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Abstract

The use of non-linear optimal curves for an intuitive design with interpolating curves
is proposed. The curve design system is based on an optimization algorithm that can
minimize a variety of optimality functionals, which are based on the integration of the
curve length, curvature and curvature derivatives. Besides the to be interpolated points
further constraints on the curve normals can be incorporated easily into the optimization
approach. It is furthermore shown how to design interpolating curves with continuity
higher tharC"*.
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1 Introduction

Linear and rational splines are widely used in design and drawing tools. Their invention dates
back to an early paper of Schoenberg [19] and a comprehensive treatment can be found first
in [1] and later in[[3]. For a curve design with interpolating curves [4], it is however very hard

to avoid unnecessary loops and wiggles. In this paper we propose to solve the interpolation
problem with optimal curves that minimize an user defined functional. The functional is
defined from the curve length, curvature and curvature derivatives and includes parameters
that can be adjusted by the designer to fine-tune the shape of the curve.

The interpolation with optimal curves has been studied in the literature since the sixties.
The research has been motivated by the ship-building, aircraft and car industry, where the
technique of lofting was employed to design shapes. For this thin wooden planks were passed
through points laid out on the floor of a large design loft. The physical model for the thin
wooden plank is the elastic line, which tries to minimize its internal energy. The internal en-
ergy is by the Euler-Bernoulli lavi [21] proportional to the integral over the squared curvature
of the elastic line (see alsp [13]). If the elastic line is represented as aclive R — R?,



the functional of the integrated curvature reads

L(c)

K(c) = / w2 (s)ds. 1)

s=0

The curve is assumed to be parameterized by its arc lengtid L(c) is the total length
of the curve. In 2d the curvaturgs) is simply det(c’, ¢”’) with the firstc’ and secona”
derivatives for the arc length where||c’(s)| = 1.

If the elastic line is constraint to pass through a givenpisof interpolation points, it
minimizes the internal energy or equivalerfily 1 under the given interpolation constraints,
where it is typically assumed that the length of the elastic line is not constrained. In order to
compute the shape of the elastic line, one has to solve for each sefpniestiveenp,; and
p;+1 the minimization problem

c;, = minar K(c).

cie(0)=pihe(L(2)=pr1 (c)
The solution curves; are the so-called non-linear splines and can be computed by plugging
f(s) = k2(s) into the Euler-Lagrange equations. This yields [13] the following second order
differential equation in the curvature

1
K"+ 5,%3 =0, (2

where the derivatives are with respect to the arc length paramefehis equation can be
solved in a cylindrical coordinate system, where it transforms into a simple wave equation in
the square of the curvature.

If the variational functionf(s) depends on the—th derivative of the curve(s) and on
no higher derivatives, boundary conditions tg0),c’(0),...,c™~1(0) and forc(L(c)),
c/(L(c)),...,c" V(L(c)) are necessary to specify the optimal curve uniquely. In the case
of the non-linear spling(s) depends or(s) and therefore on the second derivativec (),
such that besides the interpolation constraints also the first derivative of the end points of each
segment have to be constrained to uniquely define the non-linear spline. At interiorgoints
the incident spline segments are typically constrained to fulfill@lecontinuity condition
c,_,(p:) = c}(p;), whereas at free end points the natural boundary condition is chosen, that
enforces zero curvature.

The non-linear spline interpolation problem has been solved in different Walyis [11, 14, 6,
13,[17/9[10,17]. One can distinguish two general types of approaches. In the direct approach
one tries to optimize the curve directly, whereas in the indirect approach one first seeks for
a solution to the differential equatiph 2 and then determines a curve with the given curvature
values. In the indirect approach one typically has to switch several times between solving the
curvature DGL and embedding the curve (see for example [18]).

Besides the physically founded curvature based functjdnal 1 a variety of other to be min-
imized functionals have been investigated for the design of curvéshMr [12] minimizes
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Figure 1: Sample interaction with the system. The red balls are the interpolation constraints.
Dark blue arrows show the curve normals resulting from the optimization. The cyan arrows
are normal constraints specified by the user and the yellow arrows are one sided normal
constraints. a)-~ b) change of normal constraint; b} c) insertion of point. d) a heart
designed with two double normal constraints, that introduce two sharp corners.

the square of the relative curvature changg: to approximate data points;, y;) with a
smooth function. The appearancexah the denominator penalizes reflection points (points,
where the curvature becomes zero) with an infinite penalty, such that the number of reflection
points has to be specified by the user. Moreton and Sequin [16] use only the squared deriva-
tive x’ of the curvature to define optimal interpolating curves. Schneider and KobbElt [18]
use the simplified versior” = 0 of the differential equatioh]2 to define a fair interpolat-

ing curve, as this DGL can be generalized to surfaces. Alon and Bergimann [2] analytically
solved the variational minimization problem for arbitrary curvature exponerits.

L(c)
c; = minarg / k(s)|%ds.
ce(O)=pire(L(e)=pirs J (=)l

The resulting analytic expressions of the optimal curves can be expressed in terms of tran-
scendental functions and make it quite complicated to combine several spline segments con-
tinuously.

In this work a curve design system is developed, which is based on a general optimization
algorithm that can handle a wide variety of functionals based on the length of the curve, its
curvature and the curvature derivatives. The user specifies a polygen, ..., p. that
represents the ordered interpolation constraints. He can insert, remove and move the points
with simple mouse interaction. Furthermore he can scale and rotate the design plane. At
each poinip, additional constraints on the curve normal can be specified. Higure 1 shows an
example interaction and a heart with double normal constraints set, i.e. different normals for
the incoming and outgoing curve.

For curve design it turned out that the combination of curve length and curvature results
in an adjustable functional, which is very intuitive and allows to trade-off between smooth
and short curves as detailed in secfipn 3. This is very similar to exponential splines derived
from a linear differential ansatz [20]. But before that, the curve optimization algorithm is



explained in sectiop|2. The main contributions of the paper are
e acurve design system based on optimal curves

an adaptive curve optimization algorithm supporting a very general optimization func-
tional

e a new discrete curvature measure that significantly improves convergence during opti-
mization

an intuitive curve design paradigm based on length and curvature

a proposal for the generation of interpolati§® curves

2 Curve Optimization

This section describes the proposed definition of optimal curves and how these are computed.
The functional itself is presented[in 2.1. Itis very general and contains most known function-
als as a special case. One important design criterion hereby is that the minimizing curves
have to be not only rotational and translational invariant, but also independent of scale.

As the Euler Lagrange equations of the proposed functional become too complicated to
be solved analytically, an optimization algorithm is used to minimize the functional directly
on a sequence of polygons that approximate the optimal curve with increasing resolution.
The curve discretization is detailed in sectjon 2.2. The optimization algorithm as described
in[2.3 is applied hierarchically and adaptively.

2.1 Optimality Functional

It is well known that the curvature is invariant under rotations and translations. The same
holds for the length of the curve and the infinitesimal arc length eleaenieither of the
two functionals are invariant under scaling. If a cuevie scaled by a factor afto ¢ = gc the
length of the curve is also scaled hybut the curvature by. This is because the curvature
is proportional to the inverse of the bending radius, which is scaleg thy general do the
curvature and its derivatives scale as

1 W _, L

c—qc K — —K K g R 3

q q
The different behavior under scaling is not a problem for the definition of optimal curves
based only on curvature or only on length. The minimal value of the functional does change
under scaling, but the minimizing curve stays the same as the scaling facaorbe taken

out of the integral:
. 2
/ (H> qds = 1/H?ds. (4)
q q



When combining the curve length, curvature and curvature derivatives into a joined func-
tional, care has to be taken that the minimizing curve does not dependent on the scale.

In the proposed approach the curvature and its derivatives are multiplied with a property
that has the reciprocal dependence on the scale. The simplest property, which is propor-
tional to the scale, is the lengfh, of the polygon formed by the interpolation constraipts
Therefore, the scale independent optimization functional is defined as

F(Cvﬁvﬂ()w'~aﬁd7a0a"'7ad) -

L(e) .

o
[ o mainza™ 4 3 o w0zt as ©)
s=0 k=1

with the specializationé(c) = F(c,1,0,...) andK(c) = F(c,0,1,0,...,0,2/L2,0,...).
It is easy to check thaf'(¢qc) = ¢F'(c), what implies the invariance of the minimizing curve
under scaling. All thexs andgs can be adjusted in the proposed design system.

2.2 Discretization

2.2.1 Polygonal Approximation
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Figure 2: Notation for the discretization of the optimal curve into polygons.

The curve is approximated by a discrete polyggn. .., c;, ... on each resolution level
during hierarchical curve optimization. Figlife 2 a) illustrates the used notation. The subscript
j is used to distinguish the entities of the approximating polygon from the entities of the
polygonp; that describes the interpolation constraints. For each edipe length is denoted
by l;. At each pointc; the lengths of the incident edges are averaged to the incremental arc
lengths;.

2.2.2 Curvature Discretization

To be able to evaluate the functiofgl 5 also the discrete curvatyreave to be approxi-
mated, what is done at each point For this the delta vectorA; = ¢, — c are defined

as illustrated in Figurg]2 b). A commonly used curvature discretization results from fitting a
circle throughc;_1, c; andc;1; and from using the inverse radius as a curvature approxima-
tion x°. One can also use the discrete chapgésee Figurg|2 b) of the tangent together with



the curvature definition(s) = d¢/9s in order to come up with a second discretizatich
Given the normalized delta vectat$ = A /1; the two curvature discretizations are

K = det(c; 1, ¢)) = Sin ¢ and k¢ = i
! |\Cj+1*CJ—1|| l[ej+1 —cj-1]| I 28y

(6)
Both curvature approximations are useful for small anglgs As the input to the curve
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Figure 3: Examination of curvature gradient in dependence of tangential clignge)
examlned scenario: partial derivativerof with respect to the-component ot;; b) plot of

2 k2(¢;); ©) plot of Z k().

design system is an arbitrary user defined polyggrall angles in the range &f; € [—, 7]
can arise. In Figurg]3 the problem with using the standard curvature measures is illustrated
in the simplified situation shown in a). For the optimization algorithm the crucial ingredient
is the gradient of the curvatures for thec;. By symmetry is the major curvature change
in Figure[3 a) along the-direction. The simple geometly ; = I; = s; = 1 allows us to
compute the partial derivatives of andnj5 with respect to the-component of the point;.
The resulting plots are shown in Fig 3 b) and c). The gradierf a$ negative, which
implies that the curvature increases with a displacemenj af negativex-direction. This
makes sense as the tangential angle changecreases. But with increasing the gradient
of x; decreases to zero. This is not what one would expect and also yields to a convergence
problem for the optimization procedure that has to get rid of all sharp angles eventually to
generate a smooth curve. For the discretizatsiﬁrthe gradient even becomes positive for
anglesp; > m/2.

As both curvature discretizations are a functionggfover a length, we start with the

general ansatz
_ sin~y
fo f(ey) f (ﬂ' 2atan (COSW*I))
55 2\/51112 v+ (cosy — x)?

wherex denotes the displacement of thecoordinate ofc; andy = (7 — ¢;)/2 the inner
half-angle as labeled in Figyré 3 a). A displacement;dfy = along thex-axis reducesos ~y

by x, which is accounted for in the above formula on the right with the help of the arc tangent
function.




Some algebra yields the derivative[¢f 7 with respect &tz = 0, which corresponds to
the gradient:

S = 0) = 58 cosy = 20 siny = 3 F()sin Y~ (o) cos L. @)

Any desired gradient can now be designed with an appropriate chojceH#re the gradient
was set to a constantg, but any other choice would have been possible. The result is a
differential equation forf (¢;):
0= 2 f(6;)sin % - %(@)cos % 4y,

with the solutionf(¢,) = (g¢; + ®)/ cos %, where® is an integration constang is fixed
to be zero ang@ to be one by the addltlonal constraint thahas to behave aroung, = 0
like ¢;/2s;. The solutionf(¢;) = qu/%‘bj goes to infinity when the inner angte — 0,
i.e. ¢; — £m. This makes intuitively a lot of sense as an arbitrarily sharp corner implies an
infinite curvature, but in praxis the infinite value is hard to handle

By inspection it can be shown furthermore tifat;) = ¢; 5 results for all0 <
d < 1in aconstant gradient between minus one and zerd¢Ass Iess thanr, the modified
function maps allp; € [—, 7] to finite values. If for examplé = 0.1 is chosen, no values
larger thar1.1 will arise. Putting it all together, the following discretization of the curvature
is proposed

®;

— 9)
2s; cos %

Kkj(85,95) =

2.2.3 Derivatives and Integration

Finally, the curvature derivatives and the integral in the definition of funct[gnal 5 have to be
discretized. The derivatives were simply computed with one-sided finite differences. Every
odd order derivative can be thought of being computed at the edge centers, whereas the even
order derivatives are computed at the poirjtike the curvature itself. The discrete curvature
derivatives are defined recursively from the curvaturgsvhich are identified withcg.o)

k k—1 k-1
Voddk >1: ¥ = (§+1> it ))/Z,

k k-1 k—1)
Vevenk >2: " = (fig —c )/S]

Notice that the arc length elemesit is used for derivatives defined at points and the edge
lengthsi; for derivatives on edge centers. Similady,and/; respectively have to be multi-
plied for integration

Fdiscrete(cvﬁaﬂm"~7ﬂd70‘05---aad) =

Z 8+ Z ﬁk’ Lk+1‘ lj + Bo |l€jL0‘a0 + Z B ’,{(k)Lg""l' ‘ 5j

j k=1,3,. k=24,...



2.3 Hierarchical and Adaptive Optimizer

The optimal curve is approximated by a sequen?:;ecjl., ... of polygons with increasing
resolution and decreasing edge length, that converges to the minimizingcctrviim c

a— 00 7
The polygonp; that connects the interpolation constraints is used as startingq@oiﬁbm
which also the lengtti, is computed. This is a good starting pointc@sminimizes the total
lengthL(c), i.e. F(c,1,0,...).
The next finer approximation is derived frar@ by adding a vertex in the middle of each
edge. Other center placement strategies were tried but proved to be less stable.

2.3.1 Adaptivity

The user can specify a target resoluti@as termination criterion for the edge subdivision
process. The resolution is measured in pixels per bounding box extent of the curve. This
allows to compute a maximum allowed errqgf.,. Instead of subdividing all edges, only
those that cause an error larger thap, are subdivided.

Figure 4: a) maximal edge error is in the middle of the edge and computed-fresw; /2 =
[;/2 andrsing;/2 = 1 — ¢; b) example of an adaptively subdivided curve with a target
resolution ofp = 1000.

The approximation error at an edge of the polygon depends on the Igngftthe edge
and the incident angles; and¢;,,. Each of the angleg; defines together with the length
l; a circle that is tangential to the curve@gtwith relation to the approximated normaj.
Figureg[4 a) shows that the maximum error at the edge center computes to

elly,0;) =1; (1 — cos ¢2j> /2sin %

In each subdivision step all edges withax {e(l;, ¢;), €(l;, ¢;+1)} > €emax are subdivided.
Figureg[4 b) shows an example of an adaptively subdivided curve.



2.3.2 Conjugate Gradient Minimization

After each subdivision a conjugate gradient minimization algorithm is used to place the un-
constraint points in order to minimize the functiofdl The movement of each point was
restricted to the direction normal to the curve by reducingtheariablesc; to then vari-
ablesd;, with F'(6;) = F(c; + é;n;) and the normal directiom;. To define the normal
direction, the operator is introduced to define the rotation of a vectorhy2

*
X L y
() =(%)
The normal directions can then be defined from the normalized tangent vectors as

(a1 +¢j)
T e el
Jj—1 J
The main ingredient to the conjugate gradient minimizer is a method that computes the
gradient
Vs, F(cj +6n;) = (Fs,, ..., F5,) (¢; + ;mn;),

with Fis, being the partial derivative af for §;.
When the normal direction is kept fix, this gradient can be computed from the gradient
matrix for thec; = (z;,y;) consisting of all the 2d partial derivatives foy

VCjF(Cj) = (Fc1a"'7Fcn)(cj) = ([ ?g; :| RRI) l: ?;: :|) (Cj)
with the scalar productss, = (Fy; F,;)n;.

The gradient matri¥/ .., F" was computed analytically in order to avoid numerical prob-
lems. The main constitutes are the 2d partial derivatives of the length elemant the
curvatures; for thecy, with k = j — 1, 4, 5 + 1. The anglep; in the curvature definition can
be written in terms of the delta vectors as

Y, N
¢; = atanfjj, X = AijlAj, Y, = AijlAj.

The curvature derivatives can be expressed wjth= ¢; /2.1 and f(¢;) := ¢;/ cos p; as

aY; 0X;
8’% _ 1 + f(d)j)tanp X dci Y; Bckj Ry 8Sj
dey, cosp; 2.1 25;(X7 +Y}?) s 0cy’

Finally, the partial derivatives o ;, Y; ands; for k = j —1, 4, j + 1 can be written in vector
notation with the upper component corresponding te j — 1 and the lower tdc = j + 1

—A. —A* —c’
0X; J dY; J s, i1
—L =0 A A, L= A AT L 2L ={ ¢, —C
8Ck J gt 8Ck ]_3;71 7 8ck J lc/_ J

j—1 J
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Figure 5: Incorporation of normal constraints into hierarchical optimization: a) for constraint
with in- and outgoing normals, adjacent points are also fixed; b) after subdivision again the
adjacent points are fixed by normal constraint; ¢) single normal constraints are kept by rotat-
ing back the two adjacent points to align computed normal with constraint normal.

All derivatives of the functions in the functional that dependsgrands; can be derived from
the given formulas with the basic derivative rules.

To incorporate the interpolation constraints, theof the pointsc;, that coincided with
an interpolation constraint; were set to zero.

With the known gradient the step widthnecessary to the conjugate gradient algorithm
was determined by minimizing the one parameter funcéia) = (c; + od;n;) with a
maximum of ten Newton-Raphson iterations. After performing eachestep c; + od;n;
the normals and thé;-gradients were recomputed. The conjugate gradient optimization
typically converged for each resolutief after between ten and twenty steps allowing for an
interactive curve design with about two curve optimizations per second on a P4 with 2GHz
for a target resolution of 500 pixels.

3 Curve Design

3.1 Adding Constraints

In a lot of situations the user wants to explicitly specify the curve normals and introduce sharp
corners. These additional constraints can be easily incorporated into the design system. At
the moment two further constraints on the normals are supported. The user can either specify
the normal directiom; for a given interpolation constraipt;, or he can specify the incoming
normalni® and the outgoing normai$“t. In Figure[:lr the normal constraints are visualized
by cyan arrows and the double normal constraints with two yellow arrows.

As non of the normal constraints has to be fulfilled in the initial poly@(;}n an new
initial polygon ég was computed, where all normal constraints are satisfied. For this all edges
incident to a single or double normal constraint were split and the newly inserted point were
positioned in a way to fulfill the corresponding normal constraint.

In order to keep all normal constraints satisfied during optimization, all points incident to
a double normal constraint were fixed as illustrated in Figlire 5 a). After each subdivision,
the previously fixed neighbors become free and the new direct neighbors are fixed (see Fig-



ure[3 b). The curvatures at the point with the double normal constraints was set to zero to
implement natural boundary conditions.

The single normal constraint is more difficult to fulfill, at least if the curvature is not
fixed. The single normal constraint is accomplished by updating the neighboring points after
each addition of the gradient. For this the actual normal was computed and the two direct
neighbors were rotated around the constrained point such that the current normal matches the
constraint normal (see Figuré 5 c). In this way the curvature can change freely. It would also
be easy to add constraints on the curvatures themselves. But this is not yet implement.

3.2 Trading Off Between Length and Curvature

So far it was only discussed how the user can specify point and normal constraints, but the
free parameters of the functiorfjal 5 have not been exploited yet. The most intuitive contribu-
tions to the functional are the total length of the curve, which is weighte@ ibyF', and the

total curvature, which is taken to the poweraaf and weighted bys,. Let us therefore first
examine the restriction of the functional #{c, 3, 5o, 0, . . ., a0, 0, .. .). Some experimenta-

tion showed that the influence of the curvature expomgris not very intuitive to design a
curve and it was simply fixed to the physically motivated value@f= 2.

The two parameter§ and 3, remain to be adjusted by the user. This is one parameter
too much as the curve that minimizes the functional does not change if the functional is
multiplied by a constant. The simplest approach would be to set one parameter to one, for
examples = 1. The other parametek, would have to be varied between zero and infinity to
generate all possible minimizing curves.

For the user it is easier to trade off between a short and a low-curvature curve with a
parameten € [0, 1], whereA = 0 corresponding to the shortest possible curve ard1 to
the curve with the minimal curvature. Again the simplest approach of seiting — A and
Bo = A does not provide an intuitive control for the user. This will be explained right after
introducing the solution to the problem that useand a to be determined scale facjor

L(c)
Faimp(c,\) = / (1= A\)g+ \|kLo|* ds, (10)

s=0

with 8 = ¢(1 — X\) andS, = A. In order to understand why the scale facjds necessary,
let us definecgimp(A)

Csimp(A) = minarg Fyimp(c, A)

c:ic(z;)=p;

as the curve that minimizes the simplified functional. The cutyg, (1) is clearly indepen-
dent ofq as the corresponding functional does not contain the length term. Butalsg0)
is independent of, even ifg varies along the curve. It will always be the polygon connecting
the interpolation constraings;. This is also the reason, whywas incorporated int@ and
not into 3y, what would have changed the cureg,,, (1) if ¢ varies over the curve. The
CUIVeSCs;mp (0) andcg;mp (1) are used as reference curves to deterrmine



Figure 6: Influence of on the uniformity of the\ control to trade off between short and low-
curvature curves: a) and b) show the minimizing curvesXfer 0,0.1,...,1; a)¢ = 100:

mostA-curves are nearly identical; )= 5000: much more uniform distribution.
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Figure 7: Plot ofy(n) with a logarithmic regression line corresponding €3-57+0-98,

The choice of the scale factgris important as it allows to adjust the uniformity, with
which the parametek navigates fromcg;.,,(0) t0 Cgimp(1). Figure@ shows the curves
Csimp(0), Csimp(0.1), . . ., csimp(1) for two different choices of. In a) a bad value has been
chosen such that mostcurves are close t0g;,,,,(1), whereas in b) the users intuition is
matched better with a near uniform distribution of the differ®murves.

As the used optimization functional is independent of scale, also the fastoould be
a constant in terms of scale. The optimgallepends primarily on the relation between the
lengths of the reference curves,,,,(0) andcg;,,(1), which are used to define the fraction

_ L(csimp(0))
L(Csimp(l))

n even differs for the different curve segments as can be seen in figure 6 b). In the more
bellied segments, the-curves are more attracted by the shortest curve, whereas in the shorter

€ [0,1]. (11)



segments the-curves are pulled towards the low-curvature curve. This has to be balanced
with a different choice of; for each segment. The dependenceg oh n was examined by
adjustingg for differentns by hand. Figurg]7 plots the result on a logarithmic scale. The
regression line corresponds to the relation

Q(U) — 103.5n+0.08' (12)

Both the user specified parametels well as the scalg(n) can vary over the curve.

7 is different for each curve segmefif between two interpolation constraints, p;+1. A
differents; is therefore defined for each segment in correspondencé with 11. Furthermore, is
a more flexible curve design possible if the user can also specify different vglfi@seach
segment.

Finally, have the values; and\; to be interpolated along the curve such that continuous
functionn(s) andA(s) are produced. This is necessary to avoid discontinuities in the func-
tional F;,,,, (¢, A(s)), which would destroy the continuity of the minimizing curve. One way
to achieve higher continuity is the use of spline basis functions defined over the arc length
parameter. As this would destroy the locality of the user defingdthe following local
interpolation scheme was used.

A C*k-continuous connection between two functigifs € [0, 1]) andg(z € [1,2]) with
f(1) = g(1) atz = 1 can most easily be achieved by enforcing the firsterivatives to
be zero atr = 1, i.e. f'(1) = 0 = ¢g’(1),...,f®(1) = 0 = ¢g®)(1). If f(x) is used for
interpolation between, atz = 0 and\; atz = 1, the following ansatz can be made:

f(@) =21 = p(x)) + Ap(x),
with the interpolation functiop(x € [0, 1]), that has to fulfill the following constraints
e 0 €10,1],0(0) =0andp(l) =1
o pM(0)=0=¢"(1)
e p(l—xz)=1-¢p(x).

The first constraint ensures interpolation\gfand)\; . The second guarantee€’4-connection
to the previous and next function and the third assures symmetry.

From the first two constraints one can compute for any continuity grdarnique polyg-
onal functionpy (x) of order2k + 1, which also fulfils the symmetry constraint. The first five
of these functions are

= x

—973 + 322

62> — 152% + 1023

= —20z7 + 7025 — 8425 + 3524

= 7027 — 3152% + 54027 — 4202° + 1262°.
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The functionp, was used to interpolatg andn; along the curve. Given the valugsands;

at the edge centers of the polygpp the values at each; were defined to be the averaged
values); = (\i_1 + \;)/2 andi; = (n;_1 + 7:)/2. Each segmens; was then split in the
middle into two parts and in the first halfwas interpolated from, to \; and in the second
part from); to \; ;1. The resultingC# functions(s) andn(s) where finally plugged into

the functional 1P withy(s) = ¢(n(s)).

c)

Figure 8: Curve design with local changes of the parameterhe adjusted parameters
are written close to the edge centers of the polypana) all \; are the same, b) tw®; set
to one, dragging the curve tQ,,,,,(1), c) the same twa,; set to zero, dragging the curve to

Csimp(o)-

Figure[$ gives an example for the design of a curve with differestadjusted. During
the curve design the reference curegs,,(0) (black) andcg;,,,,(1) (yellow) were drawn to
guide the user.

3.3 Arbitrarily Smooth Curves

As a second application of the general optimization functional the creation of highly continu-
ous interpolating curves was examined. Figdre 9 shows a study of interpolating curves, were
the squared-th derivative of the curvature was minimized for= 1,2, 3,4. The implicit
side conditions of the Euler-Langrange equation up tqthe 1)-th derivative imply that the
shown curves ar€?, C3, C* andC® continuous.

One of the future goals is to design an interpolatiffj-curve, probably with alty, = 2
and an appropriate choice for ti¥g. For this an analysis similar to the previous section has
to be performed in order to find-parameters for eachy,. With these\,s one can define a
C*°-curve from a sequence), Ay, ...

4 Conclusion and Future Work

In this work an optimization algorithm was implemented that allows to compute interpolat-
ing curves that minimize a very general functional based on the curve length, curvature and
curvature derivatives. A new formula for the computation of the discrete curvature was in-
troduced, that provides a useful gradient for optimization also at arbitrarily sharp corners.
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Figure 9: Study of minimizing higher and higher derivatives of the curvature.

The second part of the paper studies the support for additional constraints on the normal of
the curve. A functional with one intuitive parametewas proposed that allows to trade off
between short and low-curvature curves. Finally, the use of a functional with all curvature
derivatives was suggested to defin€® interpolating curve.

There are a lot of avenues for future work. The first direction would be a generaliza-
tion to three dimensions in order to allow camera path planning. Further constraints defined
by obstacles could be easily incorporated as long as an initial intersection free path is pro-
vided. The second direction of future work would be the generalization to surfaces. There
is a lot of ongoing research on how to compute good curvature approximations on discrete
surfaces[[15,15,/8]. Surfaces, of which curvature and area can be traded off could provide
an important reference to analyze new approaches. Finally, there are a lot of applications
in medical imaging and computer vision, where optimal curves and surfaces are placed in a
potential field derived from a 2d or 3d image in order to solve the segmentation problem in a
robust way.
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