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Abstract

Compact encodings of the connectivity of planar triangulations is a very
important subject not only in graph theory but also in computer graphics. For
triangle meshes used in computer graphics the topologically planar regions
dominate by far. New results by Isenburg et. al [6] even show that the con-
nectivity is sufficient to describe shape by itself. Most coding methods for
planar triangulations can be extended to manifolds of bounded genus with
the same upper and lower bounds on the bit rate.

In 1962 Tutte enumerated the number of different planar triangulations
and his results show, that at least 3.245 bits per vertex are necessary to encode
the connectivity graph of planar triangulations. In this article we improve the
so far best upper bound [4] and show that the connectivity of a planar trian-
gulation can be encoded with less than 3.525 bits per vertex, while ensuring
a linear run time for encoding and decoding.

1 Introduction

This article improves the lowest upper bound for the encoding of planar triangu-
lations with three border edges as defined by Tutte in [11]. Two planar triangula-
tions are defined to be equal, if there exists a bijection between their connectivity
graphs that maps all border vertices of the first triangulation to the border vertices
of the second triangulation. Tutte enumerated all different planar triangulations
and showed in this way that any encoding has to use at least 3.245 bits per vertex
for sufficiently large triangulations. So far the best encoding schemes [1] and [10]
consumed 4 bits. The latter – the Edge Breaker scheme – could be improved to
3.67 bits per vertex [9] and 3.58 bits per vertex by Gumhold [4].

Planar triangulations are a special case of closed manifold triangle meshes
where the genus of the triangle mesh is zero. As most encoding schemes for pla-
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nar triangulations can be extended to manifold triangle meshes with border, the
schemes are also important in the representation of surface models and have been
studied extensively (see [2] for an introduction). Latest work by Isenburg et al. [6]
shows that the connectivity contains enough information to describe shape.

The algorithmic scheme of the Edge Breaker [10] is very simple and similar
to the work of Itah [8] and to the Cut-Border Machine [5]. It visits the triangles
of an edge-connected component of a triangle mesh in an order defined by the
triangle connectivity itself. The same traversal is used for encoding and decoding1.
The connectivity is translated triangle by triangle into one of the five operation
symbols CLRSE. By the use of codebooks, the Edge Breaker allows to encode
the connectivity of typical triangle meshes to an average of 2.2 bits per triangle,
whereas the Cut-Border Machine achieves with arithmetic coding and conditional
probabilities an average of 1.9 bits per vertex [3]. These results are only valid for
regular meshes. For an arbitrary mesh the improved techniques cannot guarantee a
good upper bound.

In the following we extend the techniques developed in [4] and give a linear
runtime encoding and decoding scheme with an upper bound of 3.525 bits per
vertex. Section 2 reviews the Edge Breaker encoding scheme with a small modi-
fication on the split operation. In section 3 we describe constraints on the symbol
stream produced by the Edge Breaker encoding, that can be exploited to reduced
the worst case bit rate. The next two sections 4 and 5 describe techniques to exploit
the constraints on the symbol stream. Numerical issues are discussed in section 6.
After the results in section 7 we give concluding remarks in section 8.

2 Edge Breaker Coding

The Edge Breaker translates the connectivity of a planar triangulation into a se-
quence of five different symbols. The encoding algorithm is a region growing al-
gorithm, which stores at any time all vertices and edges of the planar triangulation,
which divide the so far encoded triangles from the not yet encoded triangles. These
vertices and edges form a set of closed loops, which is called the cut-border. Be-
fore encoding starts, the cut-border is initialized to one loop containing the external
edges and vertices.

Triangles are encoded at a specific cut-border edge, which is called the gate.
Each time a triangle has been encoded at the gate location, the gate is set to an-
other cut-border edge in a predetermined way such that all cut-border edges will
be visited in the end. In the beginning the gate is set to one of the external edges.
Fig. 1 shows the different operations and their symbols that we collect in the Edge

1where decoding is done in reverse direction
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a) ”center”: C b) ”left”: L c) ”right”: R d) ”split”: S e) ”end”: E

Figure 1: The five different Edge Breaker operations and the corresponding sym-
bols.

Breaker alphabet A def= {C,L,R, S,E}. The so far encoded triangles are shaded in
a light gray in the figure, the cut-border edges are bold black as is the gate before
the operation, the currently encoded triangle is dark gray and the new gate after
the operation is white. In case of the split operation, the cut-border splits into two
loops and for each one a new gate is created. During coding the right gate is pushed
on a stack and activated after the left cut-border loop has been completely encoded
after an end operation. The encoding permutes the vertices into the order they are
encountered during encoding in the center operations.

The only operation which cannot be decoded by simple repetition of the encod-
ing operation is the split operation. Due to Isenburg [7] is the observation that the
inverse operations of the Edge Breaker operations can be done without any further
knowledge. The decompression is therefore done in reverse order. The symbol
string and the vertices are scanned from back to front. The different operations
are performed in reverse order. In Fig. 1 we would interpret the white triangles as
the so far decoded part, the dark gray triangle is decoded next and the gray trian-
gles have not been decoded yet. The white arrow(s) is/are the gate(s) before the
inverse operation and the black arrow is the gate after the inverse operation. In the
”inverse center” operations (C−1) the newly decoded triangle connects the gate
to the previous edge on the cut-border and is the mirror image of the L operation
in forward encoding direction. The ”inverse left” (L−1) replaces the gate by the
newly decoded triangle and the gate is set to the right edge of the newly introduced
cut-border edge as in the forward C operation. Similarly, the ”inverse right” (R−1)
adds a triangle but puts the gate on the left new edge.

The ”inverse end” (E−1) creates a new cut-border loop consisting of three cut-
border edges. The current loop is pushed onto a loop stack for later use in the
inverse split operation. Finally, the ”inverse split” (S−1) merges the current loop
with the top loop on the loop stack. The gate is set to the only newly introduced cut-
border edge. As all forward and inverse operations can be performed in constant
time, we can state the following theorem:
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Theorem 2.1 The connectivity of a planar triangulation with v vertices and 3 ex-
ternal edges can be encoded with a unique string of length 2v over five different
symbols in linear time in v. The original connectivity can be decoded also in linear
time in v.

Coding the C-symbol with one bit and the other four symbols with three bits, the
Edge Breaker scheme allows to encode any planar triangulation with no more than
four bits per vertex2.

3 Constraints

The upper bound of four bits per vertex can be improved as not all possible symbol
strings are allowed. In this section we gather the different constraints on the symbol
strings, when read in reverse direction, such that only valid triangulations can be
produced:

1. ”inverse center” (C−1): The inverse center operation removes the gate and
the previous edge from the cut-border and adds a new edge connecting their
far apart end points. This operation can cause two invalid configurations.

(a) The removal of one cut-border edge can reduce the length of the current
cut-border loop to less than the minimal number of three edges.

(b) The newly added edge could have been part of the decoded connectivity
before the inverse center operation. This is for example always the
case if the inverse center operation is performed after an inverse left
operation. Then the inverse center operation would add a third triangle
to the interior edge introduced by the left operation. But in a planar
triangulation an edge with more than two edges is not allowed.

2. ”split” (S−1): An inverse split operation is only allowed if there is a cut-
border loop on the loop stack.

3. ”inverse left / right / end” (L−1 / R−1 / E−1): The inverse left, right and
end operations all introduce new cut-border edges. Therefore, they are not
allowed at the end of the decoding process when the remaining inverse split
and center operations cannot reduce the number of cut-border edges to the
number of external edges.

2Each symbol introduces one triangle. There are twice as many triangles as vertices. Each vertex
corresponds to exactly one C symbol. This sums up to v + 3v = 4v bits.
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The next two sections describe how to account for the constraints 1a and 1b on the
inverse center operations. We do not take into account the other two constraints
because it can be shown that they do not influence the bit rate.

4 Conditional Unities

We use arithmetic coding 3 in order to achieve near optimal compression rates with
the flexibility to avoid the constraints on the inverse center operations. Suppose
S = s1s2 . . . st is the reversed symbol stream, where t is the number of operation
symbols or as well the number of triangles. In the setting of arithmetic coding
one can assign for each symbol from the alphabet a different probability. Different
probabilities pi,α can be assigned for each to be encoded symbol si depending on
all previously encoded symbols s1, . . . , si−1. An arithmetic coder allows us to
encoded the symbol stream with

B(S) def=
t∑

i=1

B(si)bits where B(si)
def= log2

1
pi,si

,

such that it makes sense to say that a specific symbol consumes for example 2.525
bits. The simplest encoding assigns the probabilities pC = 1

2 and pL/R/E/S = 1
8 ,

corresponding to one and three bits. As in our case the number of triangles t is
equal to 2v − 4, where v is the number of vertices, and as there are (v − 3) C
operations, the consumed storage space sums up to v − 3 plus 3 · (v − 1) equals
4v − 6 bits, what is less than four bits per vertex.

As in sufficiently large connectivity graphs every second symbol is a C, we
assign pC = 1

2 and for all other symbols pL/R/E/S = τ , which should be larger
than 1

8 in order to achieve a better bit rate per vertex. With the now introduced
concept of conditional unities we can keep τ as the constant that tells us the total
bit rate via the formula

b(S) def=
B(S)

v
= 1 + log2

1
τ
. (1)

Without any knowledge of the decoding process, we know that the probabilities of
the different symbols must sum up to one

1 = pC + pL + pR + pS + pE
?=

1
2

+ 4τ.

If the equality on the right side would be true, we could compute τ to 1
8 and would

end up with a bit rate of four bits per vertex. But here we neglected the fact, that

3see [12] for an introduction to arithmetic coding
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after we saw an E symbol in the reversed symbol string, no C symbol may fol-
low because it would reduce the number of cut-border edges to two, what is not
allowed. Thus the probabilities of the symbols that are allowed under the precondi-
tion that the previous symbol has been an E do not sum up to one. Instead they will
sum up to a number smaller than one that we denote as the conditional unityE1
under precondition that an E symbol preceded the current symbol. The C symbol
may neither follow a L symbol because it would destroy the planarity of the tri-
angulation. We can now revise our first equation on the probabilities to three new
ones:

1 =
1
2

+ τ
(

L1 + 1 + 1 + E1
)

E/L1 = τ
(

L1 + 1 + 1 + E1
)

E1 = τ
(

L1 + 1 + 1 + E1
)

.

We see at once that the conditional unities L1 and E1 are the same resulting in
only two equations that can easily be solved for L1 = 1

2 and τ = 1
6 . Thus the bit

rate would be 1 + log2 6 < 3.585 bits per vertex. The corresponding arithmetic

coder has two different lists of probabilities
(
p1/2,α

)
– if no precondition holds(

1
2 , 1

12 , 1
6 , 1

6 , 1
12

)
and under precondition of an E or L

(
0, 1

12 , 1
6 , 1

6 , 1
12

)
.

5 The State Machine

With the tool of conditional unities we can exploit the constraints 1a and 1b on
page 4.

Constraint 1a does not allow a C symbol if the length of the current cut-border
loop is three. Every time when an inverse end operation generates a new loop,
we know that the length of the current loop is three afterwards. To remember
this knowledge we introduce the conditional probabilities 1l, where l specifies the
known length of the current loop. Each inverse left and right operations increment
the current cut-border loop by one, whereas the inverse C operation decrements it
by one. After the inverse split operation we don’t know anything about the length
of the current loop as we didn’t remember the length of the loop on the stack.
Considering only the length of the current loop, the equations for the conditional
unities are

1 =
1
2

+ τ (3 · 1 + 13)

13 = τ (2 · 14 + 1 + 13)
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a)

ESC ELSCC

ERCSC

ERSCC

ELLSCCC

3x 3x

ERRCSCC EESSCCC

6x

ERLSCCC

3x

ELRCCSC

ELRSCCC

ERCLSCC

ELRCSCC

ERCRSCC

ERRCCSC

ERRSCCC

ERCRCSC

EESCSCC

b)

Figure 2: a) Illustration of constraint 1b on page 4. b) Different triangulations
inside a triangle with one, two or three interior vertices.

1l =
1
2
1l−1 + τ (2 · 1l+1 + 1 + 13) ∀l > 3.

We can extend this approach by also remembering the length p of the loop on
top of the loop stack by introducing the conditional unities 1pl . This will allow to
determine the loop length after an inverse split operation. Then the current loop
will have the length l + p − 1. The second new rule is that after an inverse end
operation the current loop length is stored in the length of the loop on top of the
stack resulting in the equations

1 =
1
2

+ τ (3 · 1 + 13)

13 = τ
(
2 · 14 + 1 + 13

3

)

1l =
1
2
1l−1 + τ

(
2 · 1l+1 + 1 + 1l

3

)
∀l > 3

1p
3 = τ

(
2 · 1p

4 + 12+p + 13
3

) ∀p ≥ 3

1p
l =

1
2
1p

l−1 + τ
(
2 · 1p

l+1 + 1l+p−1 + 1l
3

)
∀l > 3∀p ≥ 3.

Finally, we introduce the conditional unities s1
p
l that can also remember the length

s of the loop on the second highest position on the loop stack. The equations are
extended in the same way.

The second constraint 1b on page 4 says that the edge introduced by the inverse
center operation is not allowed to be present in the so far decoded part. Fig. 2 a)
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illustrates the second constraint on the C symbol. The so far decoded part is shown
in white, the not yet decoded part in gray. The gate before the inverse center oper-
ation is the white arrow, the gate after the operation the black arrow. The dark gray
shaded triangle with the bent edge is the currently decoded triangle. The bent edge
introduced by the inverse center operation is the same as the edge cutting the so
far decoded part into a triangle on the right and an arbitrary part on the left. Thus
the newly added edge would coincide with the interior edge. This situation can
arise after an inverse left operation. Suppose in Fig. 2 a) that the gate has been the
gray arrow before the inverse center operation and then the white triangle has been
encoded by an inverse left operation. Thus every time an inverse left operation has
been performed an inverse center operation is not allowed to follow.

But that is just the simplest scenario for constraint 1b. Inside the white trian-
gle in Fig. 2 a) can be further vertices forming a more complicated triangulation.
Fig. 2 b) illustrates all different triangulations with up to three interior vertices,
together with the reversed sequence of operation symbols that will produce this
situation. We did not draw all 17 cases but wrote the number of similar case to
the left of one representative. For representatives with three cases, the other two
cases result from rotations of 120◦ and 240◦. In the representative we drew the
gate locations during forward encoding are shown for the first symbol string under
the drawing. If we add the two one-symbol constraints E and L, we end up with 19
constraints. Let C be the set of all constraints

C def= { E,L,ESC,ELSCC,ERSCC,ERCSC,ELLSCCC,

ELRSCCC,ELRCCSC,ERRCSCC,EESSCCC,

ERCRSCC,ERRCCSC,ERRSCCC,ERCRCSC,

EESCSCC,ERCLSCC,ERLCSSS,ELRCSCC }.
Next we define two predicates on Edge Breaker symbol strings

∀S ∈ A∗ : isConstraint(S) ⇔ S ∈ C
∀S ∈ A∗ : isPrefix(S) ⇔ ∃H ∈ C|S = H1..|S|,

where H1..l denotes the string composed of the first l symbols of the string H .
To ensure constraint 1b we define conditional unities of the form H

s 1p
l , where H

is a string that specifies the history of symbols decoded before. For example the
conditional unities ESC

4 13
5 remembers the knowledge that the last encoded symbol

was a C, the one before a S and the one before an E. Further more it remembers
that the current loop length is 5, the length of the loop on top of the loop stack
is 3 and the length of the next lower loop on the stack is 4. The knowledge that
the previous symbols have been ESC allows us to discard the C symbol from the
allowed symbols for this conditional unity.
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Only strings H , for which “isPrefix(H)” holds, are useful to be remembered
in the conditional unities. But for the loop lengths there is no natural limit such
that we have to introduce artificial limits lmax, pmax and smax. With these limits
we can produce all the conditional unities by following from no precondition, i.e.
1, all possible encoding paths.

6 Numerical Solution

Let us collect for a given number of constraints and given maximum lengths lmax,
pmax and smax all the different conditional unities in the vector �1, such that the
first component �11 equals to 1. Let n be the dimension of �1. Then the equations
defining the conditional unities are of the form

�1 = M(τ)�1 M(τ) ∈ IRn×n,

with a sparse square matrix M , that depends on τ . This equation is of the form
of an eigenvalue problem. The difference is that the eigenvalue is known to be
one, but the matrix depends on the parameter τ . We are looking for a τ within the
range [τmin, τmax] = [3.245, 4] bits per vertex. Once we have found the correct
τ1, the matrix M(τ1) has an eigenvalue of 1. Furthermore all entries auf M(τ1)
are less or equal to 1, which implies that 1 is the largest eigenvalue of M(τ1). If
we choose a τ+ larger than τ1, we underestimate the bit rate and all entries of the
matrix M(τ+) either increase or stay the same, such that also the largest eigenvalue
has to increase or stay the same. Similarly, for a τ− smaller than τ1 the eigenvalue
is less or equal to 1. Thus the largest eigenvalue of M(τ) is a monotonous function
of τ . This enables us to apply a simple interval subdivision to find τ1 starting with
the interval [τmin, τmax]. For each τ the vector of conditional unities and the largest
eigenvalue can be found with a power iteration.

Before we use the found conditional probabilities to define the state machine
of the arithmetic coder, we clean them up by throwing away conditional unities
that correspond to the same state, i.e. the same probability and the same defining
equation.

7 Results

In order to analyze the effect of the constraints versus the different cut-border loop
lengths, we also restrict the number of exploited constraints to cmax ∈ {0, . . . , 19}.
We call the numbers lmax, pmax, smax and cmax the limit parameters. To find the
best values for the limit parameters we implemented an optimization method, that
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Figure 3: For given maximum number of variables the smallest bit rates plotted
together with the set of limit parameters

finds for a given maximum number of states the limit parameters that produced the
smallest bit rate. Figure 3 plots the best bit rate and the limit parameters over the
number of necessary states. The scale of the best bit rate is shown on the right. The
rate drops off in an exponential manner converging to something below 3.525 bits
per vertex.

More interesting is that the limit parameters for the loop lengths grow linearly,
whereas the number of used constraints nearly instantly hits the maximum of 19.
This result suggest that the highest potential for reducing the bit rate further lays
in the number of considered constraints. With the limit parameters lmax = 10,
pmax = 6, smax = 3 and cmax = 19 one can achieve a bit rate of less than 3.525
bits per vertex with 236 conditional unities. Thus we can refine our coding theorem
to:

Theorem 7.1 The connectivity of a planar triangulation with v vertices and 3 ex-
ternal edges can be encoded with less than 3.525 bits per vertex in linear time in
v. The original connectivity can be decoded also in linear time in v.

8 Conclusion

In this article we showed how to encode a planar triangulation with no more than
3.525 bits. This is currently the best-known result. First we analyzed the con-
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straints on the Edge Breaker code strings. Then we introduced a new coding tech-
nique – the conditional unities in combination with an arithmetic coder based on a
state machine – which allows to exploit the constraints. We developed fast numer-
ical methods to solve the resulting modified eigenvalue problem in order to build
these state machine based arithmetic coders for given parameters that limit the ex-
tend in which the constraints are exploited. This allows us to trade off between
the number of states in the arithmetic coder and the achieved bit rate. To exploit
this flexibility in full depth we designed a search function that finds the parame-
ters, which achieve the smallest bit rates, for a given maximum number of states.
A plot of these parameters showed that there is so far unexploited potential in the
constraint that ensures that no more than two triangles are incident to one edge. In
future work we will design an automatic method to fully exploit this constraint.
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