
Interactive Visualization of Volumetric Vector Fields Using Texture Based
Particles

Stefan Guthe, Stefan Gumhold, Wolfgang Straßer

WSI/GRIS University of Tübingen
guthe@gris.uni-tuebingen.de

ABSTRACT

This paper introduces a new approach to the visualization of volumetric vector fields with an
adaptive distribution of animated particles that show properties of the underlying steady flow. The
shape of the particles illustrates the direction of the vector field in a natural way. The particles are
transported along streamlines and their velocity reflects the local magnitude of the vector field.
Further physical quantities of the underlying flow can be mapped to the emissive color, the trans-
parency and the length of the particles. A major effort has been made to achieve interactive frame
rates for the animation of a large number of particles while minimizing the error of the computed
streamlines.
There are three main advantages of the new method. Firstly, the animation of the particles dimin-
ishes the inherent occlusion problem of volumetric vector field visualization, as the human eye
can trace an animated particle even if it is highly occluded. The second advantage is the variable
resolution of the visualization method. More particles are distributed in regions of interest. We
present a method to automatically adjust the resolution to features of the vector field. Finally, our
method is scalable to the computational and rasterization power of the visualization system by
simply adjusting the number of visualized particles.

Keywords: flow visualization, vector field visualization, flow animation, steady flow, splatting.

1 INTRODUCTION

The number of new applications in the area of
Computational Fluid Dynamics is constantly in-
creasing while at the same time the dataset com-
plexity is also increased. The need for visualiza-
tion methods is not exhausted yet. Although the
problem has been studied thoroughly in two di-
mensions for volumetric vector fields new chal-
lenges are arising. The major problem in three
dimensions is the occlusion problem. The human
visual system works on the basis of 2d images.
One eye produces 2d images while two eyes pro-
duce 2d images with additional depth informa-
tion. All visualization methods have to project
their interpretation of the vector field into a two
dimensional image. The simplest method is to
slice the vector field and use a hedge hog method,
i.e. drawing small arrows. But here the global
structure of the vector field may be lost. If the
complete volume of the dataset is projected into
two dimensions because of occlusion only the
surface of the dataset can be seen. Three possi-

ble workarounds are a transparent visualization, a
sparse sampling of the vector field or feature ex-
traction. Feature extractions is very difficult for
three dimensional vector fields because there is a
much larger variety of features and it is not clear
how to illustrate them intuitively.

The use of transparency and sparse sampling
only diminish the occlusion problem slightly.
Even for a scalar field a transparent rendering
gives a depth impression only, when the dataset is
rotated interactively. As a volumetric vector field
contains much more information than a scalar
field, a simple transparent visualization will fail.
In the case of a sparse sampling of volumetric
vector fields it is very difficult to get an idea of
the visual order of the samples without additional
cues. Our new visualization method combines the
use of transparency with an adaptive sampling.
We use transparent arrow shaped or comet like
particles as samples, which intuitively show the
direction of the vector field. It is also possible
to use any of the icons proposed by Walsum et



al. [van W96]. The perception of the depth or-
dering is improved by adding a halo around each
particle and by the high occlusion of the particles.
The changing of the occlusion by animating par-
ticles gives further cues about the depth ordering.
And at the same time the human eye is able to
track even highly occluded particles deep inside
the vector field with the help of the motion co-
herence. In this way the sampling density can be
increased with a deeper insight into the interior
of the vector field. The length and the speed of
the particles in the animation reproduce the mag-
nitude of the vector field in a natural way.

A second major advantage of the use of par-
ticles is that the visualization resolution can lo-
cally be adapted to the resolution of a vector field
with highly varying sampling resolution. We also
show how to accentuate vector field features by
increasing the sampling resolution in their sur-
rounding. Again the animation of the particles
improves the understanding of the different kinds
of features very intuitively. Thus we can visualize
vector field features without the need of actually
extracting and visualizing them.

A further important advantage of our method
is the low pre-computation time and the interac-
tive frame rates, which can be guaranteed also on
low-end machines by reducing the number of vi-
sualized particles. This does not imply a reduc-
tion of the sampling resolution of the vector field
as the particles can be focused on any arbitrary
region.

1.1 RELATED WORK

Zöckle et al. [Zöckl96] introduce an interactive
algorithm for visualization of flow data using a
sparse representation of the vector field. They vi-
sualize a large number of very fine illuminated
streamlines, which are preferably initiated near
features of the vector field. It is difficult to vi-
sualize further physical quantities and the depth
impression is only good for a very sparse sam-
pling of the vector field.

Wijk [Wijk93] extends the streamline ap-
proach to stream surfaces by the use of para-
metric surfaces. The extraction of stream sur-
faces gives a good overview over the global prop-
erties of the vector field, but views at several
depths are not possible at the same time, since
the stream surfaces are opaque. Raycasting sev-
eral of these stream surfaces as proposed by
Frühauf [Früha96] permits the perception of sev-
eral stream surfaces in different depths, but the
low sampling resolutions orthogonal to the stream
surfaces is disturbing. It is also very tricky to lo-
cate critical points of the flow without visualizing
them separately, but the main drawback is that

the difference of the vector length between two
stream surfaces can not be seen.

For the 2d case Line Integral Convolution
(LIC, see Cabral and Leedom [Cabra93]) is one
of the best ways to visualize a vector field in two
dimensions because it generates a dense represen-
tation of the vector field. Although it does not
explicitly extract streamlines the resulting pic-
tures are very similar to the ones generated with
streamlines. To combine a good global overview
and the visualization of critical points, Inter-
rante and Grosch [Inter97] generalize the LIC
to volumetric vector fields, while H. W. Shen et
al. [Shen96] use three- and two-dimensional LIC
to visualize local and global properties of the vec-
tor field. The density of the LIC representation
makes it almost perfect for two dimensional vec-
tor fields but rather unsuitable for volumetric vec-
tor fields because of the extreme amount of occlu-
sion.

Simple particle tracing uses only points as
particles and therefore represents the vector field
direction only through the particle animation.
The larger the particle and the more complex it is,
the fewer particles can be visualized without con-
fusing the observer. Visualizing flow data with a
probe as proposed by Leeuw and Wijk [Leeuw93]
gives a good impression of the local surround-
ing of the particle but cannot provide a global
overview of the whole vector field or the global
topology.

Crawfis and Max [Crawf93] took a different
splatting approach to render the scalar and vector
valued fields by encoding the vectors with parti-
cles that reside on the texture used by the splatting
algorithm. The particles in their method have the
shape of little blobs that fade along the direction
of the vector field.

1.2 PAPER OVERVIEW

The visualization of volumetric vector fields us-
ing particles leads to several tasks. Starting with
a vector field, we present a way to visualize local
properties of the field using a single particle. Af-
ter being able to set up a particle, we introduce
an accurate method to move a particle along a
streamline while maintaining a certain distribu-
tion within the vector field. After this, the ani-
mated particles are displayed using our textured
based approach.

In section 2 we describe how to find a vector
for any location in space using tri-linear interpo-
lation. Section 3 describes how to animate parti-
cles along streamlines and how to distribute them
within the vector field. In section 4 we explain
how the particles are rendered and which prob-
lems arise that way. Finally, we give some results



on the performance of our method in section 5.

2 FAST DATA ACCESS

In order to visualize a vector field using particles
that represent properties of the underlying field,
we need to know the vector and the additional pa-
rameters for any location in space and therefore
the relative position within the dataset. Due to
the non-regularity of the underlying grid of real
world vector fields, we have to solve two main
problems. We need a fast interpolation within ev-
ery type of primitive in the dataset and a fast way
to find the corresponding primitive for any given
location in space.

2.1 INTERPOLATION

The interpolation that has been used during the
creation of the dataset can not be reconstructed
in general. Therefore we need to define a local
steady interpolation within each cell of the grid.
There are mainly four different primitives used
for a cell within a dataset representing a vector
field, the tetrahedron, the pyramid, the triangu-
lar prism and the hexahedron cell. While the in-
terpolation within a tetrahedron is rather straight
forward, the other three schemes are not that sim-
ple.

The easiest way to define an interpolation is
to split the cells into tetrahedra and interpolate
within each tetrahedron using a matrix. Beside
the huge amount of matrices, the resulting grid
and therefore the interpolation are not unique. To
define an interpolation within a primitive consist-
ing of n vertices requires the inversion of a n� n
matrix. Although inverting these matrices can be
carried out quiet fast this leads to a huge over-
head for storing the resulting matrices. Assum-
ing that the surface of each primitive is nearly
plane, which can safely be assumed for most of
the datasets used in the area of Computational
Fluid Dynamics, we can use a different, more ef-
fective approach.

With vn as the vector at the point pn and the
distances dn to describe the position within the
primitive, leads to the following interpolation for
a tetrahedron (see figure 1a for the naming of the
distances):

v =
d0v0 + d1v1 + d2v2 + d3v3

d0 + d1 + d2 + d3
(1)

Using a bi-linear interpolation on the quad-
rangle of the pyramid (figure 1b) and a linear in-
terpolation between the bottom and the top of the
pyramid also results in a very simple interpola-
tion. A bi-linear interpolation on the two opposite

a) b)

c) d)

Figure 1: Relative position of point l within
each primitive.

triangles and a linear interpolation between them
can be used for a triangular prism (figure 1c). Fi-
nally the interpolation for the hexahedron (fig-
ure 1d) is a simple tri-linear interpolation using
the distances to each of it’s six faces.

Although these calculations can be carried
out very fast, the results are not linear within the
cell, because the sum of the distances is not con-
stant. On the other hand the interpolation used
during construction may also not have been lin-
ear. The later algorithm needs fewer space and
time than splitting the primitives into tetrahedra
and by far less precomputational time than the
one using inverted matrices.

2.2 FINDING CELLS

We are now able to calculate an interpolation
within a cell, but we still need a way to find the
cell containing the given point. Although this
might not seem necessary because animated par-
ticles could find the new cell using the neigh-
borhood information of the grid, we still need
these cells for inserting new particles. De Berg
et al. [Berg97] stated that the problem of point
inclusion in 3D can not be solved in general in
log(n) time, where n is the number of primitives
to be checked and that no optimal algorithm is
known.

The simplest but inefficient way to find the
corresponding cell would be to check every cell
whether it contains the point or not. Although this
is still quite fast for about 100 cells if a bound-
ing box check is done first, large datasets can not
be visualized this way. To reduce the number of
cells to be tested for large datasets a bsp-tree can
be used. Although this would theoretically result
in a search time of log(n), there might always
be cells intersecting the split plane of the tree.
Therefore the intersecting cells have to be stored
in both parts of the bsp-tree (as seen in figure 2a).

To reduce the number of cells to be tested ef-



a) b)

Figure 2: Building of bsp-tree with a single
plane or single references to every cell.

fectively we have to construct a bsp-tree by split-
ting the dataset into two more or less evenly sized
parts while producing as few duplicate cells as
possible. This would require a balanced bsp-tree
as described by de Berg et al. [Berg97] that can
not be constructed in general without limiting us
to curvilinear grids. To reduce the number of pos-
sible planes to split at, we only allow splits in
the direction of the x, y and z-axis, resulting in
a rectangular bsp-tree and a faster search for the
leaf that contains our current location. To con-
struct a balanced bsp-tree while using the most
easy to handle planes (those along the three axis),
we use a three dimensional kd-tree (see de Berg
et al. [Berg97]). We split the dataset using all
three possible planes and choose the one produc-
ing the least overhead splitting the dataset into
two parts containing roughly the same number of
cells. This results in a nearly balanced bsp-tree
while trying to minimize the overhead. However
splitting the dataset until it can’t be split any fur-
ther, i.e. no edge of any bounding box is inside
our node of the bsp-tree, would result in a huge
overhead as a single cell may be stored in a large
number of leafs.

To handle more complex datasets, we need an
approach that does not need any additional mem-
ory to store multiple references to each cell and
therefore enables us to split the dataset until only
a single cell is contained in every leaf of the bsp-
tree. As seen in figure 2b, we split the dataset
rather than the space at the current plane, result-
ing in a fuzzy split region rather than a single
plane. The resulting region is stored in the bsp-
tree rather than the plane used for splitting the
dataset, because both parts of the tree have to be
tested if our current location is between these two
planes. Therefore we can not guarantee that only
one leaf is needed to find the corresponding cell.
In the worst case it might even be possible that a
region of the dataset is present in every leaf of the
tree and therefore every cell has to be tested. This
approach reduced the number of tests to an av-
erage of 1:58 using the Oxygen Post dataset (see
figure 6) and is therefore faster than using neigh-
borhood information. The overhead of this algo-
rithm, i.e. the space contained in more than one

leaf, can be seen in section 5 table 1.

3 ANIMATED PARTICLES

Being able to visualize a single still particle
leaves three problems for animating a large
amount of them. We need a scheme to distribute
any number of particles within the dataset. We
need a fast way to move a particle along the vec-
tor field, i.e. a streamline has to be computed. In
addition we also have to track them during their
movement to remove particles at undesired loca-
tions and insert new ones.

3.1 DISTRIBUTION OF PARTICLES

We need a distribution of particles to achieve a
high sampling resolution in interesting regions of
the vector field and a lower one in less interesting
ones. There are several characteristics that can be
of interest. First of all the density or other physi-
cal attributes attached to a flow field might be cor-
related to the importance of a region, including
the magnitude of the vector field. The curvature
and the square norm of the divergence as defined
by Leeuw and van Wijk [Leeuw93], normalized
with the local magnitude may also correlate to the
importance. Thus we come up with the following
definition of a weight function:

!(x) = !const + !1(x) + : : :+ !n(x) +(2)
!(x)grad + !(x)div + !(x)curv

While !const is the amount of homoge-
neously distributed particles, the weights !i(x)
allow consideration of the different physical
quantities of the vector field to influence the par-
ticle distribution. Finally, !(x)grad, !(x)div and
!(x)curv incorporate the local gradient, diver-
gence and curvature of the vector field. The func-
tion !(x) can also be extended to handle the local
shear and rotation of the vector field or any addi-
tional function, such as the distance to the closest
critical point.

Now we can define a weight for any position
within the vector field but we still need a way to
distribute the particles according to these weights.
In order to distribute newly created particles, we
introduce the distribution octree. Every leaf gets
its weight assigned by sampling the weighting
function. Each node in this octree stores the
weight of all its children. In each knot the num-
ber of actually contained particles is stored and
initialized to zero at the beginning.

Each time a new particle is created, the distri-
bution octree is traversed from top to bottom, the
cell with the most missing particles is located and
the particle is placed randomly inside this cell.



Figure 3: Distribution octree for 10000 parti-
cles with a maximum of 16 particles per leaf
(Blunt Fin dataset).

The distribution octree is dynamically coarsened
and refined during the insertion and the removal
of particles. A leaf, that should contain more then
eight particles, is split while a node that contains
children of which each should hold less than one
particle is combined to a single leaf. The distri-
bution octree after insertion of all particles for the
Blunt Fin dataset is shown in figure 3. To opti-
mize the memory allocation we store the removed
octree cells during coarsening in a linked list (as
proposed in [Meyer92]) in order to speed up cell
creation during refinement.

3.2 MOVEMENT

The fastest way to compute streamlines is a sin-
gle step Euler integrator. Although it is suitable
for a quick preview, it can not be used for most
of the present vector fields due to its large er-
ror. The best choice between performance and er-
ror of the computed streamlines is a fourth order
Runge-Kutta integrator with adaptive step width
as described by Press et al. [Press92].

Although the integration is very fast for small
datasets, there is a huge overhead for larger ones
due to the randomness of the memory access pro-
duced by particles at different locations. To lo-
calize most of the memory access the distribution
octree can be used. The algorithm starts with one
leaf and moves every particle in it before moving
to the next one. Therefore we can test the cell that
contained the previous location first.

3.3 UPDATING

After the particles have been moved along the
vector field their distribution changed and regions
of low interest may contain more particles than
they are supposed to, while regions of high inter-
est may contain too few. For removing misplaced
particles and inserting them at a different location
we need to know the current distribution of par-

ticles within the distribution octree. So we need
to keep the number of particles per cell up to date
while they are moving. But just replacing parti-
cles at undesired locations leads to a heavy flick-
ering that prevents the user to see any properties
of the vector field if the particles are animated.

To reduce the amount of particles being re-
moved during each step of the animation, every
particle gets an age property attached. This age
allows a particle to stay in an overcrowded region
for some time before it will be removed, thus en-
suring that a particle is visible for at least a de-
fined number of frames, allowing the user to trace
it’s motion. Particles that sometimes visit over-
crowded regions but mainly move along under-
crowded ones need not be removed. To keep these
particles, we reduce their age while they are in
undercrowded regions and only increase the age
of additional particles in overcrowded ones. This
also leads to a minimum number of particles in
each region even if there are constantly too many
particles present. This can be implemented by us-
ing the list of particles in each leaf used for opti-
mization in the last section.

Although this reduces the flickering as much
as possible while keeping the correct distribution
of particles, there is still another way to dimin-
ish it further. The flickering is produced by par-
ticles that are removed from one location and are
created at another at the same time. So we have
to fade them out after they reach their maximum
age and fade them in again after creation instead
of ”teleporting” them to their new location. As a
result of this technique there is nearly no visible
flickering left.

4 DISPLAY

Visualizing a huge amount of extended, transpar-
ent particles would be very slow if they were ren-
dered using their correct geometry. On the other
hand, image based rendering would also be slow
or need a huge amount of texture memory, if we
desire the perspective to be correct. This trade-
off between speed and accuracy leads to a simple
texture based approach.

4.1 RENDERING

We need a fast and simple texture based approach
to render each particle using only one rectangle
and therefore only one texture per particle. Mov-
ing this rectangle to the particle’s location fixes
three degrees of freedom. There are five de-
grees of freedom left: three for the orientation of
the particle and two for its length and diameter.
The orientation can be specified by three rotations
along the three coordinate axes. Let us assume the



Figure 4: Part of two different textures used for
rendering particles.

particle is aligned with the x-axis (the local direc-
tion of the vector field). The first rotation around
the x-axis can be avoided by choosing rotation-
ally symmetric particles. The rotation around the
y-axis is performed by selecting the correct pre-
rendered arrows or comet like shapes from one
of the textures shown in figure 4, which sample
the rotation around the y-axis densely. Next the
length and diameter of the particle are adjusted by
scaling the rendering rectangle accordingly. Fi-
nally the rotation around the z-axis is performed
by rotating the rendering rectangle around the z-
axis. For rendering all particles they have to be
sorted using the hashing algorithm proposed by
Mueller et al. [Muell99].

Although this simple texture based rendering
is very fast, it has some major drawbacks. The
distance between the viewer and the particle is ig-
nored, resulting in a wrong perspective for most
of the particles. The particle is rotated after being
scaled while the texture is rotated first and there-
fore the scaling changes the rotation angle. The
distortion caused by the distance to the viewer
can not be corrected without using more than one
texture per particle or a set of textures as seen
in figure 4 for different perspectives. The distor-
tion caused by scaling of the particle can partly
be removed if we take a closer look at the re-
sulting transformations. The length of the parti-
cle is scaled by s while it’s diameter is scaled by
s0 = 1=

p
s to keep the same volume. After this

the particle is rotated by �. On the other hand the
texture with the rotational angle of � is chosen
and scaled by xs, ys and zs to simulate the orig-
inal transformation. As the scaling to zs along
the z-axis is lost during the projection to the final
image, the following values for the texture corre-
spond to any given particle.

� = atan

�
tan�p

s3

�
(3)

xs = s
cos�

cos�

ys =
1p
s

By now, we assumed that the viewing vector
is along the z-axis and the view up vector is the
y-axis. To calculate the coordinates of the tex-
tured rectangle using any arbitrary camera direc-
tion vdir and position vpos of a particle at the
position ppos with the direction pdir we define
the relative position and direction of the particle;
vdir and pdir are normalized vectors.

rpos = ppos� vpos (4)

rup =
vdir� pdir

jvdir� pdirj
rfwd = � vdir� rup

jvdir� rupj
� = asin(rpos � pdir)

After computing xs, ys and � using equa-
tion 3 the textured rectangle p0:::3 can be drawn
using texture n out of 512 textures as seen in fig-
ure 4.

n = 255:5 + 511�=pi (5)
p0 = ppos� xs=2 � rfwd� ys=2 � rup
p1 = ppos + xs=2 � rfwd� ys=2 � rup
p2 = ppos� xs=2 � rfwd + ys=2 � rup
p3 = ppos + xs=2 � rfwd + ys=2 � rup

4.2 TEXTURES

Our technique strongly depends on a good vi-
sualization of the particles. The main demands
on the particle visualization are that each particle
shows the direction and vector length of the vi-
sualized flow at the particle location and that the
particles are transparent. The direction and vec-
tor length can be nicely represented with an arrow
or a comet like shape. In order to achieve a high
rendering quality of the particles, they where pre-
rendered with a ray-tracer using high over sam-
pling, thus resulting in a light source positioned at
the viewers position. The pre-rendered particles
contain luminance and absorption values, such
that further attributes can be visualized through
the hue and saturation values of each particle.

To allow deep insight into the vector field
while maintaining a depth perception for each
particle requires the particles to be transparent
and occluding at the same time. The top left im-
age in figure 5 shows non transparent particles re-
sulting in a good depth perception but only few
insight into the vector field. Using a constant
transparency of 50% as seen in the top right im-
age results in better insight into the vector field,
but the depth perception is nearly lost. Varying
the transparency with the thickness of the parti-
cle for each pixel, as seen in the bottom left im-
age, does not improve the depth perception sig-
nificantly. To improve the result any further we



Figure 5: top left to bottom right: Non trans-
parent, constant transparency, varying trans-
parency, varying transparency with added halo.

dataset cells cel./leaf overh.
Blunt Fin 37,479 0.999 0.73
Rotor Blade1 96,310 0.996 2.27
Oxygen Post 102,675 0.997 1.90
Delta Wing 201,135 0.988 3.79
Space Shuttle1 834,938 0.993 6.47
Cavity 1,124,253 0.999 3.77

Table 1: Number of cells and cells per leaf
for bsp-tree using duplicate space. Over-
head produced by duplicate space con-
tained in different parts of the bsp-tree.

need to apply a halo like the one used by West-
over [Inter97] that does not reduce the overall
transparency of each particle and therefore the in-
sight into the vector field but improves the depth
perception. It is also improved by a simple light-
ing algorithm that scales the brightness of each
particle according to its distance to the viewer.

Further improvements of the insight into the
vector field and the depth perception can only be
achieved by the movement of the particles along
the streamlines and the ability of the user to rotate
and move the complete dataset interactively.

5 RESULTS & PERFORMANCE

For performance measurements we used three
datasets from the NASA, the Blunt Fin, the Oxy-
gen Post, the Delta Wing and the Space Shuttle
dataset (9 parts). Additionally two datasets from
the 1995 ICASE/LaRC Symposium on Visualiz-
ing Time-Varying Data, the Rotor Blade (4 parts)
and the Cavity dataset (2 parts) were used, as seen
in figure 6. Although the Rotor Blade and the
Cavity dataset are time-varying, only one time
step is visualized due to the amount of memory
needed for the complete datasets.

a) Blunt Fin

c) Oxygen Post

e) Space Shuttle

b) Rotor Blade

d) Delta Wing

f) Cavity

Figure 6: The curvilinear grids of all used datasets.

The performance has been tested on an AMD-
K7-800 using a GeForce 2 GTS chipset. All tests
were made using 10,000 particles, a weight func-
tion depending on the local divergence (50%) and
curvature (50%) of the vector field and a suitable
speed for the animated particles. The time needed
to build the bsp-tree and the initial distribution oc-
tree varies from 5 seconds for the bluntfin dataset
to 89 seconds for the Space Shuttle dataset. The
additional memory usage of the bsp-tree is 36
bytes per cell, which is about the same as the 32
bytes per vertex of the dataset itself. In addition
there are about 45 bytes per particle needed, as-
suming an average of 4 particles per leaf for the
distribution octree.

The display part of our algorithm is capable
of displaying about 250,000 to 275,000 particles
per second, depending on how much the density
of particles varies within the dataset. The more
evenly the particles are distributed the faster the
rendering is done due to the used hashing ap-
proach.

The animation of the particles has been tested
using two different modes. A preview mode was
defined using a single step Euler integrator as
mentioned in section 3.2. The animation mode
itself was defined using an adaptive step width
Runge-Kutta integrator with an error tolerance of
1% that has also been defined in section 3.2. Al-

1Additional overhead (0.18 for Rotor Blade and 0.005
for Space Shuttle dataset) produced by space contained
within different parts of the dataset.



dataset fps preview fps animation
Blunt Fin 10.63 7.50
Rotor Blade 5.78 4.02
Oxygen Post 8.95 6.39
Delta Wing 6.32 3.60
Space Shuttle 5.77 4.14
Cavity 6.69 5.22

Table 2: Frames per second using 10,000
particles animation preview (Euler single
step) and animation (Runge-Kutta 1%).

though one might think the preview mode is a lot
faster, this is not true for most of the datasets as
updating the distribution octree and removing or
inserting particles is very expensive compared to
the integration.

6 CONCLUSION & FUTURE WORK

The presented vector field visualization method
is based on a very simple and therefore very fast
texture based rendering algorithm, that allows the
animation of a large number of transparent parti-
cles at interactive frame rates. The high quality of
the particles was achieved by pre-rendering them
with a ray-tracer.

The transparency and animation of the parti-
cles allows the user to see deeper into the dataset.
Although the huge amount of information in a
volumetric vector field still leads to some amount
of occlusions when projected to the screen, the
coherent movement of the particles allows the hu-
man eye to also determine direction and magni-
tude of the vector field in partly occluded areas.
With this advantage the sampling density of the
visualization can be increased compared to other
methods. The animation of the particles proved
very useful for intuitively understanding the mag-
nitude of the underlying flow as the particles’ ve-
locity is scaled accordingly.

The use of the texture based approach allows
us to adapt the visualization not only to the sam-
pling of datasets with highly changing sampling
resolution but also to emphasize features of the
flow such as critical points and vortices. Finally,
the rendering algorithm achieves high frame rates
with low pre-computational time and therefore
allows the user to investigate datasets nearly in-
stantly.

REFERENCES
[Berg97] Mark de Berg, Mark van Kreveld, Mark

Overmars, and Otfried Schwarzkopf. Com-
putational Geometry Algorithms and Appli-
cations. Springer-Verlag, Berlin Heidelberg,
1997.

[Cabra93] Brian Cabral and Leith (Casey) Leedom.
Imaging vector fields using line integral con-
volution. In James T. Kajiya, editor, Computer
Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, August 1993.

[Crawf93] R. A. Crawfis and N. Max. Texture splats
for 3D scalar and vector field visualization. In
Gregory M. Nielson and Dan Bergeron, edi-
tors, Proceedings of the Visualization ’93 Con-
ference, October 1993.

[Früha96] Thomas Frühauf. Raycasting vector fields.
In Roni Yagel and Gregory M. Nielson, edi-
tors, Proceedings of the Conference on Visual-
ization, October 27–November 1 1996.

[Inter97] Victoria Interrante and Chester Grosch.
Strategies for effectively visualizing 3D flow
with volume LIC (color plate S. 568). In Roni
Yagel and Hans Hagen, editors, Proceedings of
the 8th Annual IEEE Conference on Visualiza-
tion (VISU-97), October 19–24 1997.

[Leeuw93] W. C. de Leeuw and J. J. van Wijk. A
probe for local flow field visualization. In Gre-
gory M. Nielson and Dan Bergeron, editors,
Proceedings of the Visualization ’93 Confer-
ence, October 1993.

[Meyer92] Scott (Scott Douglas) Meyers. Effec-
tive C++: 50 specific ways to improve your
programs and designs. Addison-Wesley pro-
fessional computing series. Addison-Wesley,
1992.

[Muell99] Klaus Mueller, Naeem Shareef, Jian
Huang, and Roger Crawfis. High-quality splat-
ting on rectilinear grids with efficient culling of
occluded voxels. IEEE Transactions on Visu-
alization and Computer Graphics, 5(2), April
1999.

[Press92] William H. Press, Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C, 2nd. edition. Cam-
bridge University Press, 1992.

[Shen96] H. W. Shen, C. R. Johnson, and K. L. Ma.
Global and local vector field visualization us-
ing enhanced line integral convolution. In Sym-
posium on Volume Visualization, 1996.

[van W96] Theo van Walsum, Frits H. Post, Deborah
Silver, and Frank J. Post. Feature Extraction
and Iconic Visualization. IEEE Transactions
on Visualization and Computer Graphics, 2(2),
June 1996.

[Wijk93] J. J. van Wijk. Implicit stream surfaces. In
Gregory M. Nielson and Dan Bergeron, edi-
tors, Proceedings of the Visualization ’93 Con-
ference, October 1993.

[Zöckl96] Malte Zöckler, Detlev Stalling, and Hans-
Christian Hege. Interactive visualization of
3D-vector fields using illuminated streamlines.
In Roni Yagel and Gregory M. Nielson, edi-
tors, Proceedings of the Conference on Visual-
ization, October 27–November 1 1996.



Figure 7: Blunt Fin dataset (20,000 particles,
!div = 0:5, !curv = 0:5)

Figure 8: Oxygen Post dataset (20,000 parti-
cles, !div = 0:5, !curv = 0:5)

Figure 9: Space Shuttle dataset (50,000 parti-
cles, !div = 0:5, !curv = 0:5)

Figure 10: Rotor Blade dataset (50,000 parti-
cles, !div = 0:5, !curv = 0:5)

Figure 11: Delta Wing dataset (20,000 parti-
cles, !div = 0:5, !curv = 0:5)

Figure 12: Cavity dataset (50,000 particles,
!div = 0:5, !curv = 0:5)


