Variance shadow maps. In Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games, 13D *06, pages 161-165, New
York, NY, USA, 2006. ACM.

David Eppstein. The z planefilling curve.

http://commons.wikimedia.org/wiki/File:Z-curve.svg, 2010.

Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks for Real-Time

Graphics. Pearson Higher Education, 2004.

Alain Fournier. Normal distribution functions and multiple surfaces. In Graphics Inter-

face 92 Workshop on Local Illumination, pages 45-52, Vancouver, BC, Canada, 1992.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for non-
diffuse environments. In Proceedings of the 13th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’86, pages 133-142, New York, NY, USA, 1986.
ACM.

Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of the Eu-
rographics Workshop on Rendering Techniques ’96, pages 21-30, London, UK, UK, 1996.
Springer-Verlag.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical
model for subsurface light transport. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH °01, pages 511-518, New
York, NY, USA, 2001. ACM.

James T. Kajiya. The rendering equation. In Computer Graphics, pages 143150, 1986.

Brian Karis. Real shading in unreal engine 4.
http://blog.selfshadow.com/publications/

s2013-shading—-course/karis/s2013_pbs_epic_notes_v2.pdf, 2013.

Nikolas Kasyan. Playing with real-time shadows.

http://www.crytek.com/cryengine/presentations&page=1, 2013.

Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation volumes for real-
time indirect illumination. In Proceedings of the 2010 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, 13D ’10, pages 99—107, New York, NY, USA, 2010.
ACM.

http://commons.wikimedia.org/wiki/File:Z-curve.svg
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://www.crytek.com/cryengine/presentations&page=1

Bibliography 61

[Kel97]

[Lam]

[Lam92]

[Lau08]

[LdR14]

[LSKT07]

[Max95]

[McL14]

[Mor66]

[Nic65]

[OGL]

[Ope]

[PD84]

Alexander Keller. Instant radiosity. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 97, pages 49-56, New York,
NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Lambda expressions (c sharp programming guide).

https://msdn.microsoft.com/en-us/library/bb397687.aspx.

Johann Heinrich Lambert. Lamberts Photometrie.
https://archive.org/details/lambertsphotome00lambgoog, 1760,
1892.

Andrew T. Lauritzen. Rendering Antialiased Shadows using Warped Variance Shadow
Maps.

http://www.punkuser.net/lvsm/lvsm.pdf, 2008.

Sebastien Lagarde and Charles de Rousiers. Moving frostbite to pbr.
http://blog.selfshadow.com/publications/
s2014-shading-course/frostbite/s2014_pbs_frostbite_slides.
pdf, 2014,

Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and Timo Aila. Incre-
mental instant radiosity for real-time indirect illumination. In Proceedings of Eurographics

Symposium on Rendering 2007, pages 277-286. Eurographics Association, 2007.

Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics, 1(2):99-108, June 1995.

James McLaren. Cascaded voxel cone tracing in the tomorrow children.

http://fumufumu.g-games.com/archives/2014_09.php, 2014.

G.M. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File

Sequencing. International Business Machines Company, 1966.

Fred E. Nicodemus. Directional reflectance and emissivity of an opaque surface. Appl.

Opt., 4(7):767-T15, Jul 1965.

Glsl atomicadd.

https://www.opengl.org/sdk/docs/man/html/atomicAdd.xhtml.

Opencl the open standard for parallel programming of heterogeneous systems.

https://www.khronos.org/opencl/.

Thomas Porter and Tom Duff. Compositing digital images. In Proceedings of the 11th

https://msdn.microsoft.com/en-us/library/bb397687.aspx
https://archive.org/details/lambertsphotome00lambgoog
http://www.punkuser.net/lvsm/lvsm.pdf
http://blog.selfshadow.com/publications/s2014-shading-course/frostbite/s2014_pbs_frostbite_slides.pdf
http://blog.selfshadow.com/publications/s2014-shading-course/frostbite/s2014_pbs_frostbite_slides.pdf
http://blog.selfshadow.com/publications/s2014-shading-course/frostbite/s2014_pbs_frostbite_slides.pdf
http://fumufumu.q-games.com/archives/2014_09.php
https://www.opengl.org/sdk/docs/man/html/atomicAdd.xhtml
https://www.khronos.org/opencl/

62

Bibliography

[PH10]

[PIW12]

[PW10]

[RGK™'08]

[RSC87]

[Sha]

[Spe93]

[ST90]

[TFCRS11]

[TokO4]

[Wil78]

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 84,
pages 253-259, New York, NY, USA, 1984. ACM.

Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition: From
Theory To Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2nd edition, 2010.

Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. Auto splats: Dynamic point cloud
visualization on the gpu. In H. Childs and T. Kuhlen, editors, Proceedings of Eurographics
Symposium on Parallel Graphics and Visualization, pages 139-148. Eurographics Associ-

ation 2012, May 2012.

Reinhold Preiner and Michael Wimmer. Real-time global illumination for point cloud

scenes. Computer Graphics Geometry, 12(1):2-16, 2010.

T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imper-
fect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.,

27(5):129:1-129:8, December 2008.

William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows
with depth maps. SIGGRAPH Comput. Graph., 21(4):283-291, August 1987.

Sharpdx.

http://sharpdx.org/.

Stephen Spencer. Radiosity overview.
http://www.siggraph.org/education/materials/HyperGraph/

radiosity/overview_1.htm, 1993.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d shapes. In Pro-
ceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’90, pages 197-206, New York, NY, USA, 1990. ACM.

William Thompson, Roland Fleming, Sarah Creem-Regehr, and Jeanine Kelly Stefanucci.
Visual Perception from a Computer Graphics Perspective. A. K. Peters, Ltd., Natick, MA,
USA, 1st edition, 2011.

Michael Toksvig. Mipmapping normal maps.

http://www.nvidia.com/object/mipmapping_normal_maps.html, 2004.

Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH Comput. Graph.,
12(3):270-274, August 1978.

http://sharpdx.org/
http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_1.htm
http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_1.htm
http://www.nvidia.com/object/mipmapping_normal_maps.html

	1 Introduction
	1.1 Thesis Structure

	2 Global illumination
	2.1 Basic Radiometry
	2.2 The Rendering Equation
	2.3 Rendering

	3 Previous Work
	4 The Algorithm
	4.1 Scene geometry rendering
	4.2 Direct illumination
	4.3 Hierarchical voxel structure
	4.3.1 Description
	4.3.2 General purpose computations
	4.3.3 Construction
	4.3.4 Antialiasing

	4.4 Light injection and propagation
	4.4.1 Radiance injection
	4.4.2 Mipmapping
	4.4.3 Diffuse light propagation

	4.5 Dynamic updates
	4.6 Final rendering

	5 Implementation
	5.1 Application overview
	5.2 Software overview
	5.2.1 Resource formats and sizes

	5.3 Profiling results

	6 Discussion
	6.1 Feature set summary

	7 Conclusion
	Bibliography

