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1 Introduction

6D object instance pose estimation is the task of inferring the position and orientation
of a rigid object from a single image. It is an important problem in robotics e.g. for
grabbing objects in a household assistance system. Current state of the art pose estima-
tion algorithms are able to achieve impressive detection rates, however, some challenges
such as occlusion, heavy clutter in the scene, the extension to a large scale of simultane-
ously detectable objects, and the robustness towards different lighting conditions are
yet to overcome. The latter will be the main focus of this work.

The prevalent strategy to handle different lighting conditions in the literature is to make
the system invariant towards them. That means that these algorithms try to compensate
for the different appearances under different lighting conditions without the need for
knowledge of the exact lighting parameters. This is appealing because it presents a
catch-all approach which simplifies the task by a large margin. In order to achieve this
lighting invariance, these approaches often rely on edge information recovered from
the color image or shape information recovered from the depth image [12, 16]. These
approaches are thus ignoring the benefits of pure color features for their inference
process. The baseline for this work [6] by Brachmann et al. uses depth as well as color
features to infer the final object pose. They present a test on different lighting conditions
which shows that the system is capable of handling multiple lighting conditions well.
In my investigation of their system, it became apparent that it relies heavily on the
depth features to infer the correct pose. Future iterations of this system should be able
to recognize poses from an RGB image only and therefore need to be able to exploit
color features more effectively.

This work will explore means to explicitly model the lighting condition as a global
latent variable in order to increase the performance of color features for the pose esti-
mation procedure. It is the goal of this thesis to compare the proposed light modeling
approaches to the baseline light invariance approach and therefore provide cues for
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1 Introduction

further research in this area. Now, I want to give a brief overview over the baseline
method for this thesis and how I plan on extending it for the purpose of modeling
lighting conditions. The system operates in a two stage pipeline:

(1) Object Coordinate Regression: A random forest densely predicts the object
coordinate and class (which object is present) for each pixel in the image.

(2) Geometric Verification via RANSAC: An energy function which describes the
quality of a hypothesis is optimized with a RANSAC-like scheme.

The random forest is an ensemble training method that maps the appearance of the
patch around each pixel to the most likely object coordinate and class according to
the training data. This discriminative prediction is then used as the input for the
RANSAC optimization scheme. This optimization method samples point triplets from
the prediction and recovers a full 6D pose hypothesis from the correspondence of the
observation and the prediction. This results in many pose hypotheses for one image.
The best matching hypothesis regarding the observation and the prediction is then
chosen as the final pose. Figure 1.2 visualizes the baseline method. The problem with
this method is, that the appearance of the same object parts will be different under
varying lighting conditions. Figure 1.1 shows the Dragon object under different lighting
conditions. If the training data consists of multiple different lighting conditions, the
random forest will not distinguish between them and will have to compensate for
a strong appearance variability of the patches which describe the same part of the
object. My contribution will be the extension and evaluation of the random forest

Figure 1.1: Visualization of the appearance variability of one object under different lighting
conditions.

to a conditional random forest which will incorporate lighting information into the
object coordinate regression task. The conditional random forest requires another
ground-truth labeling: the lighting condition present in the image. In contrast to
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the random forest, the conditional random forest is able to differentiate between the
lighting conditions to perform a more specialized prediction because the prediction will
only be based on the training images of the corresponding lighting conditions. Thus,
the distribution of the class and object coordinates are now conditional to the present
lighting condition. The conditioning of the distributions requires new methods of
inferring the correct pose and lighting condition. There are two basic approaches to use

Figure 1.2: Example run of the baseline method for object pose estimation. Top Left: An
example detection of the object pose (Green: ground truth pose, Blue: estimated
pose). Top Right: Per-pixel prediction of the object probability. Bottom Left:
Prediciton of the object coordinates. Bottom Right: Ground Truth of the object
coordinates. The object coordinates are visualized using the color cube.

the conditional random forest in conjunction with the latent lighting condition: Either
let the conditional random forest estimate the lighting condition itself or use a different
algorithm to estimate it beforehand and feed the information into the conditional
random forest. For the prior lighting estimation, I will investigate an approach based
on an intrinsic image algorithm. Barron et al. [3] proposed an impressive intrinsic
image system which jointly estimates the lighting and the albedo of a single RGB-D
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1 Introduction

image. The system estimates several lighting conditions for each image represented
as spherical harmonics which are best described as a parametric, low dimensional
representation of an environment lighting map. The output of this system is then used
as input for the conditional random forest which can now make the prediction based
on the estimated lighting. The standalone light estimation of the conditional random
forest works more straightforward by evaluating it for each possible lighting condition
to choose the best resulting energy as the solution.

Chapter 2 contains summaries of recent scientific work and puts them into the context
of this thesis. Chapter 3 provides the necessary theoretical foundations by introducing
the random forest framework, spherical harmonics, as well as the baseline method
formally. Furthermore, the different methods for the construction and inference of the
conditional random forest are presented. Chapter 4 will evaluate the system and draw
conclusions about its performance in comparison to the baseline method. Chapter 5 will
feature a discussion about practical relevance, problems, and improvement possibilities
for the proposed approach.
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2 Related Work

This chapter will cover the relevant papers using conditional random forests which
inspired the approach for this thesis, as well as the intrinsic image algorithm used to
estimate the lighting. I will touch on different possibilities to perform pose estimation
other than the object coordinate regression to give an overview on the state of the art
in this area. Moreover, I want to examine different methods to estimate the lighting
condition with different lighting representations.

2.1 Object Pose Estimation Papers

[12] proposes a template based method to infer the 6D pose from a single image. For
this method, many views of the object need to be recorded to create the templates
for each view. These templates are a set of image features located in a bounding box
around the object. Each of these templates has to be compared to the input image. This
is done by "sliding" the template over the image to compute a similarity score of the
template and the image. The best scoring template with annotated 6D pose is then
used as the output of the algorithm.

The approaches used in [11, 2] are based on hough forests. These methods infer
a displacement vector for every pixel using a random forest. Every pixel votes for
the position of the object. These votes are aggregated in a histogram of possible
positions called hough space. The maximum of this hough space then represents
the final estimation. [2] extends this method to the 6D pose estimation task. A two
step hough voting scheme is introduced which infers the 3D orientation after the
correct 3D position was found. [16] is based on a sparse interest point approach.
They detect all the local maxima resulting from the SIFT interest point detector and
compare them to a database of previously recorded interest points from different
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views of the object. The found interest points are then used as an initialization of
an optimization procedure which eliminates outliers via RANSAC and verifies the
hypothesis geometrically.

2.2 Conditional Random Forest Papers

[22] deals with the task of inferring the complete human pose from a single RGB-
D image. Traditionally, this is done by inferring the positions of the body joints
independently from one image. Random forests haven proven to be fast and reliable
estimators for this body joint regression task. They are used to infer the position of the
joints per pixel. All these votes are aggregated in a hough space of 3D positions where
the maximum is sought. Problems arise when the appearance of patches corresponding
to the same body joints vary too much. This was the incentive for the authors to rework
the random forest into a conditional model. They show that they gain a performance
boost when they condition the random forest on the person height as well as the
torso orientation which are represented as a global latent variable. They show and
evaluate the different methods to model the conditional distributions. These models
are described in detail in Subsection 3.4.1.

Also, different methods to perform inference on the conditional random forest are
presented. The straight forward approach of performing complete inference for each
conditional distribution and then using the best scoring outcome (described in detail
in Subsection 3.4.2) produces the best results. The problem with this approach is the
high computational cost which also increases linearly with the number of possible
discrete states of the global variable. To overcome this, they estimated the latent
variable without performing the complete pipeline by aggregating per pixel estimates
of the latent variable. The variable with the best resulting score is then chosen. The
complete inference with this prior information then only has to be performed with
regard to its conditional distribution. This yielded slightly worse results but a far
better computation time which is why I explored an adaption of this method in
Subsubsection 3.4.2.3.

An additional insight from this paper is, that the different body joints share the same
global latent variable. This fact is used in the inference step by choosing the best global
variable and corresponding joint locations as the maximum score of all body joints
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2.2 Conditional Random Forest Papers

combined. This could be exploited in the object pose estimation task when multiple
objects are present in the scene.

[9] solves the task of estimating the position of so called facial features from a single
image of a human face. These features are shown in Figure 2.1. They also use a random
forest for the regression of the position of the facial features per pixel as well as a hough
voting scheme to infer the final estimation of the position. Because the appearance
of the different facial features varies greatly between different head orientations, they
choose to learn the correspondence between image patches and the corresponding
position of the feature points conditional to the coarse head orientation. An individual
forest is learned for each subset of the training data which is labeled with the same
coarse head orientation. For inference, an additional random forest to predict the

Figure 2.1: Visualization of facial features. The boxes around the faces show the coarse head
orientation.

global latent variable of the head orientation is constructed. This realizes a per pixel
estimation of the latent variable. With this knowledge, only one conditional random
forest needs to be evaluated. Since this inference of the coarse head pose is only an
estimation of the global variable, the authors propose a mixing of the random forests
for inference. It is suggested, to construct a new random forest from the trees of the
existing conditional forests. From every conditional forest, trees are added to the new
random forest proportional to the probability of the latent variable which is provided by
the pre-estimation step. This new random forest is evaluated traditionally as described
in Section 3.1.
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2 Related Work

2.3 Intrinsic Image Algorithm

Intrinsic image algorithms are of interest for this thesis because they provide an
estimation of the lighting condition present in a single image without the need of
a prior segmentation or pose estimation of the object. This light estimation can
then be used as a prior estimation step to potentially improve the performance of
the conditional random forest. The task of obtaining the intrinsic images from an
input image, is to divide it into its material-dependent properties and light-dependent
properties. Intrinsic image algorithms aim to find the solution to

I = RS, (2.1)

where I is the original Image, R is the albedo, and S is the shading image. The albedo
depicts the "true" color of every object in the image without any light highlights or
shading involved and the shading image depicts all light-dependent properties of
the image. In order to prevent trivial solutions, constraints need to be incorporated.
A huge effort in this research area is put into finding the appropriate constraints to
optimize Equation 2.1 with respect to these priors. [4] describes the shading image as a
combination of the shape of an object and the underlying illumination and imposes
constraints on the shape of the object and the albedo of the object.
Priors on the albedo:

(1) Smoothness: It is assumed that the albedo tends to be piecewise smooth.
(2) Minimal entropy: The possible number of albedos in the image is expected to be

low.

Priors on shape:

(1) Flatness: This term prefers flat surfaces with a low slant from the view of the
camera.

(2) Smoothness: It is assumed, that the depth variation is of low frequency.
(3) Occluding contours: The normals inferred from the contour of the image must be

consistent with the estimated shape.

All these constraints are then incorporated into one objective function which is then
minimized. As a byproduct of this procedure, an estimation of the lighting condition
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2.4 Papers on Light Estimation

represented as spherical harmonics is provided. A major limitation for this approach is
the necessity of a prior segmentation of the object. [3] revisits the shortcomings of this
method and proposes a new approach which can be applied to unsegmented images.
They do this by introducting mixtures of lighting conditions and shapes. That means
that every pixel in the image now is provided with a probabilistic correspondence
to a fixed number of lights and shapes. The mixture for each pixel is established
with a method similar to normalized cuts [20]. This normalized cut approach usually
segments the image in multiple regions which are related regarding a certain similarity
measure. In this paper, however, a soft segmentation approach is proposed, which
leads to an influece of each mixture to each pixel. That means that every light can have
an influence on every pixel theoretically. The albedo, lighting conditions, shapes and
their corresponding soft segmentations are then optimized in a procedure similar to [4].
It must be noted that the optimization of the lighting condition uses only a discrete
set of lighting conditions which were recorded beforehand. The relevant output of
this procedure is the inferred lighting condition. The lighting condition is represented
per pixel as a linear combination of eight spherical harmonics. That means that every
pixel is associated with eight weigths for the base spherical harmonics which can be
used to calculate the lighting condition. This output will be the basis for the prior light
estimation in Subsubsection 3.4.2.2.

2.4 Papers on Light Estimation

[19] pioneered the use of spherical harmonics as light representation and showed that
they are well suited for this task if some preconditions are met. The first assumption
is the presence of distant light sources, which means that lighting is invariant to the
position of the object in space. Furthermore, the object is assumed to be lambertian,
which means that the color of the surface is the same regardless of the observer’s angle
of view. Since the diffuse reflection of the lambertian surface acts as a low-pass filter on
the lighting, the smooth approximation by spherical harmonics with nine coefficients
per color channel proves to be well suited. Lastly, the shadows present on the object are
ignored by their approach. They derive a formula which directly relates the observed
irradiance to the incoming lighting distribution. They estimate the lighting condition
from a lambertian sphere with known position and radius. The idea of this light
estimation algorithm is not directly applicable to the task of pose estimation because
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the pose of the object has to be provided beforehand. The derivations in this paper lay
the foundation for the rendering algorithm proposed in [10], which was also used by
[3].

A lot of work in the field of light estimation has been done in the area of face detection
and re-lighting. The work of Basri et al. [5] uses the foundation which was laid by
the previously presented light estimation approach. They also use spherical harmonic
lighting to recognize faces under arbitrary illumination. Assuming that the pose of
the head is already known, they render "basis faces" from the albedo of each face and
each spherical harmonic basis function. Provided with these basis faces for each face
in the dataset, they can infer the best spherical harmonic coefficients which describe
the most similar rendering to the observed image. Because the final rendering is a
linear combination of the basis images, the optimal coefficients can be found by QR
decomposition. The face in the database with the lowest difference to the input image
is then chosen as the final recognition.

[15] also aim to estimate the lighting condition from a single image of a human face
to render artificial objects with consistent lighting into the scene. They overcome the
limitation of a known albedo by learning radiance transfer functions for each part of
the face. These radiance transfer functions supersede the neccesity of face albedos.
Each of these light estimation methods based on the human face take knowledge of
the pose for granted which makes them unusable for the pose estimation task. Yet, a
similar approach could be used to improve the RANSAC step of the object coordinate
regression method. In each iteration step, the object could be rendered under the
estimated illumination in this pose. Then, the difference of the rendered and the
observed image could be incorporated into the energy function.
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3 Method

This chapter will cover the details of the proposed method. At first, I will explain
the general concept of the random forest estimator. After that, I present the baseline
method [6] which applies the random forest framework to the pose estimation task.
To establish the theoretical basis for the description of the lighting condition, I will
introduce the formal definition of the spherical harmonics. Then, I will go into detail
about the construction methods for the conditional random forest. The last subsection
of this chapter will focus on the different possibilities of performing inference on the
conditional random forest.

3.1 Random Forests

Random forests are a popular machine learning paradigm wich can be used to solve
regression and classification tasks [8, 7]. This section will only cover the classification
task since the random forest used throughout the thesis is constructed using only the
training procedure of the classification task. Classification means, that every sample
s is associated with a discrete class c ∈ C. Each sample represents a datapoint in an
n-dimensional space. During the training of the forest, the corresponding class of
all samples is provided. At test time, it is the task of the forest to infer the class of
new unlabeled samples based on the information obtained from the training set. The
random forest contains multiple trees T ∈ T , which are autonomously able to solve
the given task. Each tree consists of split and leaf nodes. Every split node represents a
weak learner which must be designed according to the specific classification task. For a
given datapoint, the tree applies a simple binary feature test at each node to decide
whether it should be passed to the right or left child of the node. This test has the
form

h(s, φ, τ) = [ fφ(s) ≥ τ] , (3.1)
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3 Method

where fφ(s) is the feature response function which has to be defined based on the
specific task the forest has to solve, φ is a set of parameters chosen according to this
task, and τ is a threshold. Both of these parameters are learned during the training
procedure. [ .] denotes the 0-1 indicator function which represents the decision for the
left or right path. This process is repeated until the point reaches a leaf lT where the
distribution p(c|lT) to perform classification is stored. The basic idea of the forest is
to average the outputs of these trees. This process is called bootstrap aggregation and
helps to avoid overfitting regarding the data. The maximum of this averaged output is
then chosen as the final prediction of the random forest classifier.

3.1.1 Training

The training of the forest is done separately for each tree. Prerequisite for the training
procedure is a set of training samples S0, which are annotated with their corresponding
class. During training, the set of samples will be split subsequently. The samples which
arrived at node j are denoted by Sj. The training starts at the root node. It is the task to
find the best parameters {φ, τ} for the binary split. The best parameters of the split
should separate the dataset as well as possible. Ideally, one or multiple classes are
completely separated by one split. The measure for the quality of a split at node j is
the information gain

Ij = H(Sj)− ∑
k∈{1,2}

|Sk
j |
|Sj|

H(S k
j ), (3.2)

where H(S) denotes the entropy of a set of samples and is defined as H(S) =

−∑c∈C p(c) log(p(c)). p(c) in this context denotes the normalized histogram of classes
in the set S . S k

j denotes the split of the samples which arrived at the node j into two
disjunct subsets according to Equation 3.1. The higher the information gain of node j,
the peakier the resulting histograms in the sets S k

j and, thus, the better the split will be.
In order to find the best split parameters, an optimization over Ij has to be performed.
For practical purposes, a discrete set of parameters {φ, τ} is sampled randomly. From
this set, the parameters which maximize Ij are chosen. This procedure is then applied
recursively to the two sets which result from the chosen split. The training procedure
terminates once a predefined depth or minimal number of samples is reached. The
distribution p(c|lT) is collected in the leaves. Figure 3.1 visualizes a simple example of
the sampling of split parameters at the root node.
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3.1 Random Forests

Figure 3.1: Example of a simple decision forest.
Visualization of the split selection: Depicted are two of many possible splits for the
root node of a decision forest. The data points are labeled points s = (x1, x2) with
four possible classes, which are visualized with different colors. The feature response
function is axis aligned and defined as fφ(s) = x1 or fφ(s) = x2 depending on the
sampled parameter p ∈ {vert, horizontal}, φ = {p}. So, the randomly sampled
parameters for this example are just τ and p. The top row shows a possible vertical
split and its corresponding histograms for the left and right sets. The quality of the
split is reflected in the high resulting information gain and the peaky histograms.
The bottom split reaches a lower information gain. The algorithm chooses Split1
and will continue recursively on the left and right subset.

3.1.2 Testing

To obtain a prediction from the decision forest, it is necessary to combine the outputs
of the trees. This may be done by simple averaging:

p(c|s) = 1
|T | ∑

T∈T
p(c|lT

s ), (3.3)

where lT
s denotes the corresponding leaf from tree T to the sample s. Alternatively, a

multiplication may be used. However, it must be noted that the tree outputs are not
statistically independent.

p(c|s) = 1
Z ∏

T∈T
p(c|lT

s ) (3.4)
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Z = ∑
c∈C

[∏
T∈T

p(c|lT
s )], (3.5)

where Z is the partition function. The most probable class is then used as the prediction
of the forest.

3.2 Random Forests for Object Coordinate
Regression

I will now explain in detail how the forests are applied to the concrete task of object
coordinate regression and object classification used by [6].

3.2.1 Training

Prior to the training, a dataset containing RGB-D images of the target objects has to
be recorded. Every single image has to contain the information of the pose of the
object relative to the camera. The guide on how to create such a dataset is given in
Section 4.1. The training begins with a sampling of all training images. Pixel samples
are denoted by s = (~ps, Is) ∈ S0, where ~ps is the pixels 2D position, and Is is the RGB-D
image from which the sample was drawn. Note that a pixel sample is completely
defined by the appearance of the patch. Thus, a sample is a datapoint in the space
of possible appearances of patches. The given notation is a more convenient method
to describe a sample. Each sample is annotated with the corresponding ground truth
object coordinate y and class c. Samples are drawn from each image according to the
segmentation mask of the objects which is calculated from the object pose. The feature
response functions are inspired by [21] and operate on each appearance channel (R,G,B
or D)

f d
φ(s) = d(~ps +

~ω1

d(~ps)
) − d(~ps +

~ω2

d(~ps)
) (3.6)

f rgb
φ (s) = I(~ps +

~ω1

d(~ps)
, γ1) − I(~ps +

~ω2

d(~ps)
, γ2) , (3.7)

where I(~p, γ) returns one of the appearance channels according to γ, and d(~p) is used
to represent the depth at pixel position ~p. All these values are evaluated on the image Is

corresponding to the sample. ~ω denotes a small 2D offset inside a patch region. These
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3.2 Random Forests for Object Coordinate Regression

feature tests can be seen as a comparison of the similarity of the pixels at the chosen
offsets in the chosen appearance channel. The division by d(~ps) serves the purpose of
making the features depth invariant. This approach was proposed by [23]. Each node
in the forest stores the parameters {φ, τ}, where φ = {~ω1, ~ω2, γ1, γ2, z} and z ∈ {d, rgb}
decides whether to use the depth or rgb channel.

The training is now performed as explained in Section 3.1. It is important to note
that this forest is built to perform a regression on the object coordinates y as well as
a classification to determine which object class c is present. This is done by reducing
both tasks to one single classification during training. To realize this, the object
coordinates are discretized into 125 bins resulting from a 5x5x5 discretization of the
object coordinates using the bounding box of the object. The resulting discrete object
coordinates are denoted by ŷ. It is then possible to create a labeling which is unique
for each discrete object coordinate of each object. There are 125|C|+ 1 possible labels
ĉ ∈ Ĉ for each pixel. Each label describes one discrete object coordinate as well
as the object class. The additional label describes the samples which belong to the
background. The Information gain Ij at each node j to obtain the best split is calculated
as described in Equation 3.2 using these class labels. Ultimately, the tree is learning
the distribution p(ĉ|lT). Because the information of both the object coordinate and the
class label is captured in the class labels ĉ, these two variables are learned jointly by the
tree.

After the training of the tree structure, the training samples are pushed through the
forest once more to gather all the continuous object coordinates y in the leaves. Per
leaf, a mean shift operation is applied on the coordinates of each object to store only
the top mode as the final prediction yc(lT). This is a notable step because the tree
structure which was learned by classification is used for a regression task on the object
coordinates. The object class probability p(c|lT) is stored in the leaf as well to perform
the classification.

3.2.2 Usage of the Random Forest

During recall, all pixels in the test image are pushed through each tree of the forest
to establish the mapping from the sample s to the corresponding distribution p(c|lT

s )

and the object coordinate prediction yc(lT
s ). Alternatively to the averaging of the
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3 Method

outputs described in Subsection 3.1.2, this intermediate result is then used as input
for a RANSAC-like scheme which aims to optimize an energy function. This energy
function is defined as:

E(H) = λ1Edepth(H) + λ2Ecoord(H) + λ3Eobj(H), (3.8)

where H is the 6D pose hypothesis and the λ are weighting parameters. Edepth(H) is
the part of the energy function which penalizes the deviation of the rendered pose from
the observed depth values and does not depend on the forest output. Ecoord(H) does
depend on the forest output yc(lT

s ) and penalizes the deviation of the forest prediction
to the rendered object coordinates. Eobj(H) describes the forests certainty about the
location of the object according to the object probabilities p(c|lT

s ).

Figure 3.2: A visualization of the intermediate output of the random forest. Left: The depthmap
of the scene. Edepth(H) uses the depthmap to verify the pose hypothesis. Middle:
The prediction image of the object coordinates. The object coordinates are mapped
to the color cube. Ecoord(H) penalizes the deviation of the inferred object coordinates
to rendered object coordinates of the pose H. Right: The prediction image of the
object class. Bright pixels show a high probability that the pixel belongs to the object.
Eobj(H) uses this prediction to verify the pose hypothesis.

This function is then optimized using a RANSAC approach. As usual for this paradigm,
many object coordinates are sampled and then verified with the observation. This is
done by sampling a single pixel first. A second and third pixel are chosen randomly
within a window which is determined by the diameter of the object and the observed
depth value to reject pixels which can not belong to the object. The object coordinates
of the forest and the world coordinates calculated from the depth values at these pixels
now each form correspondences (~y1

obj,~x
1
world), (~y

2
obj,~x

2
world), and (~y3

obj,~x
3
world). Note that

each of the forests predicts one object coordinate per pixel. For this process, one of the
forests is selected at random to obtain the object coordinate per pixel. For a correspon-
dence of at least three point pairs, the Kabsch algorithm can be used to calculate the
best transformation to optimally align these points. This transformation then serves as
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the pose hypothesis which is evaluated using Equation 3.8. This procedure is repeated
many times and the best scoring pose hypotheses are stored. As a last step, these best
hypotheses are refined. This refinement is done by incorporating every pixel of the
calculated object mask into the transformation calculation step. The transformed object
coordinates from each tree are then compared to the observed world coordinates. For
each transformed object coordinate prediction, the transformation error to the corre-
sponding observed world coordinate is computed. The object coordinate predictions
which achieved a score below a certain threshold are used as the input for the Kabsch
algorithm. This procedure is iterated until the score no longer decreases. The best
scoring pose is chosen as the final output.

3.3 Spherical Harmonics

Spherical Harmonics are a way of representing a lighting condition. The premise of this
representation is the assumption that all light sources are located infinitely far away
from the scene. In this way, the light can be represented as a function L(~n) over the
sphere

~n =



sin(u) cos(v)

sin(u) sin(v)

cos(u)


. (3.9)

The normal ~n is parameterized by 0 ≤ u ≤ π and 0 ≤ v ≤ 2π. Spherical harmonics
can be used to approximate this function using only a small number of coefficients of
frequency-space basis functions. Spherical harmonics can be described as the analogy
of the fourier series for functions defined over the sphere. In the domain of the fourier
series, a periodic function can be expressed in the form of a linear combination of sine
and cosine basis functions. In analogy to this, the reconstruction of the function using
spherical harmonics is defined as

L(~n) =
∞

∑
l=0

l

∑
m=−l

cm
l ym

l (~n). (3.10)
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cm
l are the coefficients of the basis functions ym

l (~n). Spherical harmonics are defined by
orders l. For each order, (2l + 1) basis functions are defined. The degree m is used to
index the basis functions for each order. Provided with an infinite number of orders, the
original function can be reconstructed perfectly. Using only a discrete number of orders,
it is only possible to approximate the function. This work will use 3-order spherical
harmonics for the representation of the lighting. [19] shows that 3-order spherical
harmonics suffice to model the lighting condition for lambertian objects. Because every
color channel is represented using spherical harmonics, the final representation of the
lighting condition will have 27 degrees of freedom. For reasons of convenience, an
index k = l(l + 2) + m is introduced to reduce the formula to

L(~n) =
9

∑
k

ckyk(~n). (3.11)

The basis functions are defined as

ym
l (u, v) =



√
2Km

l cos(mv)Pm
l (cos(u)) if m > 0,

K0
l P0

l (cos(u)) if m = 0,

√
2Km

l sin(−mv)P−m
l (cos(u)) if m < 0,

(3.12)

where Kl
m are normalization constants denoted by

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)! , (3.13)

and Pm
l are Legendre Polynomials:

P0
0 (z) = 1, (3.14)

Pm
m (z) = (2m− 1)!!(1− z2)

m
2 , (3.15)

Pm
m+1(z) = z(2m + 1)Pm

m (z), (3.16)

Pm
l (z) =

z(2l − 1)
l −m

Pm
l−1(z)−

(l + m− 1)
l −m

Pm
l−2(z). (3.17)
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Note that ym
l (u, v) = ym

l (~n) given Equation 3.9. Figure 3.3 shows a visualization of the
first three orders of the basis functions.

Figure 3.3: A visualization of the first three orders of spherical harmonic basis functions. Green
indicates negative values and red indicates positive values. The value of ym

l (~n) is
proportional to the distance of the intersection point of the depicted figure and a
line from the origin in direction of ~n. c©by Wojciech Jarosz [14].

3.4 Conditional Random Forests

Conditional random forests are an extension of the random forest framework which
was introduced by [9] and [22]. The main benefit of conditional random forests is that
they are able to incorporate prior knowledge into the prediction process because they
learn probability distributions conditioned on a discrete latent variable a ∈ A. In the
domain of this work, that means that the conditional random forest learns distributions
of labels ĉ conditioned on the current lighting condition p(ĉ|lT, a). This procedure only
incorporates the training images of one distinct lighting scenario into the learning of
one conditional probability distribution. A benefit of this method is that the learning
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procedure of the conditional random forest has to deal with a much smaller deviation in
appearance for each lighting condition. This procedure requires an additional ground
truth labeling of the latent variable for the dataset. Each sample needs to be associated
with one lighting condition a. The disjunct subsets of the samplesS which are labeled
with a are denoted by Sa. The conditional random forest can be constructed using the
Full Model or the Partial Model.

3.4.1 Training

3.4.1.1 Full Model

For each value of a, a full forest structure is trained. The training of each forest is
done as before on a subset Sa. This results in |A| unique forests Ta. In order to
compute the prediction images, each forest must be evaluated per pixel. The pipeline
can then be performed for each of the forests as described before. This means that
the RANSAC procedure has to be performed for each of the trained conditional
forests.

... ... ...
Figure 3.4: Visualization of a conditional random forest with three different latent variables.

For one leaf of each forest, an example distribution is visualized. The object class
distributions and object coordinates are reconstructed from p(ĉ|li, a).

3.4.1.2 Partial Model

Only one forest structure is trained and the conditional distributions are split in the
leaves of the forest. I adapted the training procedure by introducing a new unique
labeling of each discrete object coordinate for each object and lighting condition.
The total number of new labels c̃ ∈ C̃ will then add up to 125|C||A|+ 1. The training

20



3.4 Conditional Random Forests

procedure is performed as described in Subsection 3.2.1, even though the light condition
is considered now because the introduced class labels c̃ capture the lighting condition
in addition to the object class and object coordinate. As a final step of the learning
procedure, the mode of the object coordinates yc(lT, a) and the object class probability
p(c|lT , a) is stored in the leaves. Note that every leaf now contains multiple conditional
probability distributions.

... ... ...
Figure 3.5: Visualization of a single tree of a conditional random forest with a single forest

structure. For one leaf of the forest, an example distribution is visualized.

3.4.2 Inference on Conditional Random Forests

3.4.2.1 Joint Inference of a and H

This way of inferring the final estimate was proposed by [22]. The complete estimation
pipeline is performed for each variable a. This results in multiple estimates of the pose
Ha with corresponding scores E(Ha) from the RANSAC scheme. The best estimation
for the pose is then

H∗ = arg min
Ha

E(Ha). (3.18)

21



3 Method

The pose with the highest score does not always correspond to the correct lighting con-
dition. That leaves some room for improvement of the lighting estimation. This fact was
the original justification for the following prior light estimation.

3.4.2.2 Prior Estimation of a Using Spherical Harmonics

If a previous estimation of a is provided, the correct distribution for inference can be
chosen beforehand. This saves a lot of computation time because the computational cost
to run the complete pipeline for each forest is very high. Additionally, the estimation
of the light condition provided by the joint inference method is not guaranteed to be
perfect. So, by improving the lighting estimation step, the overall performance can
be improved. To perform an estimation of the lighting condition, the intrinsic image
algorithm by Barron et al. [3] is applied to the test image. The output of this procedure
is the estimated log-albedo of the image as well as the log-shading image. They use the
logarithm representation for both the shading image and the albedo to simplify the
optimization task. As stated in Section 2.3, the shading image is rendered from the
depthmap and the inferred lighting condition. The lighting condition is represented
per pixel as log-spherical harmonics

~clog =
8

∑
i

wi~clog,i, (3.19)

where wi is the per-pixel-weight, ~clog,i are the eight base log-spherical harmonic coeffi-
cients and ~clog are the per-pixel output log-spherical harmonic coefficients. For each
test image, I use a coarse grid sampling on the pixels and calculate the corresponding
lighting conditions from the given weights and base spherical harmonic coefficients.
This results in a discrete set of spherical harmonic coefficients for each test image.~clog

can be used to reconstruct the log-lighting function. The next step is the comparison
of the lighting conditions of the test image to the pre-recorded ground truth light-
ing conditions. To compare both lighting conditions, the quadratic differences of the
reconstructed functions need to be integrated.

elight =
∫
~n∈Ω

(L(~n)− eLlog(~n))2d~n (3.20)

Ω denotes the whole sphere, L(~n) is the distant lighting function reconstructed from the
ground-truth spherical harmonics and Llog(~n) is the log-lighting function reconstructed
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from the log-spherical harmonics obtained by the intrinsic image algorithm. To compute
this integral, I precompute a regular sampling of the sphere using [17]. Then I replace
the integral by a sum over these samples. The final lighting prediction is now obtained
by choosing the ground truth which achieved the smallest score elight with respect to
any of the log-spherical harmonics in the test image.

3.4.2.3 Inference maxA

This method of inference is inspired by [22]. It is only applicable to the conditional
random forest with one forest structure because the distribution p(a|s) is sought for
each pixel of the image. This distribution describes the certainty about the current
lighting condition per pixel. This ignores the affiliation to a certain object class. In
order to calculate this distribution per pixel, all samples belonging to a distinct lighting
condition are aggregated in the leaf corresponding to this pixel and then normalized
by the toal number of pixels which arrived in the leaf. This results in the probability
p(a|lT

s ) of each single tree. They are combined according to Equation 3.3 to obtain
p(a|s) per pixel. For each lighting condition a, all these values are aggregated into
a single score. The condition a∗ with the maximum score is then chosen as the best
prediction

a∗ = arg max
a ∑

s∈Simg

∑T∈T p(a|lT
s )

|T | . (3.21)

Simg denotes the samples corresponding to every pixel of the test image. This process
is more efficient than the full joint estimation pipeline because the regression and
RANSAC step need to be performed only once as opposed to |A| times. [22] achieved
slightly worse estimation rates using this approach but accomplished a significant
runtime boost.
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4 Experiments and Results

4.1 Dataset

The dataset is the foundation for the whole method because it serves as the input for
the training of the complete conditional random forest as well as for the testing of the
algorithm. The dataset needs to contain a multitude of images containing objects under
different lighting conditions. As a broad overview, these images must be annotated
with the ground truth pose and the ground truth lighting condition. For this annotation,
a 3D mesh of the object is required. The ground truth pose is then used to create
segmented images of the object. Additionally, the ground truth object coordinates are
rendered using a 3D model of the object. Figure 4.1 visualizes one segmented training
image of the dataset. Lastly, a spherical harmonic ground truth must be calculated for
each lighting condition in order to perform the intrinsic image inference method as
described in Subsubsection 3.4.2.2. The dataset contains three different objects under

Figure 4.1: Left: The segmented color image. Middle: The segmented depth image. Right: The
object coordinate ground truth.

eight different lighting conditions. The positioning of the light sources is shown in
Figure 4.4. The light sources have different power levels, so the lighting intensities
vary between them. The light sources are depicted in Figure 4.3. During all sequences,
the camera is placed at the same position in the room and the object is moved around
in front of the camera. This results in a static camera-light configuration. This static
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Figure 4.2: The three different objects. Left: Watering Pot Middle: Frog Right: Dragon

Figure 4.3: The different floodlights used in the acquisition process.

configuration guarantees that the light orientation is not changing between the frames.
This is an important design decision for the whole method. The alternative for the
static camera-light configuration would be a static object-light configuration. The light
orientation would be conditioned based on the object coordinate system. Both versions
of conditioning are viable for the joint inference method. The pre-estimation inference
method based on the intrinsic image algorithm requires the conditioning of the light
orientation on the camera coordinate system because this prior estimation method
estimates the lighting condition relative to the camera. To guarantee a meaningful
mapping between the recorded ground truth lighting conditions and the estimated
lighting conditions from the intrinsic image algorithm, the conditioning on the camera
coordinate system is necessary. For the capturing of the training sequences, each object
must be rotated in front of the camera until the complete upper hemisphere of the
object is covered. The object is only covered without inplane rotation. The rotation
around the viewing axis of the camera is not considered. [6] modeled the inplane
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rotation by rotating the images synthetically around the origin of the image. In this
light sensitive dataset this method is not applicable because synthetically rotated objects
contain the wrong light orientation. For the test sequences I moved around the room
freely with the object in hand. After the acquisition of the raw images, the 3D meshes of
the objects need to be created. These 3D meshes are obtained by using the KinectFusion
system [18, 13]. The next step is the annotation of the poses for every image of the

Figure 4.4: A schematic of the positioning of the lights relative to the camera.

dataset. This is done using a pose annotation tool based on the Iterative Closest Points
algorithm (ICP). The input for this tool is one complete sequence of one object under
one lighting condition and the 3D mesh of this object. The tool shows the depth map
of each frame as a 3D pointcloud in camera coordinates. The object can be moved
around this pointcloud to align to the real position of the object in this frame. This
manual alignment does not need to be perfect because an ICP is then performed to
obtain the optimal pose. After the initialization of the first pose, the other poses of the
sequence are annotated automatically by performing iterative ICP. This works, because
the spatial offsets between the frames are very small.

The next step is the creation of the segmentation images and the rendering of the object
coordinate image. This is done by rendering the model with the annotated pose to an
image with the same size as the training images. This rendering results in the object
coordinate image and a segmentation mask which can be used to segment the training
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images. As the last step of the acquisition procedure, the lighting condition has to be
captured.

4.1.1 Capturing of the Lighting Condition

The lighting condition is described in terms of spherical harmonics. The spherical
harmonic representation is a low dimensional approximation of the distant light-
ing function. The distant lighting function L(~n) is described by nine coefficients
cm

l :

L(~n) ≈
3

∑
l=0

l

∑
m=−l

cm
l ym

l (~n). (4.1)

These coefficients can be estimated using a linear least-squares approach if enough
samples of the distant lighting functions are provided. The next part will deal with
the acquisition of this environment map (the set of all samples). The least-squares
estimation will be described at the end of this subsection.
The samples are acquired from one single image of a light probe. This light probe is
a shiny sphere with near perfect reflection of the incident light. The color values on
every pixel of the sphere are the values of the distant light function in direction of
the reflected ray. [10] invented this method to capture the environment map. They
recorded the sphere from 2 views 90◦ apart from each other to eliminate the image
of the photographer in the sphere and to compensate for the poor sampling of the
environment map on the border of the sphere. Since the goal of this capturing is the
reconstruction of a low-dimensional approximation of the lighting function, I used only
one image of the sphere. To gather a broad range of lighting intensities, the light probe
must be recorded in high dynamic range (HDR). Regular color images only have 8
bits per color channel to capture only a small range of lighting intensities based on
the exposure time of the camera. HDR images use a floating point representation for
a higher range of possible intensities per color channel. They are computed using
multiple images of the same scene captured with different exposure times. I used the
open source software "Luminance HDR" [1] to acquire the HDR images of the sphere. A
linear tone mapping is applied to obtain a discretized version of the HDR image. This
discretization represents the final values which are used to compute the environment
map. To calculate the environment map from one image, I use a raytracing approach
to map the normals of the sphere to the colors seen in the image (Figure 4.6). For this
to work, the position and size of the sphere as well as the intrinsic camera parameters
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Figure 4.5: HDR recording of the sphere. Top: 4 of the 6 recorded images with different
exposure times are depicted. Bottom Left: The final tone mapped image on a linear
scale (white circle only for visualization). Bottom Right: The estimated spherical
harmonic. Note that the small spotlight results in a big smoothed bright region on
the right. This is the result of the low dimensionality of the spherical harmonics.
The rendering of the spherical harmonic is done with the inverse "ray tracing"
approach from Equation 4.3 to make the rendering and the original image visually
comparable.

Figure 4.6: Figure of the capturing process: Every ray ~v through a pixel in the image is traced. If
it intersects the sphere, the normal~n into the distant lighting function is calculated.
The value of the lighting funtion L(~n) is observed at every pixel of the sphere.
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need to be provided. I wrote a tool to segment the sphere manually in an image in
order to acquire the 2D position ~mpx and the radius of the sphere in pixels rpx. Given
the focal length f of the camera (assuming it is the same for both dimensions) and
the real radius r of the sphere in mm, the distance to the sphere can be computed as
d = r f

rpx
, assuming that the sphere is near the middle of the image. The final position of

the sphere ~m is then computed as

~m =



(mpx,x−px)d
f

((h−mpx,y)−py)d
f

−d


. (4.2)

p is the pricipal point of the camera and h is the size of the image in y-direction. Given
the 3D position of the sphere, the environment map as well as its SH representation
can be computed. To compute the environment map, the observed color on the sphere
must be assigned to the corresponding normal of the environment map at every pixel
of the sphere. For each pixel, the viewing vector from the camera ~v is calculated as in
Equation 4.2 with an arbitrary depth. To calculate the normal of the sphere per pixel,
the line g(λ) = λ~v in direction of the viewing vector is intersected with the sphere.
In order to find the intersection point of the line and the sphere, g(λ) is inserted into
the implicit representation of the sphere. This equation is rearranged in order to be
solvable by the standard method for quadratic equations

λ2
s + λs(

−2 < ~v, ~m >

< ~v,~v >
) + (

< ~m, ~m > −r
< ~v,~v >

) = 0. (4.3)

The intersection point ~x can be found by inserting the smallest λs into the straight
line

~x = g(λs). (4.4)

The normal of the sphere ~ns can then be obtained by

~ns = ~x− ~m. (4.5)
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Finally, the vector which describes the origin of the light can be calculated by reflecting
the viewing vector on the normal of the sphere.

~n = ~v− 2(< ~v, ~ns >) (4.6)

Provided with M samples from the lighting functions with the corresponding nor-
mal (bm,~nm), it is possible to solve for the optimal coefficients in the least squares
sense. Let bm denote the observed function value at pixel index m and ~nm the
corresponding normal, then the formulation of the least squares problem is as fol-
lows:

~b =



b1

...

bM


,~c =



c1

...

c9


(4.7)

A =



y1(~n1) . . . y9(~n1)

...
...

...

y1(~nM) . . . y9(~nM)


(4.8)

arg min
~c
|A~c−~b|2. (4.9)

This is the matrix formulation of Equation 4.1. This optimization problem can be
solved by singular value decomposition. Note that the estimated coefficients need to be
scaled in order to fit the range of the spherical harmonics which were estimated by the
intrinsic image algorithm. The final results for the ground truth of the eight lighting
conditions are depicted in Figure 4.7
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Figure 4.7: The eight light ground truth lighting conditions. The renderings in the black boxes
show the reconstructed ground truth lighting functions. The image below each of
them shows one of the images which were used to create the HDR image.

4.2 Investigation of the Intrinsic Image
Algorithm

This section will investigate the viability of the intrinsic image algorithm as a pre-
estimation step for the lighting. I compare the output of the algorithm for images
of the same object under the same lighting condition. Figure 4.8 shows the original
images, the estimated albedos, and the estimated lighting condition. The intrinsic
image algorithm outputs one estimation of the spherical harmonic coefficients per pixel.
The depicted lighting estimations show the reconstruction of the lighting function of
one pixel on the object. The light source is positioned on the right side of the camera
for this test. The ground truth lighting condition in Figure 4.9 correctly shows the
highlight on the right side of the sphere.
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Figure 4.8: Top Row: Original images. Middle Row: Estimated albedos. Bottom Row: Esti-
mated spherical harmonics.

Figure 4.9: Ground truth spherical harmonic estimation of the lighting condition.

The depicted images are taken from the training set of the Dragon and thus only
differ in the orientation of the object. The rest of the image is kept static. The perfect
albedo estimation would yield images which contain the same color for the same
part of the object. The color of the albedos from the intrinsic image algorithm varies
significantly between the different images. Looking at the lighting estimation, the
orientation of the light is estimated on the left part of the sphere. This contradicts
the ground truth lighting condition. Looking at the complete dataset (not depicted)
the estimated lighting conditions tend to have a skew to the left side of the sphere.
The reason for this behavior might be the discrete set of lighting conditions which
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are used for the optimization in the intrinsic image algorithm. Adapting this dataset
of lighting conditions in the intrinsic image algorithm might yield better estimation
results.

4.3 Performance Tests of the Light Estimation
Methods

This section features a comparison of the different inference methods to estimate the
correct lighting condition present in the test images. Per object, approximately 600
test images are used. For each light estimation method, the rate of correctly detected
lighting conditions is measured. Figure 4.10 shows that the prior light estimation
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Figure 4.10: The detection rates of the different light estimation methods on every object.

techniques only accomplish a very poor performance on this dataset. For the Dragon,
the intrinsic image approach accomplishes a detection rate of only 10, 5%. The maxA
approach achieves 13, 7%. This shows that these methods are not better than a random
selection of the lighting condition per image. A uniform random sampling would
yield a performance of 12, 5% because eight lighting conditions are possible. The best
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results are obtained for the Frog: 25% for the intrinsic image approach and 40, 45%
for the maxA method. Both estimation methods are not suitable for the performance
improvement of the conditional random forest. In order to improve the pose estimation
task, their detection rate must be higher than the detection rate of the joint inference
method.

The results for the light detection using the joint inference method are the best among
the different estimation methods. Using this approach, the Full Model outperforms
the Partial Model by a large margin. Although this method obtains the best results,
some problems are connected with it. Because the complete pose estimation pipeline
has to be performed for every lighting condition in order to obtain a lighting estima-
tion, the runtime scales linearly with the amount of lighting conditions. This could
cause some problems for future iterations of the system which take more lighting
conditions into account. Striking is the strong drop in performance regarding the
Dragon. This object is the most colorful and textured of the three, so the conditioning
approach might have problems on this type of object. Another reason for the bad
light estimation of the Dragon object could be the difficulty of the recorded test set.
The poses of the test set might contain slight inplane rotation which was not covered
by the training set. The forest might not be able to generalize these new poses well
enough.

4.4 Detection Rates

The purpose of this chapter is the performance comparison between the different
methods to construct the conditional random forest and the baseline method. I also
want to investigate the influence of the depth features on the performance of the
different systems. To compare the performance, the rate of correctly detected poses
must be measured. For this task I use the same error measure as [6]. The original
model is transformed with the ground truth as well as the detected pose hypothesis.
The error is the summed minimum distances between the transformed vertices of the
model.

epose =
∑v∈V minv′(|Hgt~v′ − H∗~v|)

d|V| , (4.10)

where v ∈ V enumerates all the vertices of the object, Hgt is the ground truth transfor-
mation, d is the diameter of the object’s bounding box and H∗ is the detected hypothesis.
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A detection counts as an inlier if the calculated error epose is smaller than 0.1. The rate
of regression inliers is also considered in these tests. This rate measures the deviation
of each object coordinate prediction from the ground truth object coordinates. To
calculate this rate, the predicted and rendered object coordinates are compared at
each pixel of the ground truth mask. Deviations below 20 mm are counted as inliers.
Furthermore, all the presented tests are performed using the joint inference method
from Subsubsection 3.4.2.1 because the other two presented inference methods were
not able to reliably predict the correct lighting condition. All the forests are trained
using the parameter setting of [6]. At each node, 1000 randomly sampled features are
evaluated. The recursive splitting of the nodes stops if 50 or less samples arrive in the
node. The number of training samples differs between the tests. The used number of
samples per object is explicitly stated for each test.

4.4.1 Dataset from Brachmann et al.

Brachmann et al. incorporated a test of their pose estimation system regarding different
lighting conditions in [6]. They recorded twenty objects of their dataset under three
different lighting conditions. The random forest is trained using the training images
from two of the three lighting conditions. The testing was performed on all the lighting
conditions. The result of the test was, that the detection rate dropped for testimages of
unseen lighting conditions by about 7% on average. For the seen lighting conditions
no real performance drop was noticed. This dataset differs from my own recordings,
because the camera-light configuration is not kept static. The images are taken by
moving around the object while keeping the lighting condition constant. Because of
that, the prior light estimation using intrinsic images can not be applied to this dataset.
I will restrict the tests on this dataset to the joint inference method using the Full Model.
The dataset consists of one dark lighting condition with the room light turned off, one
bright lighting condition with the lights turned on and one spotlight. I trained one
regular random forest with all lighting conditions as the baseline. For the construction
of the Full Model, I trained three specialized forests on the distinct lighting conditions.
All tests are performed only on the bright test dataset using RGB and depth features.
The different forests were trained using 600,000 training samples per object for all
training images.
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Regular RF Conditional RF Oracle

Avg. Pose Inliers 96,31% 96,05% 96,96%

Avg. Regression Inliers 52,74% 54,27% 56,49%

Table 4.1: Detection rates for RGB and depth features.

The Oracle describes the forest which was trained exclusively on the bright dataset. It
simulates the perfect light estimation. The result of this forest gives insight about the
possible upper boundary of the performance of the conditional random forest. The
evaluation using RGB and depth features Table 4.1 shows no distinct performance
difference between the different forest methods. This results from the powerful depth
features. During the training of the forests, the depth features are chosen roughly
twice as frequently as color features for the split of the samples. This means that the
depth features are more likely to achieve a high information gain in the splits. The
more depth features are used, the forest becomes less affected by the color deviations
caused by the different lighting conditions. The second test aims to evaluate the RGB
features.

Regular RF Conditional RF Oracle

Avg. Pose Inliers 72,72% 81,55% 87,07%

Avg. Regression Inliers 39,47% 43,34% 45,82%

Table 4.2: Detection rates with only RGB features.

Table 4.2 shows a general drop of the performance because the descriptive contribution
of the depth features is missing. With this prerequisite, the conditional random forest
shows a significant performance boost with regards to the regular random forest. The
high performance of the Oracle shows that the correct pose estimation is dependent on
the correct estimation of the lighting condition. This suggests the incorporation of a
prior light estimation step which could potentially accomplish a performance boost. The
conditional random forest estimates the correct lighting condition in 85% of the cases on
this dataset. The prior light estimation step must exceed this score in order to improve
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the pose estimation. As a last experiment on this dataset, I trained a forest only on
depth features. This forest was still able to achieve a detection rate of 95%. This shows
the importance of the depth features for the regression step.

4.4.2 Own Dataset

This dataset covers the three different objects under eight different lighting conditions.
The first test on this dataset compares the baseline method with the Full Model and the
Partial Model of the conditional random forest. Table 4.3 shows the results of this test.
Each forest of the Full Model, as well as the regular random forest are trained using 1
million samples. The Partial Model is trained using 4 million samples. RGB and depth
features are used for this test. The Oracle measures the performance a conditional
random forest would have, if it was provided with a perfect prior light estimation step.
Again, the forests show no significant differences regarding the detection rates. This
marginal difference is the result of the incorporation of the depth features. However,
looking at the regression inlier rates, the regular random forest outperforms both
conditional models. This might be the case, because the regular random forest learned
from a wider range of poses than each of the conditional forests.

Object Regular RF Full Model Partial Model Oracle

Avg. Pose Inliers

Dragon 98,17% 97,56% 98,17% 98,62%

Frog 100% 100% 98,93% 100%

Watering Pot 99,35% 99,67% 99,67% 99,67%

Regression Inliers

Dragon 56,92% 51,46% 56,31%

Frog 79,17% 71,87% 63,37%

Watering Pot 54,08% 49,171% 48,67%

Table 4.3: Detection rates for RGB and depth features.

The second test is performed using only RGB features. Table 4.4 shows the detection
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rates for this test. The Full Model achieves a 10− 20% performance gain on the test
set of the Frog and the Watering Pot. These are the objects where the correct lighting
condition is found frequently. This encourages the use of conditional random forests
for the modeling of the light. For the Dragon, no significant performance gain is
achieved.

Object Regular RF Full Model Partial Model Oracle

Pose Inliers

Dragon 42,83% 43,59% 28,50% 51,14%

Frog 70,90% 91,36% 63,93% 92,62%

Watering Pot 81,77% 91,77% 72,09% 89,15%

Regression Inliers

Dragon 16,39% 17,57% 12,53%

Frog 38,95% 49,62% 37,55%

Watering Pot 25,83% 31,86% 25,89%

Table 4.4: Detection rates for RGB features only.

This results from the fact that the correct lighting condition is rarely found by the joint
inference approach for this object (see Figure 4.10). A better inference method would
solve this problem, because the Oracle shows that the performance of the conditional
system can be improved when the correct light condition is chosen. The Partial Model
is inferior to the Full Model in these tests. Interestingly, the Oracle achieves a worse
detection rate than the Full Model on the Watering Pot. This anomaly is probably
caused by the different pose coverage of the different conditional forests. This means
that sometimes the forest of the wrong lighting condition achieves a higher score,
because the pose in the test image was closer to one of the training images of this
forest.

4.4.3 Analysis of the Full Model

To gain a deeper understanding of the conditional model, I evaluated the pose estima-
tion performance of every forest from the Full Model on every lighting condition. This
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test aims to obtain some insights about the generalization of each conditional forest to
the other lighting conditions. The tables Table 4.5, Table 4.6 and Table 4.7 show the full
matrix of each lighting condition tested with each conditional forest. The columns show
the performance of each forest which was trained on a different lighting condition on
the test set of one lighting condition. The rows present how one forest performs on all
the different lighting conditions.

Light 1 Light 2 Light 2 & 4 Light 2 & 6 Light 3 Light 4 Light 5 Light 6

Light 1 52,08% 44,77% 40,0% 44,57% 36,48% 0,0% 23,25% 33,33%

Light 2 36,45% 62,68% 32,63% 31,32% 27,02% 2,22% 13,95% 34,25%

Light 2 & 4 36,45% 49,25% 29,47% 40,96% 18,91% 4,44% 18,6% 34,25%

Light 2 & 6 50,0% 50,74% 40,0% 57,83% 39,18% 0,0% 58,13% 55,55%

Light 3 29,16% 41,79% 23,15% 32,53% 51,35% 0,0% 23,25% 40,74%

Light 4 17,70% 19,40% 12,63% 18,07% 27,02% 46,66% 4,65% 28,7%

Light 5 38,54% 20,89% 29,47% 16,86% 21,62% 6,66% 58,13% 43,51%

Light 6 28,12% 19,40% 22,1% 18,07% 24,32% 12,22% 25,58% 50,92%

Table 4.5: Detection rates for every forest of the Full Model on the Dragon object. Only RGB
features are used. The columns describe the performance of each forest on one
lighting condition. The rows show the performance of one forest on all the lighting
conditions. The highest values in every column are highlighted.

In most of the cases, the forest corresponding to the correct lighting condition achieves
the best performance. Particulary striking is the bad performance of every forest on the
Light 4 test set. Even the corresponding Light 4 forest has a lower performance than
all other forests on their corresponding test sets among all objects. This means that
some lighting conditions are hard to handle for the system even if the correspondence
is known. Coincidentally, Light 4 is the darkest of the light sources, so the noise of
the camera is higher than for the other lighting conditions. The appearance variability
caused by the noise might be one of the reasons why the forest of this lighting condition
performs so poorly.
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Light 1 Light 2 Light 2 & 4 Light 2 & 6 Light 3 Light 4 Light 5 Light 6

Light 1 92,85% 64,93% 65,93% 87,01% 29,72% 0,0% 53,24% 56,86%

Light 2 51,19% 87,01% 49,45% 54,54% 40,54% 0,0% 33,76% 31,37%

Light 2 & 4 65,47% 87,01% 100,0% 64,93% 63,51% 5,12% 40,25% 51,96%

Light 2 & 6 86,90% 87,01% 59,34% 96,10% 32,43% 0,0% 50,64% 59,80%

Light 3 41,66% 79,22% 85,71% 49,35% 90,54% 0,0% 20,77% 51,96%

Light 4 0,0% 7,79% 6,59% 0,0% 5,40% 87,17% 23,37% 17,64%

Light 5 17,85% 24,67% 14,28% 37,66% 4,05% 6,41% 96,10% 88,23%

Light 6 33,33% 33,76% 15,38% 33,76% 5,40% 2,56% 83,11% 91,17%

Table 4.6: Detection rates for every forest of the Full Model on the Frog object, Only RGB
features are used,

Light 1 Light 2 Light 2 & 4 Light 2 & 6 Light 3 Light 4 Light 5 Light 6

Light 1 98,88% 90,32% 65,0% 96,29% 72,85% 0,0% 63,63% 58,58%

Light 2 67,77% 87,09% 68,75% 83,95% 67,14% 1,38% 53,03% 54,54%

Light 2 & 4 91,11% 100,0% 91,25% 97,53% 67,14% 12,5% 60,60% 54,54%

Light 2 & 6 87,77% 88,70% 73,75% 95,06% 62,85% 0,0% 62,12% 59,59%

Light 3 70,0% 83,87% 46,25% 88,88% 95,71% 2,77% 50,0% 52,52%

Light 4 4,44% 16,12% 0,0% 1,23% 14,28% 62,5% 21,21% 24,24%

Light 5 44,44% 51,61% 27,5% 61,72% 42,85% 9,72% 100,0% 87,87%

Light 6 50,0% 50,0% 7,5% 54,32% 28,57% 6,94% 86,36% 82,82%

Table 4.7: Detection rates for every forest of the Full Model on the Watering Pot object, Only
RGB features are used,
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Also, this light source is the only LED light source and has a slightly different tone
than the other light sources. A trend regarding the proximity of the light can also be
observed in these tables. The further the angluar distance of the light sources is, the
lower the detection rate will be, most of the time. Regarding the combined lighting
conditions, the forests of Light 2 & 4 and Light 2 & 6 yield comparable results to the
corresponding forest of Light 2 on the test set of Light 2. This is not true for the test
sets of Light 4 and Light 6. This implies that Light 2 dominates the other light sources
in these combined lighting conditions.

4.4.4 Test on Unseen Lighting Conditions

This test aims to compare the Full Model using the joint inference method to the regular
random forest regarding their generalization capabilities. Both models are trained using
the training images of all lighting conditions but Light 5. The test is then performed

Dragon Frog Watering Pot

Full Model 20.93% 87.01% 93.93%

Regular Random Forest 30.23% 77.92% 71.21%

Table 4.8: Generalization comparison of the Full Model and the baseline method. This table
shows the detection rates of the conditional random forest and the regular random
forest on the test set for the lighting condition Light 5. Both forests were trained
without the training images of Light 5. Only RGB features are used.

only on the test set of Light 5. Table 4.8 shows the resulting detection rates. Surprisingly,
the conditional random forest achieves worse results for the Dragon, but outperforms
the regular random forest by a large margin on the other objects. The conditional
random forest chooses Light 6, the nearest lighting condition to Light 5 80.3% of the
time for the Watering Pot and 90.9% of the cases for the Frog. This explains the high
detection rates of the Full Model for these objects. For the Dragon, the forest chooses
Light 6 only in 18% of the cases. This suggests that the appearance variability of the
Dragon is higher under the different lighting conditions than the appearance variability
of the Frog or the Watering Pot.
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4.4.5 Precision Comparison

In this section, I want to investigate whether the conditional random forest achieves a
better precision than the regular random forest. I chose to investigate only the joint
inference method using the Full Model because this combination achieved the best
performance rates. The pose error is calculated as in Equation 4.10. Figure 4.11 shows
the histograms of the pose error for each object. They show the amount of poses which

Figure 4.11: Precision comparison of the Full Model and the baseline method. Only RGB
features are used.

achieved a certain pose error. The size of the bins is set to 0.005. The pose outliers
are not shown in these graphs. This visualization shows, that the conditional random
forest also achieves a more precise pose estimation result for each object, because the
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peaks of the histograms of the conditional random forests correspond to a lower pose
error than the peaks of the regular random forest.
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This thesis presented multiple methods to model the lighting in order to improve
the pose estimation task. All methods were based on conditioning the estimator on
a discrete set of lighting conditions. The random forest framework was extended
to a conditional random forest using the Full Model and Partial Model as different
construction methods. The Full Model was able to outperform the Partial Model in
my experiments. This contradicts the results of [22]. The reasons for this might be
my approach for the learning of the Partial Model. I used a new labeling approach
which incorporated the lighting information into the learning procedure. [22] explain
that they use the standard learning method for regular random forests which does not
employ the lighting information. Regarding future work, a test on a normally trained
Partial Model should be employed.

For the inference of the final object pose using these conditioned systems, I investigated
two prior light estimation approaches. The maxA method relies on the output of the
regression step from the Partial Model to infer a light estimation. [22] proposed this
method. They had a segmented depth image of a human pose available as the input for
their system. This segmentation made the maxA approach viable. In the object pose
estimation task the segmentation is not given beforehand. This causes the background
to interfere with the light estimation step too much. To make this approach viable, it
would be a reasonable approach to condition the background on the lighting condition
as well. This would result in a more reliable estimation of the ligthing condition at the
background pixels. The problem with this approach would be the limitation to a small
amount of possible backgrounds during testtime.

The method using the intrinsic image algorithm by Barron et al. as implemented in
this thesis was not able to reliably predict the correct lighting condition. Reasons for
this behavior might be the lacking tuning of the system for this use case. The internal
lighting condition estimation of the intrinsic image algorithm for example is dependent
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on a learned dataset of lighting conditions. Moreover, it is not clear how well the
spherical harmonic representation is suited for the modeling of the lighting condition
because the limitation to infinitely far away light sources is unreasonable for many
real-world applications.

The joint inference of the lighting condition and the pose proved to increase the
detection rates by a significant amount when only RGB features are used for the
regression. This result is of great interest for the further development of the pose
estimation system because one of the problems with the existing framework is the
dependency on a depthmap as an additional input. The solution to this problem would
make the system more applicable for real-world tasks where the depthmap often can
not be provided. Even though the joint inference method presents promising results on
the investigated datasets, some problems need to be overcome.

One problem is the discrete representation of the lighting conditions. Any real-world
application using this approach would need to cover a huge number of possible lighting
conditions. The complete space of possible lighting conditions is hard to cover using
this discrete representation even if just one light source is allowed in the scene. If
the camera was moving around freely, the relative position of the light source would
change with respect to the camera. This fact necessitates the dataset to contain every
direction of the incoming light relative to the camera. That means that for every light
orientation one conditional random forest needs to be trained. The less constraints
can be imposed on the lighting conditions at test time, the more forests need to be
trained. An unconstrained real-world application which works for every lighting
condition is thus not feasible using this approach. Another problem moving entailed
by this method is the runtime. The joint inference is scaling linearly with respect to the
lighting conditions. This will result in unfeasible runtimes if the amount of lighting
conditions increases. The incorporation of a sophisticated prior lighting estimation will
be necessary for futher development.

Provided with such a sophisticated prior light estimation method, the inference method
could be extended to a mixing method as described by [9]. From every conditional
forest, trees might get added to the new random forest proportional to the probability
of the latent variable which is provided by the pre-estimation step. The inference then
could be performed conventionally.

One aspect which should receive some attention is the extension of the dataset to more
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textured objects. The Dragon showed a strong drop in performance with regard to the
textureless objects. More textured objects should be examined to confirm or refute the
hypothesis that lighting is harder to estimate on textured objects.

For the recording of the dataset, a more advanced method should be employed as
well. For this thesis I did the pose coverage of the objects per hand for each lighting
condition. Moving forward to a bigger set of lighting conditions, a rendering procedure
for the creation of the training images should be used. This would result in a low effort
method for the creation of the dataset. Only the 3D model of the real object would have
to be recorded. The lighting and rotation would be done by the rendering software.
Many different lighting conditions could be modeled using this approach. The inplane
roation would also be easy to incorporate. However, the mapping from the rendered
training images to the real-world test images is a non-trivial task.

Another interesting approach for future work in this area is the albedo forest. Provided
with the ground truth spherical harmonic illumination, it is possible to recover the
albedo of the object for each training image. This allows the trained forest to be
completely invariant towards lighting. During testtime, the albedo of the scene must be
inferred. Using this albedo as input for the forest, the correct pose could be estimated
more reliably. The benefit of this method is that only one forest needs to be trained
in order to cover all possible lighting conditions. The problem arises in the albedo
estimation step during test time. This could be solved by a better tuned intrinsic image
system.
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