
MESHING OF DIFFUSION SURFACES FOR POINT-BASED
TENSOR FIELD VISUALIZATION

Ralf Sondershaus, Stefan Gumhold

WSI/GRIS, University of Tübingen, Germany, {sondershaus/gumhold}@gris.uni-tuebingen.de

ABSTRACT

The visualization of 3D vector and tensor fields in a 2D image is challenging because the large amount of information will either
be mixed during projection to 2D or lead to severe occlusion problems.
In this work we segment from the symmetric 3D tensor field regions dominated by stream tubes and regions dominated by diffusion
surfaces. The diffusion surfaces are integrated with a higher order Runge–Kutta scheme and approximated with a triangle mesh.
Our main contribution is to steer the integration with a face-based coding scheme, that allows direct compression of the integrated
diffusion surfaces and ensures that diffusion surfaces of any topology can be created.
Finally we sample the stream tubes and diffusion surfaces with points. The points from different entities are colored with different
colors. We lit the points during rendering with a lighting model adapted to the tensor field. The resulting visualization of symmetric
3D tensor fields is sparse because of the sampling on points and allows for a deeper view inside the volumetric tensor field but also
allows the simultaneous visualization of a dense set of tubes and surfaces.

Keywords: Tensor Field, Surface Integration, Surface Meshing, Visualization, Point Rendering, Diffusion Surfaces

1. INTRODUCTION

The visualization of 3D vector and tensor fields in a 2D im-
age is challenging because the large amount of information
will either be mixed during projection to 2D or lead to severe
occlusion problems.

A lot of work has been done to visualize vector fields. Stream
lines and stream surfaces are popular visualization tech-
niques. A stream line is a curve where for every point on
the curve the associated vector is tangent to the curve. One
can imagine a stream line as the path that a particle takes
through the vector field. Stream lines do not intersect each
other except for points where the vector field vanishes or is
undefined.

A stream surface is the path that a curve takes through the
vector field and can be thought of as the dense collection of
stream lines, all starting at a given curve.

The situation changes slightly if we look at symmetric 3D
tensor fields. Throughout this paper we use the term ten-
sor for symmetric 3D tensors. Symmetric 3D tensors play

a great role in physics or medicine as for example diffusion
tensors are symmetric 3D tensors. At every point a tensor
field contains a (symmetric) tensor, i.e. a symmtric3 × 3-
matrix, instead of a single vector.

Eigenvector decomposition of the tensor is a popular ap-
proach to analyze a tensor. A symmetric tensor can al-
ways be decomposed into a diagonal matrixΛ with the three
eigenvaluesλ1 ≥ λ2 ≥ λ3 on the diagonal and an orthonor-
mal rotation matrixV with V V t = 1, with the unit matrix
1:

∀T ∈ R3×3 with T = T t :

∃V, Λ ∈ R3×3 with V V t = 1, Λij = 0 ⇐ i 6= j :

T = V ΛV t.

The columnsvi
def
= V.i of V form an orthonormal basis

of R3 and are called the eigenvectors. The combination of
eigenvectors and eigenvalues(V, λ) is called the eigensys-
tem of the tensor. If a unit sphere is scaled in the direction of
the eigenvectors with the eigenvalues we obtain an ellipsoid
that can be used to visualize the tensor. In the case of diffu-
sion tensors the ellipsoids describe for any possible direction

the rate of diffusion. Particles would have to be traced in
all possible directions with speeds given by the ellipsoid. A
diffusion tensor can be imagined as a description of how a
spherical water drop is diffused into an ellipsoid. The terms
stream line and stream surface can therefore not so easily
applied to tensor fields.

Diffusion tensors often degenerate over large regions, such
that their ellipsoids look like cigars or like pancakes. In
the case of a cigar we speak of linear anisotropy, when one
eigenvalue dominates the other two. In the other case we
speak of planar anisotropy and two eigenvalues are much
larger than the last one. If all eigenvalues are of similar
size the corresponding region of the tensor field is called
isotropic.

The eigenvector with the largest eigenvalue is called the ma-
jor eigenvector, the eigenvector with the smallest eigenvalue
is called the minor eigenvector, and the eigenvector with the
medium eigenvalue is the medium eigenvector.

Given the anisotropy of tensors, the domain of a tensor field
can be partitioned into linear, planar, and isotropic regions.
Every region only contains tensors of the one specific type
of anisotropy.

Within linear regions, a tensor field can be interpreted as a
vector field formed by the major eigenvectors. Thus, we can
define stream tubes as tubes whose middle axis is a stream
line. Every point on the stream line is tangential to the major
eigenvector of the tensor at this point. The cross section of
the tube is defined by the medium and minor eigenvectors
which are perpendicular to the major eigenvector.

Within planar regions, a diffusion surface can be defined as
surface whose tangential plane for every point is the plane
defined by the major and medium eigenvectors, i.e. it is nor-
mal to the vector field of the minor eigenvectors. We use the
term diffusion surface here because the term stream surface
may be misleading to what a stream surface is for a vector
field.

We segment from the symmetric 3D tensor field regions
dominated by stream tubes and regions dominated by dif-
fusion surfaces. We reconstruct a dense set of stream tubes
and diffusion surfaces and point sample them in way that
the distance between two points is inversely proportional to
the diffusion rate. Thus the points are closely spaced along
a stream tube and sparsely orthogonal to it. On a diffusion
surface the points are closely spaced over the surface but the
surfaces are further apart from each other. The human eye of
the observer will automatically merge close points to tubes
and surfaces. The points from different entities are distin-
guished by their color. We lit the points during rendering
with a lighting model adapted to the tensor field. The re-
sulting visualization of symmetric 3D tensor fields is sparse
because of the sampling on points and allows for a deeper
view inside the volumetric tensor field but allows on the other
hand the simultaneous visualization of a dense set of entities.

2. RELATED WORK

Isosurfaces The marching cubes algorithm [1] can extract
an isosurface from a scalar field. An isosurface is thereby
defined as the collection of points with equal scalar values.
The marching cubes algorithm creates a triangular mesh that
approximates the isosurface. For every vertex of the triangu-
lar mesh, a normal is calculated to perform lighting during
rendering.

The basic algorithm loops over all (small) cubes whose cor-
ner points are in the center of eight voxels of the discrete
scalar field. For every such cube the isosurface is located
within the cube. There are28 = 256 ways how the sur-
face may intersect with the cube. Every case is triangulated.
A surface intersects an edge of the cube when one vertex is
outside and the other vertex is inside the surface.

Stream Surfaces Stream surfaces from vector fields can
be represented as parametric surfaces. A simple approach
to construct such parametric stream surfaces is to place a
number of seed points onto the original curve, to trace these
points along their stream lines, and to connect the resulting
stream lines. Remember that stream lines of vector fields can
never cross each other.

This approach has many drawbacks. For example, consider
converging or diverging stream lines. Connecting diverging
stream lines may result in slivers or even don’t approximate
the surface correctly because of the large area that is approx-
imated linearly by the triangle.

Hultquist [2] improves this parametric stream surface ap-
proach. An initial set of stream lines is traced and as the
tracing proceeds, additional stream lines are introduced in
the case of diverging stream lines, or stream lines are re-
moved on cases of converging stream lines.

Scheuermann et al. [3] presented an algorithm that is re-
lated to Hultquist. The stream surfaces are calculated for
tetrahedral grids. A surface is propagated through a tetra-
hedra, calculating the intersections between the surface and
the tetrahedra. The surface within a tetrahedra is a ruled
surface, which means that the surface is generated by two
stream lines that are blended by line segments. All calcu-
lations are done in barycentric coordinates of the tetrahedra
which simplifies the formulas.

Van Wijk [4] models stream surfaces as implicit functions in-
stead of parametric surfaces. A stream surface is given by the
implicit function f(x) = C whereC is a (scalar) constant.
The difficulty is to find the functionf . Oncef is found,
a family of stream surfaces can be generated efficiently by
varyingC.

Van Wijk calculates f from the convection equation for in-
compressible flow withf as the transported quantity and~v
as the velocity.

∂f

∂t
= −∇f · ~v

A range of values is placed along the boundary as initial
(boundary) values. The convection equation is then solved
over time using some numerical integrator until a steady state
is reached. One can imagine this process as inserting vary-
ing concentrations of ink along the boundary of water. Af-
ter some time, this ink is distributed (not necessary evenly!)
within the water and the stream surfaces are the areas of
equal concentration. Once the implicit function f is calcu-
lated, the isosurface for a particular value C is extracted and
rendered with the marching–cubes algorithm.

In the case of diffusion surfaces the implicit approach is not
possible. In the implicit approach the surface normal cor-
responds to the gradient∇f of the implicit function. The
diffusion surfaces are defined to be orthogonal to the vector
field of the minor eigenvectors of a tensor field. Therefore,
we are given∇f and need to findf . From the Helmholtz–
Hodge decomposition follows that this is possible only if the
rotation of the vector field of the minor eigenvectors van-
ishes. As the rotation does not vanish for arbitrary symmetric
tensor fields, the implicit approach is not possible. Figure 7
shows the diffusion surface of a tensor field with a planar
region where the minor eigenvector field has quite a lot rota-
tion.

Diffusion Surfaces There hasn’t been much work done
yet to extract diffusion surfaces from tensor fields. Zhang et
al. [5] presented a technique to extract stream tubes and dif-
fusion surfaces from volumetric diffusion tensor MR images.
Stream tubes are extracted in linear regions and diffusion sur-
faces in planar regions. So stream tubes represent structures
with primarily linear diffusion while diffusion surfaces rep-
resent structures with primarily planar diffusion. Additional
information is encoded in the color and cross section of the
stream tubes.

Our approach of extracting diffusion surfaces is similar to
[5]. That’s why this approach is discussed in more detail.
Zhang et al. generate a dense set of stream tubes and diffu-
sion surfaces and cull them later using a set of metrics.

Linear regions are interpreted as vector fields formed by the
major eigenvectors of the tensors. Thus the trajectory of a
stream tube is a stream line through this vector field. The MR
images are interpolated using tricubic B-Splines to get ten-
sors not only at the sample points of the MR images. Zhang
et al. generate seed points for every sample point within a
linear region and jitter them within the voxel. The stream
tube starts at a seed point and follows the major eigenvector
field both forward and backward. An second-order Runge-
Kutta integrator is used to track the stream line.

Diffusion surfaces1 are extracted from planar regions. The
major and medium eigenvectors of a tensor at a point in space
define the tangential plane of the surface at this point. Again,

1Zhang et al. call the diffusion surfaces stream surfaces. We
prefer the term diffusion surface to avoid confusion with the term
stream surface from vector fields.

the seed points are placed into the voxels by jittering the sam-
ple points.

Starting from a seed pointv, six initial search directions
are distributed evenly aroundv. Every search direction is
tracked and thus follows the shape of the surface. A triangle
is created for every pair of neighboring edges. This first step
creates a triangle fan consisting of six triangles.

From every vertexu new search directions are created by
projecting the triangles that are adjacent tou onto the tan-
gential planeP (u) and the initial directions inP (u) that are
not covered by triangles. This is repeated for every newly
generated vertex.

The new search directions of a vertexu are traced through a
vector field which is defined as the linear combination of the
normalized major and medium eigenvectors which lies on a
PlaneP1 that is both perpendicular to the tangential plane
P (u) atu and contains the search direction.

The extension of the diffusion surface stops if it gets out of
the data boundary, hits a low planar region, enters a region
of low signal–to–noise ratio, or incurs a high curvature term.

While rendering, color is mapped onto the surface to repre-
sent the planar anisotropy.

3. POINT-BASED TENSOR FIELD
VISUALIZATION

3.1 Volume Segmentation

As already mentioned in the introduction, the tensor field do-
main is partitioned into linear, planar, and isotropic regions.
We use three quantities of a (diffusion) tensor to define this
partition as suggested by [6]:

cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

wherecl measures linear anisotropy,cp planar anisotropy,
and cs isotropy. Note thatcl + cp + cs = 1. λi are the
eigenvalues of the tensor withλ1 ≥ λ2 ≥ λ3. The greatercl

is the more the ellipsoid looks like a cigar (and the smallercp

andcs are). Similarly, the greatercp is the more the ellipsoid
looks like a pancake. Finally, ifcs equals1, the ellipsoid
becomes a sphere (all eigenvalues are1 andcp andcl are0),
see figure 1.

After this segmentation of the volume, we can trace stream
lines in linear regions and diffusion surfaces in planar re-
gions. We use thresholds oncl andcp to classify regions.

a) b) c)

Figure 1 : A tensor can be classified as being isotropic (cl = 0, cp = 0, cs = 1), planar (cl = 0, cp = 0.61, cs = 0.39), or
linear (cl = 0.57, cp = 0, cs = 0.43).

3.2 Distributing Points

We render stream tubes and diffusion surfaces as collections
of points. Different colors are used to distinguish points from
different entities. The tubes and surfaces shall be point sam-
pled with the density described by the inverse of the diffusion
rate given by the symmetric tensors.

Depending on the entity, that points were sampled from, the
points are lit differently. Points from stream tubes are lit with
the lighting model for lines as proposed by Zöckler et al. [7],
whereas points on the diffusion surfaces are lit with the stan-
dard Blinn-Phong lighting model provided by OpenGL.

3.3 Stream tubes

Similar to [5] we look at the tensor field in linear regions
as a vector field consisting of the major eigenvectors of the
tensors. This vector field is traced.

We subdivide the volume into a regular grid which may be
given automatically by the resolution of the image data. Oth-
erwise, the resolution of the grid is specified explicitly.

To create stream tubes, we first create a stream line for every
stream tube. This stream line is the trajectory of the latter
stream tube.

We place a seed point into every grid cell. The tensor of this
seed point needs to have linear anisotropy. We integrate a
stream line starting at the seed point into both forward and
backward direction using a second-order Runge-Kutta inte-
grator [8]. A stream line consists of a list of ordered points
pi and is linearly approximated as a line segment between
two successive pointspi−1 andpi.

We want to place the points along a stream line such that the
density of the points on a stream line represents the linear
anisotropy of the tensors involved as described above.

To realize this behavior, we control both the arc length of the
integration process and the step width of the second-order
Runge-Kutta integrator.

The integration of the stream line stops if any of these cases

happens:

• Outside of data volume.

• Left region of linear anisotropycl > Cl whereCl is
the threshold for linear anisotropy.

• Extended point is ”too” close to a previously calculated
point.

The third point is motivated by artificial datasets where a
stream line may be a (closed) circle. In order to stop the in-
tegrating process, the integrator needs to check if it reaches
a part of the stream line that was previously integrated. For a
fast local access to the points and line segments of the stream
line, we sort the extended points into an octree. The integra-
tor just needs to look up the octree to find proximate points.

A stream tube follows the trajectory defined by the stream
line. Our approach is to render the (extended) points of the
stream line only instead of rendering the whole tube around
the stream line.

3.4 Diffusion surfaces

A crucial point for our visualization technique is to distribute
the points across diffusion surfaces. We want the points to be
distributed according to the diffusion rate over the diffusion
surface. The higher the diffusion rate, the closer have to be
the points. Remember that we want to render points instead
of shaded surfaces. The human eye connects points that lie
closer together and therefore follows automatically the more
likely diffusion direction.

Although we are only interested in rendering points, for the
integration of the diffusion surface it is advantageous to also
build a triangle mesh to ensure a proper diffusion surface.
Furthermore the connectivity information allows for smooth-
ing and successive remeshing steps.

Although the diffusion surfaces do not have to be isosurfaces
of an implicit function, they have to be manifold for differ-
entiable tensor fields. This can be easily shown from the def-

inition. The diffusion surface is restricted to the subdomain
of the tensor field, which is classified planar. Therefore, the
minor eigenvector is defined everywhere and varies continu-
ously over the planar subdomain as we supposed the tensor
field to be differentiable. As the minor eigenvector uniquely
defines the normal direction of the diffusion surface, the dif-
fusion surface has to be manifold with border loops at the
border of the planar domain.

4. DIFFUSION SURFACE INTEGRATION

As the diffusion surface has to be manifold with border, the
integration process that approximates the diffusion surface
via a triangle mesh is very similar to the encoding or rather
decoding process of a faced-based compression scheme. We
used exactly the same building scheme to build the triangu-
lar diffusion surface. There are three advantages with this
approach. Firstly, we can re-use the minimum set of build-
ing operations that allow to create manifold meshes of arbi-
trary genus. Secondly, we can re-use the data structures used
for face-based coding such that the implementation of the
diffusion surface integrator becomes very simple. And the
third advantage is that we can directly encode the triangular
diffusion surface into a space efficient representation, such
that we can easily build in-core a large number of diffusion
surfaces of high resolution.

We used a face-based compression scheme similar to the cut-
border machine [9] and the edge-breaker [10] (see also [11]
for an introduction to face-based coding) for coding and to
steer the integration. A short review of the method and the
basic building operations are given in the next subsection.

4.1 Face-Based Coding of Triangle
Meshes

Face-based coding techniques compress triangle meshes
which consist of a list of vertices and a list of triangles, each
triangle containing three vertex indices and the indices of the
edge-adjacent triangles.

The schemes are based on a region growing traversal of the
triangle mesh. The traversal begins for example with an ar-
bitrary seed triangle. The border of the growing region is
called thecut-border. It divides the mesh into theinner and
theouter part, which contain the already processed and the
untouched triangles respectively. Triangles are added to the
inner part at a distinguished current cut-border edge which
is called thegate. After each addition of a triangle the gate
moves on to another cut-border edge, until all triangles of an
edge-connected component of the triangle mesh have been
compressed. This is done for each edge-connected compo-
nent. The choice of the next gate location defines thetraver-
sal orderand steers how the cut-border grows over the mesh.

The face-based coding scheme encodes a bit-code each time
a new operation is added. The decoding performs the same
traversal and builds the face according to the encoded oper-

C
R L

E S

old /

cut-border

untouched
processed

current face
untouched

active vtx
processed

H

M

(a)

(d)

(g)

(b)

(e)

(c)

(f)

new gate

old / new

Figure 2 : The different cut-border operations in which
the processed triangle can be incident to the cut-
border.

ation. The different possible operations by which the next
triangle is incorporated into the inner part at the gate are il-
lustrated in figure 2. Thecenteroperation C in (a) adds a
new triangle to the growing region that is incident only to
the old gate and to a new vertex. The gate is moved to the
right newly added cut-border edge such that it cycles around
its target vertex. The current face in theright/left operation
R/L in (b/c) is incident to the gateandthe next/previous edge
on the cut-border. The neighborhood of the pivot vertex is
closed and a new pivot vertex is chosen with the new gate
location. In theendoperation E in (d) all edges of the cur-
rent face are incident to the cut-border and the cut-border
closes. The other growing operations describe cases when
the third vertex of the current face is on the cut-border. (e)
shows thesplit operation S, where the cut-border grows into
itself and is split into two loops with two gate locations. One
cut-border loop is pushed onto a stack and processed after
the other one is eliminated by anend operation. In order
that the decoder can replay the split operation the position
of the third vertex relative to the gate is encoded. Thehole
operation H (f) merges the current cut-border with a border
loop. We will handle border loops in a different way as done
by the cut-border machine [9]. We encode a border opera-
tion B, whenever the gate is a border edge of the mesh. As
triangle meshes describe two dimensional surfaces in three
dimensional space, two cut-border loops can grow together
again, actually once for each handle of the triangle mesh.
The operation which unifies two loops is calledmergeop-
eration M (g). It merges the current cut-border loop with
another cut-border loop and takes two indices, the index of
the other cut-border loop and the location inside that other
loop.

The cut-border data structure consists of a stack of doubly
linked lists of cut-border edges. Each cut-border edge stores

Input: seed locationx

integrate edge fromx to y
init cut-border to(x, y)
while cut-border not empty

choose gate
decide operation
apply operation to cut-border

Figure 3 : Structure of the integration algorithm.

the indices of its start vertex and of its adjacent triangle in
the inner part. The initialization creates a cut-border with
three edges. Each C,S or M operation inserts a cut-border
edge after the gate. The R and L remove the next or previous
cut-border edge and the E operation closes the loop on top of
the stack.

4.2 Cut-Border Based Surface Construc-
tion

As the face-based coding scheme can encode any manifold
mesh, one can also build any triangulated diffusion surface
during the integration.

The input to our diffusion surface integrator is a seed loca-
tion in a planar region of the volumetric domain of the ten-
sor field. We integrate the diffusion surfaces with the face-
based building operations C,L,R,E,S,M,B. Opposed to the
face-based scheme we start the building process with a sin-
gle edge and initialize the cut-border to a loop of two cut-
border edges around the edge like the face-fixer proposed by
Isenburg [12]. This first edge is created by integrating from
the seed location in the direction of the major eigenvector of
the tensor field. The integration of a new edge is described
in the next subsection in detail.

The diffusion surface is built from the initial cut-border by
extending it at one of the cut-border edges, which is called
the gate. The choice of the gate steers how the cut-border
grows the diffusion surface and is described in subsection 4.4
in detail.

We summarized the integration algorithm in figure 3. Af-
ter the cut-border has been initialized from the seed location
we successively select a gate edge, decide which of the op-
erations C,L,R,E,S,M,B to perform and apply it to the cut-
border until no cut-border edges are remaining. This can
either happen, when the diffusion surfaces closes up or when
all cut-border edges were transformed into border edges of
the mesh by a B operation at the boundary of the planar do-
main of the seed location. Figure 4 illustrates the growing
process for a spherical diffusion surface.

In this subsection it remains to explain how we decide for
a given gate location, which operation has to be performed.
We first propose one of the operations E,L,R,B or C and then
check for E,L,R or C if we should not have performed an S

gate

�0
�1

L

gate

C

�0

a) b)

C C S

c)

Figure 5 : a) angles measured to decide for L, R or E
operations b) integration direction c) check for split or
union

or M instead.

First we decide if we should propose an L,R or E operation
based on the exterior angles between the gate edge and the
previous or next edge on the cut-border as depicted in Fig-
ure 5 a). If one of the anglesα0 or α1 is smaller than a
threshold angle, that we set to seventy degrees, we decide
for an L or R operation. When the length of the current cut-
border loop is only three, we decide for an E operation in-
stead of L or R.

If both angles are larger than the threshold, we try to propose
a B operation by trying to integrate the left edge of the new
triangle as shown in Figure 5 b). The direction for integra-
tion should be in the planar case always sixty degrees. For
curved surfaces this is not possible anymore. Here we chose
to subdivide the angleα0 into k equal parts such that the re-
sulting angle is closest to sixty degrees. In the example of
Figure 5 b)k is two such that we chose the directionα0/2
away from the gate.

The integration process is in the next subsection. It returns
a target location or reports failure if the integration left the
planar domain. In case of failure we decide for a border
operation B, that will always be performed. Otherwise we
can construct with the target point a new triangle labeled with
C in the Figure 5 b).

Now we either perform a border operation or propose a new
triangle added by E,L,R or C. This triangle can intersect a
distant cut-border part as illustrated in Figure 5 c). Here we
should rather perform a S or M operation with the vertex
closest to the gate. Whether S or M is performed can be
decided by the cut-border data structure from the vertex to
which the gate will be connected. To find out if an S or M
has to be performed, we entered all cut-border edges in an
octree and checked for the proposed E,L,R and C triangles if
they cover other cut-border edges. In order to also connect
to close outside cut-border vertices we enlarge the proposed
triangles by 30% before we checked in the octree. From the

a) b) c) d)

Figure 4 : Illustration of how a diffusion surface is grown.

covered cut-border edges and vertices we selected the cut-
border vertex closest to the center of the gate and proposed
an S or M operation. See Figure 5 c) for an illustration of
this process.

4.3 Integration of New Edges

For every search direction, we define the search plane as the
plane that is orthogonal to the tangential plane at the start
point, contains the search direction vector and the start point
itself. This approach is similar to [5].

Every search plane defines a vector field along which we in-
tegrate from the start point. A vector of this vector field is,
simply spoken, defined by the cut of the search plane and
the plane which is spanned by the major and medium eigen-
vector of a tensor. The length of this vector is just the dis-
tance between the location of the tensor and the cut point of
the search plane with the ellipse defined by the major and
medium eigenvector, see figure 6.

To perform this operation quickly, we use the following sim-
ple mathematics. Letn be the normal of the current search
plane, andT be the tensor matrix at the current point. The
vector field is then defined by the following operations:

ñ = T tn

n⊥ =

(−ñ1

ñ0

0

)
vt = Tn⊥

We transform the normal vector of the search plane into the
coordinate system defined by the eigenvectors. That is just
a matrix–vector multiplication. Because we want the vector
to lie in the plane of the two largest eigenvectors, we project
the vector into this plane by setting the last coordinate to
0. Then, an orthogonal vector is set up by multiplying the
vector to a90 rotational matrix. This can be done explicitly
by just changing the coordinates. This orthogonal vector is
then transformed back into the world coordinate system to
be the vector of the vector field within the search plane.

The step width for the integration process of one search di-
rection is adapted to the eigenvalues in order to distribute the

v1

v2 vt

Search Plane

Figure 6 : A vector of the vector field defined by the cut
of the search plane and the ellipsoid within the plane of
the two largest eigenvectors.

points according to the anisotropy of the tensor field

h = C

√∑
i

w2
i n2
⊥i

wheren⊥ is the vector orthogonal to the normal vector of
the search plane as defined above,h is the step width, andC
is a user-controlled constant which can further influence the
density of the points. The weightswi are chosen to represent
the proportional behavior to the anisotropy as

wi =
1

λi

4.4 Traversal Order

In order to avoid a large number of S or M operations
we used a similar strategy as proposed by Alliez and Des-
brun [13]. The method is based on the observation that S
operations arise very seldom at cut-border edges that are in
a convex region. Therefore we measured for each cut-border
edge the two exterior anglesα0 andα1. The smaller these
angles are, the more convex is the region around this cut-
border edge. As it is already fine if one of the angles is small,
we sorted the cut-border edges according to the minimum if
the exterior edges into a priority queue. Each time a new gate
has to be chosen, we extracted the most convex from the pri-
ority queue. After each basic operation we updated also the

cut-border edges adjacent to newly added or removed ones
and re-positioned them in the queue. Figure 4 illustrates that
the cut-border stays nicely shaped during the integration pro-
cess.

5. RESULTS & ANALYSIS

We tested our algorithm with tensor fields that include sin-
gularities which need to be bypassed by the integration and
meshing process. We created artificial tensor fields to simu-
late different behavior.

The Spiral example has singularities on the z axis. The ten-
sors have planar anisotropy around the z axis, see figure 7.
The diffusion surfaces are rendered as triangular meshes to
show how the mesh generation follows exactly the diffusion
surface and thereby bypasses the singularities.

The Sphere dataset, figure 4 d, presents the ability to han-
dle self–intersections. If the mesh grows into a previously
integrated region, the algorithm detects this intersection and
connects the boundaries to build a triangular mesh.

A dataset similar to sphere, see figure 11, demonstrates the
usefulness and power of the point–rendering approach. The
interior stream lines are completely enclosed by a mesh but
they remain visible.

The Sinosoidal example shows both stream tubes and stream
surfaces within a dataset that varies anisotropy very fre-
quently. Figure 9 shows a simple preview of the dataset
displaying the major, medium, and minor axes of the ten-
sors within a 10x10x10 grid. The color encode the differ-
ent anisotropies. Green is planar anisotropy, red linear, blue
isotropy, and gray is undefined. Figure 9 shows the point–
rendered stream tubes and diffusion surfaces.

The crucial part of the performance of our algorithm is the
integration process itself. Thus the step width of the integra-
tion step is the limiting factor and needs to be adapted very
carefully to the anisotropy of the tensor field.

Note that the distribution of the points over the diffusion sur-
face may not be optimal. We did not implement an optimiza-
tion algorithm for placing the points. We can ensure that the
whole diffusion surface is extracted because our approach
starts with an initial triangle and grows it’s border until it
reaches a non–linear region, and that the distance between
points along edges that were integrated is optimal in terms
of that this distance accords to the diffusion rate along this
edge. But there may be edges that were not integrated but
artificially inserted by the cut–border operations. The opti-
mal distribution of points over a diffusion surface is topic of
further research.

6. CONCLUSION

We presented an algorithm that tracks stream tubes and diffu-
sion surfaces of tensor fields according to the anisotropy of

Figure 7 : The diffusion surface is a spiral around the
singularities at the z axis.

the tensor field. The resulting points are rendered as point
clouds where different entities are distinguished by color.
Because the points of an entity are much closer than the dis-
tance between the single entities, the human eye is able to
differentiate between these entities, additionally to the color
coding. Furthermore, the point rendering enables a deeper
insight into the volumetric information of the tensor field.

The generation of the diffusion surfaces is very similar to
the decoding process of a faced-based compression scheme.
Exactly the same building scheme can be used. This allows
for a simple implementation and a compact representation of
the generated mesh. The diffusion surface can thereby be of
arbitrary genus.

References

[1] Lorenson W.E., Cline H.E. “Marching Cubes; A High
Resolution 3D Surface Reconstruction Algorithm.”
Computer Graphics (Proceedings of SIGGRAPH’87),
vol. 21, pp. 163–169. Jul 1987

[2] Hultquist J.P. “Constructing Stream Surfaces in Steady
3D Vector Fields.” RNR Technical Report RNR-
92-025, NASA Advanced Supercomputing Division
(NAS), Aug 1992. URLhttp://www.nas.nasa.
gov/Research/Reports/Techreports/
1992/rnr-92-025-abstract.html

[3] Scheuermann G., Bobach T., Hagen H., Mahrous K.,
Hamann B., Joy K.I., Kollmann W. “A tetrahedra-
based stream surface algorithm.”IEEE Visualization
2001 Proceedings, pp. 151–158. 2001

http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1992/rnr-92-025-abstract.html

[4] van Wijk J.J. “Implicit stream surfaces.”Proceedings
of the Visualization ’93 Conference, pp. 245–252. Oct
1993

[5] Zhang S., Demiralp C., Laidlaw D.H. “Visualizing
Diffusion Tensor MR Images Using Streamtubes and
Streamsurfaces.”IEEE Trans. Visualization Computer
Graphics, p. (in press), 2002

[6] Westin C.F., Peled S., Gubjartsson H., Kikinis R.,
Jolesz F. “Geometrical diffusion measures for MRI
from tensor basis analysis.”Proceedings of ISMRM.
1997

[7] Zöckler M., Stalling D., Hege H. “Interactive Visual-
ization Of 3D-Vector Fields Using Illuminated Stream
Lines.” Proceedings of the Visualization ’96 Confer-
ence, pp. 107–113. Oct 1996

[8] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery
B.P. Numerical Recipies in C: The Art of Scientific
Computing. Cambridge University Press, Cambridge,
England, second edn., 1992

[9] Gumhold S., Straßer W. “Real Time Compression of
Triangle Mesh Connectivity.” M. Cohen, editor,SIG-
GRAPH 98 Conference Proceedings, Annual Confer-
ence Series, pp. 133–140. ACM SIGGRAPH, Addison
Wesley, Jul. 1998. ISBN 0-89791-999-8

[10] Rossignac J. “Edgebreaker: Connectivity compression
for triangle meshes.” Technical Report GIT-GVU-98-
35, Georgia Institute of Technology, Oct. 1998

[11] Gotsman C., Gumhold S., Kobbelt L. “Tutorials on
Multiresolution in Geometric Modelling.” pp. 319–
362, 2002

[12] Isenburg M., Snoeyink J. “Face Fixer: Compress-
ing Polygon Meshes with Properties.”SIGGRAPH’00
Conference Proceedings, pp. 263–270. 2000

[13] Alliez P., Desbrun M. “Valence-Driven Connectivity
Encoding for 3D Meshes.”Eurographics’01 Confer-
ence Proceedings, pp. 480–489. 2001

Figure 8 : The preview for the dataset shown in Figure 9. Green is planar anisotropy, red linear. Shown are the axes of
the eigenvectors.

Figure 9 : Stream tubes and diffusion surfaces rendered as point clouds.

Figure 10 : A classic approach for visualizing tensor fields is to render ellipsoids. Note the lack of visibility due to
occlusion of the ellipsoids.

Figure 11 : The power of point rendering. The interior stream lines are still visible although they are encapsulated by a
closed surface.

	Introduction
	Related Work
	Point-Based Tensor Field Visualization
	Volume Segmentation
	Distributing Points
	Stream tubes
	Diffusion surfaces

	Diffusion Surface Integration
	Face-Based Coding of Triangle Meshes
	Cut-Border Based Surface Construction
	Integration of New Edges
	Traversal Order

	Results & Analysis
	Conclusion

