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Abstract

The use of non-linear optimal curves for an intuitive design with interpolating curves
is proposed. The curve design system is based on an optimization algorithm that can
minimize a variety of optimality functionals, which are based on the integration of the
curve length, curvature and curvature derivatives. Besides the to be interpolated points
further constraints on the curve normals can be incorporated easily into the optimization
approach. It is furthermore shown how to design interpolating curves with continuity
higher thanC1.
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1 Introduction

Linear and rational splines are widely used in design and drawing tools. Their invention dates
back to an early paper of Schoenberg [19] and a comprehensive treatment can be found first
in [1] and later in [3]. For a curve design with interpolating curves [4], it is however very hard
to avoid unnecessary loops and wiggles. In this paper we propose to solve the interpolation
problem with optimal curves that minimize an user defined functional. The functional is
defined from the curve length, curvature and curvature derivatives and includes parameters
that can be adjusted by the designer to fine-tune the shape of the curve.

The interpolation with optimal curves has been studied in the literature since the sixties.
The research has been motivated by the ship-building, aircraft and car industry, where the
technique of lofting was employed to design shapes. For this thin wooden planks were passed
through points laid out on the floor of a large design loft. The physical model for the thin
wooden plank is the elastic line, which tries to minimize its internal energy. The internal en-
ergy is by the Euler-Bernoulli law [21] proportional to the integral over the squared curvature
of the elastic line (see also [13]). If the elastic line is represented as a curvec(s) : < → <2,
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the functional of the integrated curvature reads

K(c) =

L(c)∫
s=0

κ2(s)ds. (1)

The curve is assumed to be parameterized by its arc lengths andL(c) is the total length
of the curve. In 2d the curvatureκ(s) is simplydet(c′, c′′) with the firstc′ and secondc′′

derivatives for the arc lengths, where‖c′(s)‖ ≡ 1.
If the elastic line is constraint to pass through a given listpi of interpolation points, it

minimizes the internal energy or equivalently 1 under the given interpolation constraints,
where it is typically assumed that the length of the elastic line is not constrained. In order to
compute the shape of the elastic line, one has to solve for each segmentSi betweenpi and
pi+1 the minimization problem

ci = minarg
c:c(0)=pi∧c(L(c))=pi+1

K(c).

The solution curvesci are the so-called non-linear splines and can be computed by plugging
f(s) = κ2(s) into the Euler-Lagrange equations. This yields [13] the following second order
differential equation in the curvature

κ′′ +
1
2
κ3 = 0, (2)

where the derivatives are with respect to the arc length parameters. This equation can be
solved in a cylindrical coordinate system, where it transforms into a simple wave equation in
the square of the curvature.

If the variational functionf(s) depends on then−th derivative of the curvec(s) and on
no higher derivatives, boundary conditions forc(0), c′(0), . . . , c(n−1)(0) and forc(L(c)),
c′(L(c)) , . . ., c(n−1)(L(c)) are necessary to specify the optimal curve uniquely. In the case
of the non-linear splinef(s) depends onκ(s) and therefore on the second derivative ofc(s),
such that besides the interpolation constraints also the first derivative of the end points of each
segment have to be constrained to uniquely define the non-linear spline. At interior pointspi

the incident spline segments are typically constrained to fulfill theC1-continuity condition
c′i−1(pi) = c′i(pi), whereas at free end points the natural boundary condition is chosen, that
enforces zero curvature.

The non-linear spline interpolation problem has been solved in different ways [11, 14, 6,
13, 17, 9, 10, 7]. One can distinguish two general types of approaches. In the direct approach
one tries to optimize the curve directly, whereas in the indirect approach one first seeks for
a solution to the differential equation 2 and then determines a curve with the given curvature
values. In the indirect approach one typically has to switch several times between solving the
curvature DGL and embedding the curve (see for example [18]).

Besides the physically founded curvature based functional 1 a variety of other to be min-
imized functionals have been investigated for the design of curves. Mächler [12] minimizes
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Figure 1: Sample interaction with the system. The red balls are the interpolation constraints.
Dark blue arrows show the curve normals resulting from the optimization. The cyan arrows
are normal constraints specified by the user and the yellow arrows are one sided normal
constraints. a)→ b) change of normal constraint; b)→ c) insertion of point. d) a heart
designed with two double normal constraints, that introduce two sharp corners.

the square of the relative curvature changeκ′/κ to approximate data points(xi, yi) with a
smooth function. The appearance ofκ in the denominator penalizes reflection points (points,
where the curvature becomes zero) with an infinite penalty, such that the number of reflection
points has to be specified by the user. Moreton and Sequin [16] use only the squared deriva-
tive κ′ of the curvature to define optimal interpolating curves. Schneider and Kobbelt [18]
use the simplified versionκ′′ = 0 of the differential equation 2 to define a fair interpolat-
ing curve, as this DGL can be generalized to surfaces. Alon and Bergmann [2] analytically
solved the variational minimization problem for arbitrary curvature exponentsα, i.e.

ci = minarg
c:c(0)=pi∧c(L(c))=pi+1

L(c)∫
s=0

|κ(s)|αds.

The resulting analytic expressions of the optimal curves can be expressed in terms of tran-
scendental functions and make it quite complicated to combine several spline segments con-
tinuously.

In this work a curve design system is developed, which is based on a general optimization
algorithm that can handle a wide variety of functionals based on the length of the curve, its
curvature and the curvature derivatives. The user specifies a polygonp1,p2, . . . ,pn that
represents the ordered interpolation constraints. He can insert, remove and move the points
with simple mouse interaction. Furthermore he can scale and rotate the design plane. At
each pointpi additional constraints on the curve normal can be specified. Figure 1 shows an
example interaction and a heart with double normal constraints set, i.e. different normals for
the incoming and outgoing curve.

For curve design it turned out that the combination of curve length and curvature results
in an adjustable functional, which is very intuitive and allows to trade-off between smooth
and short curves as detailed in section 3. This is very similar to exponential splines derived
from a linear differential ansatz [20]. But before that, the curve optimization algorithm is



explained in section 2. The main contributions of the paper are

• a curve design system based on optimal curves

• an adaptive curve optimization algorithm supporting a very general optimization func-
tional

• a new discrete curvature measure that significantly improves convergence during opti-
mization

• an intuitive curve design paradigm based on length and curvature

• a proposal for the generation of interpolatingC∞ curves

2 Curve Optimization

This section describes the proposed definition of optimal curves and how these are computed.
The functional itself is presented in 2.1. It is very general and contains most known function-
als as a special case. One important design criterion hereby is that the minimizing curves
have to be not only rotational and translational invariant, but also independent of scale.

As the Euler Lagrange equations of the proposed functional become too complicated to
be solved analytically, an optimization algorithm is used to minimize the functional directly
on a sequence of polygons that approximate the optimal curve with increasing resolution.
The curve discretization is detailed in section 2.2. The optimization algorithm as described
in 2.3 is applied hierarchically and adaptively.

2.1 Optimality Functional

It is well known that the curvature is invariant under rotations and translations. The same
holds for the length of the curve and the infinitesimal arc length elementds. Neither of the
two functionals are invariant under scaling. If a curvec is scaled by a factor ofq to c̃ = qc the
length of the curve is also scaled byq, but the curvature by1q . This is because the curvature
is proportional to the inverse of the bending radius, which is scaled byq. In general do the
curvature and its derivatives scale as

c −→ qc κ −→ 1
q
κ κ(k) −→ 1

qk+1
κ(k). (3)

The different behavior under scaling is not a problem for the definition of optimal curves
based only on curvature or only on length. The minimal value of the functional does change
under scaling, but the minimizing curve stays the same as the scaling factorq can be taken
out of the integral: ∫ (

κ

q

)2

qds =
1
q

∫
κ2ds. (4)



When combining the curve length, curvature and curvature derivatives into a joined func-
tional, care has to be taken that the minimizing curve does not dependent on the scale.

In the proposed approach the curvature and its derivatives are multiplied with a property
that has the reciprocal dependence on the scale. The simplest property, which is propor-
tional to the scale, is the lengthL0 of the polygon formed by the interpolation constraintspi.
Therefore, the scale independent optimization functional is defined as

F (c, β, β0, . . . , βd, α0, . . . , αd) =
L(c)∫

s=0

β + β0 |κL0|α0 +
d∑

k=1

βk

∣∣∣κ(k)Lk+1
0

∣∣∣αk

ds, (5)

with the specializationsL(c) = F (c, 1, 0, . . .) andK(c) = F (c, 0, 1, 0, . . . , 0, 2/L2
0, 0, . . .).

It is easy to check thatF (qc) = qF (c), what implies the invariance of the minimizing curve
under scaling. All theαs andβs can be adjusted in the proposed design system.

2.2 Discretization

2.2.1 Polygonal Approximation
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Figure 2: Notation for the discretization of the optimal curve into polygons.

The curve is approximated by a discrete polygonc0, . . . , cj , . . . on each resolution level
during hierarchical curve optimization. Figure 2 a) illustrates the used notation. The subscript
j is used to distinguish the entities of the approximating polygon from the entities of the
polygonpi that describes the interpolation constraints. For each edgeej the length is denoted
by lj . At each pointcj the lengths of the incident edges are averaged to the incremental arc
lengthsj .

2.2.2 Curvature Discretization

To be able to evaluate the functional 5 also the discrete curvaturesκj have to be approxi-
mated, what is done at each pointcj . For this the delta vectors∆j = cj+1 − c are defined
as illustrated in Figure 2 b). A commonly used curvature discretization results from fitting a
circle throughcj−1, cj andcj+1 and from using the inverse radius as a curvature approxima-
tion κ◦. One can also use the discrete changeφj (see Figure 2 b) of the tangent together with



the curvature definitionκ(s) = ∂φ/∂s in order to come up with a second discretizationκφ.
Given the normalized delta vectorsc′j = ∆j/lj the two curvature discretizations are

κ◦j =
det(c′j−1, c

′
j)

||cj+1 − cj−1||
=

sinφj

||cj+1 − cj−1||
and κφ

j =
φj

2sj
. (6)

Both curvature approximations are useful for small anglesφj . As the input to the curve
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Figure 3: Examination of curvature gradient in dependence of tangential changeφj : a)
examined scenario: partial derivative ofκj with respect to thex-component ofcj ; b) plot of
∂
∂xκ◦j (φj); c) plot of ∂

∂xκφ
j (φj).

design system is an arbitrary user defined polygonpi, all angles in the range ofφj ∈ [−π, π]
can arise. In Figure 3 the problem with using the standard curvature measures is illustrated
in the simplified situation shown in a). For the optimization algorithm the crucial ingredient
is the gradient of the curvaturesκj for thecj . By symmetry is the major curvature change
in Figure 3 a) along thex-direction. The simple geometrylj−1 = lj = sj = 1 allows us to
compute the partial derivatives ofκ◦j andκφ

j with respect to thex-component of the pointcj .
The resulting plots are shown in Figure 3 b) and c). The gradient ofκ◦j is negative, which
implies that the curvature increases with a displacement ofcj in negativex-direction. This
makes sense as the tangential angle changeφj increases. But with increasingφj the gradient
of κ◦j decreases to zero. This is not what one would expect and also yields to a convergence
problem for the optimization procedure that has to get rid of all sharp angles eventually to
generate a smooth curve. For the discretizationκφ

j the gradient even becomes positive for
anglesφj > π/2.

As both curvature discretizations are a function ofφj over a length, we start with the
general ansatz

κf
j (x) =

f(φj)
2sj

=
f

(
π − 2atan

(
sin γ

cos γ−x

))
2
√

sin2 γ + (cos γ − x)2
, (7)

wherex denotes the displacement of thex-coordinate ofcj andγ = (π − φj)/2 the inner
half-angle as labeled in Figure 3 a). A displacement ofcj by x along thex-axis reducescos γ
by x, which is accounted for in the above formula on the right with the help of the arc tangent
function.



Some algebra yields the derivative of 7 with respect tox atx = 0, which corresponds to
the gradient:

∂

∂x
κf

j (x = 0) =
1
2
f(φj) cos γ − ∂f

∂φj
(φj) sin γ =

1
2
f(φj) sin

φj

2
− ∂f

∂φj
(φj) cos

φj

2
. (8)

Any desired gradient can now be designed with an appropriate choice off . Here the gradient
was set to a constant−g, but any other choice would have been possible. The result is a
differential equation forf(φj):

0 =
1
2
f(φj) sin

φj

2
− ∂f

∂φj
(φj) cos

φj

2
+ g,

with the solutionf(φj) = (gφj + Φ)/ cos φj

2 , whereΦ is an integration constant.Φ is fixed
to be zero andg to be one by the additional constraint thatκ has to behave aroundφj = 0
like φj/2sj . The solutionf(φj) = φj/

cos φj

2 goes to infinity when the inner angle2γ → 0,
i.e. φj → ±π. This makes intuitively a lot of sense as an arbitrarily sharp corner implies an
infinite curvature, but in praxis the infinite value is hard to handle.

By inspection it can be shown furthermore thatf(φj) = φj/ cos φj

2+δ results for all0 <
δ < 1 in a constant gradient between minus one and zero. As|φj | is less thanπ, the modified
function maps allφj ∈ [−π, π] to finite values. If for exampleδ = 0.1 is chosen, no values
larger than21.1 will arise. Putting it all together, the following discretization of the curvature
is proposed

κj(sj , φj) =
φj

2sj cos φj

2.1

. (9)

2.2.3 Derivatives and Integration

Finally, the curvature derivatives and the integral in the definition of functional 5 have to be
discretized. The derivatives were simply computed with one-sided finite differences. Every
odd order derivative can be thought of being computed at the edge centers, whereas the even
order derivatives are computed at the pointscj like the curvature itself. The discrete curvature

derivatives are defined recursively from the curvaturesκj , which are identified withκ(0)
j

∀ oddk ≥ 1 : κ
(k)
j =

(
κ

(k−1)
j+1 − κ

(k−1)
j

)
/lj

∀ evenk ≥ 2 : κ
(k)
j =

(
κ

(k−1)
j − κ

(k−1)
j−1

)
/sj

Notice that the arc length elementsj is used for derivatives defined at points and the edge
lengthslj for derivatives on edge centers. Similarly,sj andlj respectively have to be multi-
plied for integration

Fdiscrete(c, β, β0, . . . , βd, α0, . . . , αd) =∑
j

β +
∑

k=1,3,...

βk

∣∣∣κ(k)Lk+1
0

∣∣∣αi

 lj +

β0 |κjL0|α0 +
∑

k=2,4,...

βk

∣∣∣κ(k)Lk+1
0

∣∣∣αi

 sj

 .



2.3 Hierarchical and Adaptive Optimizer

The optimal curve is approximated by a sequencec0
j , c

1
j , . . . of polygons with increasing

resolution and decreasing edge length, that converges to the minimizing curvec = lim
a→∞

ca
j .

The polygonpi that connects the interpolation constraints is used as starting pointc0
j , from

which also the lengthL0 is computed. This is a good starting point asc0
j minimizes the total

lengthL(c), i.e. F (c, 1, 0, . . .).
The next finer approximation is derived fromc0

j by adding a vertex in the middle of each
edge. Other center placement strategies were tried but proved to be less stable.

2.3.1 Adaptivity

The user can specify a target resolution% as termination criterion for the edge subdivision
process. The resolution is measured in pixels per bounding box extent of the curve. This
allows to compute a maximum allowed errorεmax. Instead of subdividing all edges, only
those that cause an error larger thanεmax are subdivided.

a)

cj cj+1

r

nj

ε

φj /2

lj

b)

Figure 4: a) maximal edge error is in the middle of the edge and computed fromr cos φj/2 =
lj/2 andr sinφj/2 = 1 − ε; b) example of an adaptively subdivided curve with a target
resolution of% = 1000.

The approximation error at an edge of the polygon depends on the lengthlj of the edge
and the incident anglesφj andφj+1. Each of the anglesφj defines together with the length
lj a circle that is tangential to the curve atcj with relation to the approximated normalnj .
Figure 4 a) shows that the maximum error at the edge center computes to

ε(lj , φj) = lj

(
1− cos

φj

2

)
/2 sin

φj

2
.

In each subdivision step all edges withmax {ε(lj , φj), ε(lj , φj+1)} > εmax are subdivided.
Figure 4 b) shows an example of an adaptively subdivided curve.



2.3.2 Conjugate Gradient Minimization

After each subdivision a conjugate gradient minimization algorithm is used to place the un-
constraint points in order to minimize the functionalF . The movement of each point was
restricted to the direction normal to the curve by reducing the2n variablescj to then vari-
ablesδj , with F (δj) = F (cj + δjnj) and the normal directionnj . To define the normal
direction, the operator∗ is introduced to define the rotation of a vector byπ/2(

x

y

)∗
:=

(
y

−x

)
.

The normal directions can then be defined from the normalized tangent vectors as

nj =
(c′j−1 + c′j)

∗

||c′j−1 + c′j ||
.

The main ingredient to the conjugate gradient minimizer is a method that computes the
gradient

∇δj
F (cj + δjnj) = (Fδ1 , . . . , Fδn

) (cj + δjnj),

with Fδj being the partial derivative ofF for δj .
When the normal direction is kept fix, this gradient can be computed from the gradient

matrix for thecj = (xj , yj) consisting of all the 2d partial derivatives forcj

∇cj F (cj) = (Fc1 , . . . , Fcn) (cj) =
([

Fx1

Fy1

]
, . . . ,

[
Fxn

Fyn

])
(cj)

with the scalar productsFδj = (Fxj Fyj )nj .
The gradient matrix∇cj F was computed analytically in order to avoid numerical prob-

lems. The main constitutes are the 2d partial derivatives of the length elementsj and the
curvatureκj for theck with k = j − 1, j, j + 1. The angleφj in the curvature definition can
be written in terms of the delta vectors as

φj = atan
Yj

Xj
, Xj := ∆T

j−1∆j , Yj := ∆T
j−1∆

∗
j .

The curvature derivatives can be expressed withρj := φj/2.1 andf(φj) := φj/ cos ρj as

∂κj

∂ck
=

[
1

cosρj
+

f(φj) tan ρ

2.1

]
Xj

∂Yj

∂ck
− Yj

∂Xj

∂ck

2sj(X2
j + Y 2

j )
− κj

sj

∂sj

∂ck
.

Finally, the partial derivatives ofXj , Yj andsj for k = j−1, j, j +1 can be written in vector
notation with the upper component corresponding tok = j − 1 and the lower tok = j + 1

∂Xj

∂ck
=

 −∆j

∆j −∆j−1

∆j−1

 ,
∂Yj

∂ck
=


−∆∗

j

∆∗
j−1 + ∆∗

j

−∆∗
j−1

 , 2
∂sj

∂ck
=


−c′j−1

c′j−1 − c′j
c′j

 .
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Figure 5: Incorporation of normal constraints into hierarchical optimization: a) for constraint
with in- and outgoing normals, adjacent points are also fixed; b) after subdivision again the
adjacent points are fixed by normal constraint; c) single normal constraints are kept by rotat-
ing back the two adjacent points to align computed normal with constraint normal.

All derivatives of the functions in the functional that depend onκj andsj can be derived from
the given formulas with the basic derivative rules.

To incorporate the interpolation constraints, theδj of the pointscj , that coincided with
an interpolation constraintpi were set to zero.

With the known gradient the step widthσ necessary to the conjugate gradient algorithm
was determined by minimizing the one parameter functionF (σ) = (cj + σδjnj) with a
maximum of ten Newton-Raphson iterations. After performing each stepcj ← cj + σδjnj

the normals and theδj-gradients were recomputed. The conjugate gradient optimization
typically converged for each resolutionca

j after between ten and twenty steps allowing for an
interactive curve design with about two curve optimizations per second on a P4 with 2GHz
for a target resolution of 500 pixels.

3 Curve Design

3.1 Adding Constraints

In a lot of situations the user wants to explicitly specify the curve normals and introduce sharp
corners. These additional constraints can be easily incorporated into the design system. At
the moment two further constraints on the normals are supported. The user can either specify
the normal directionni for a given interpolation constraintpi, or he can specify the incoming
normalnin

i and the outgoing normalnout
i . In Figure 1 the normal constraints are visualized

by cyan arrows and the double normal constraints with two yellow arrows.
As non of the normal constraints has to be fulfilled in the initial polygonc0

j , an new
initial polygonc̃0

j was computed, where all normal constraints are satisfied. For this all edges
incident to a single or double normal constraint were split and the newly inserted point were
positioned in a way to fulfill the corresponding normal constraint.

In order to keep all normal constraints satisfied during optimization, all points incident to
a double normal constraint were fixed as illustrated in Figure 5 a). After each subdivision,
the previously fixed neighbors become free and the new direct neighbors are fixed (see Fig-



ure 5 b). The curvatures at the point with the double normal constraints was set to zero to
implement natural boundary conditions.

The single normal constraint is more difficult to fulfill, at least if the curvature is not
fixed. The single normal constraint is accomplished by updating the neighboring points after
each addition of the gradient. For this the actual normal was computed and the two direct
neighbors were rotated around the constrained point such that the current normal matches the
constraint normal (see Figure 5 c). In this way the curvature can change freely. It would also
be easy to add constraints on the curvatures themselves. But this is not yet implement.

3.2 Trading Off Between Length and Curvature

So far it was only discussed how the user can specify point and normal constraints, but the
free parameters of the functional 5 have not been exploited yet. The most intuitive contribu-
tions to the functional are the total length of the curve, which is weighted byβ in F , and the
total curvature, which is taken to the power ofα0 and weighted byβ0. Let us therefore first
examine the restriction of the functional toF (c, β, β0, 0, . . . , α0, 0, . . .). Some experimenta-
tion showed that the influence of the curvature exponentα0 is not very intuitive to design a
curve and it was simply fixed to the physically motivated value ofα0 = 2.

The two parametersβ andβ0 remain to be adjusted by the user. This is one parameter
too much as the curve that minimizes the functional does not change if the functional is
multiplied by a constant. The simplest approach would be to set one parameter to one, for
exampleβ = 1. The other parameterβ0 would have to be varied between zero and infinity to
generate all possible minimizing curves.

For the user it is easier to trade off between a short and a low-curvature curve with a
parameterλ ∈ [0, 1], whereλ = 0 corresponding to the shortest possible curve andλ = 1 to
the curve with the minimal curvature. Again the simplest approach of settingβ = 1− λ and
β0 = λ does not provide an intuitive control for the user. This will be explained right after
introducing the solution to the problem that usesλ and a to be determined scale factorq

Fsimp(c, λ) =

L(c)∫
s=0

(1− λ)q + λ |κL0|2 ds, (10)

with β = q(1 − λ) andβ0 = λ. In order to understand why the scale factorq is necessary,
let us definecsimp(λ)

csimp(λ) = minarg
c:c(xi)=pi

Fsimp(c, λ)

as the curve that minimizes the simplified functional. The curvecsimp(1) is clearly indepen-
dent ofq as the corresponding functional does not contain the length term. But alsocsimp(0)
is independent ofq, even ifq varies along the curve. It will always be the polygon connecting
the interpolation constraintspi. This is also the reason, whyq was incorporated intoβ and
not into β0, what would have changed the curvecsimp(1) if q varies over the curve. The
curvescsimp(0) andcsimp(1) are used as reference curves to determineq.
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Figure 6: Influence ofq on the uniformity of theλ control to trade off between short and low-
curvature curves: a) and b) show the minimizing curves forλ = 0, 0.1, . . . , 1; a) q = 100:
mostλ-curves are nearly identical; b)q = 5000: much more uniform distribution.
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Figure 7: Plot ofq(η) with a logarithmic regression line corresponding to103.5η+0.08.

The choice of the scale factorq is important as it allows to adjust the uniformity, with
which the parameterλ navigates fromcsimp(0) to csimp(1). Figure 6 shows the curves
csimp(0), csimp(0.1), . . . , csimp(1) for two different choices ofq. In a) a bad value has been
chosen such that mostλ-curves are close tocsimp(1), whereas in b) the users intuition is
matched better with a near uniform distribution of the differentλ-curves.

As the used optimization functional is independent of scale, also the factorq should be
a constant in terms of scale. The optimalq depends primarily on the relation between the
lengths of the reference curvescsimp(0) andcsimp(1), which are used to define the fraction

η =
L(csimp(0))
L(csimp(1))

∈ [0, 1]. (11)

η even differs for the different curve segments as can be seen in Figure 6 b). In the more
bellied segments, theλ-curves are more attracted by the shortest curve, whereas in the shorter



segments theλ-curves are pulled towards the low-curvature curve. This has to be balanced
with a different choice ofq for each segment. The dependence ofq on η was examined by
adjustingq for different ηs by hand. Figure 7 plots the result on a logarithmic scale. The
regression line corresponds to the relation

q(η) = 103.5η+0.08. (12)

Both the user specified parameterλ as well as the scaleq(η) can vary over the curve.
η is different for each curve segmentSi between two interpolation constraintspi,pi+1. A
differentηi is therefore defined for each segment in correspondence with 11. Furthermore, is
a more flexible curve design possible if the user can also specify different valuesλi for each
segment.

Finally, have the valuesηi andλi to be interpolated along the curve such that continuous
functionη(s) andλ(s) are produced. This is necessary to avoid discontinuities in the func-
tionalFsimp(c, λ(s)), which would destroy the continuity of the minimizing curve. One way
to achieve higher continuity is the use of spline basis functions defined over the arc length
parameters. As this would destroy the locality of the user definedλi the following local
interpolation scheme was used.

A Ck-continuous connection between two functionsf(x ∈ [0, 1]) andg(x ∈ [1, 2]) with
f(1) = g(1) at x = 1 can most easily be achieved by enforcing the firstk derivatives to
be zero atx = 1, i.e. f ′(1) = 0 = g′(1), . . . , f (k)(1) = 0 = g(k)(1). If f(x) is used for
interpolation betweenλ0 atx = 0 andλ1 atx = 1, the following ansatz can be made:

f(x) = λ0(1− ϕ(x)) + λ1ϕ(x),

with the interpolation functionϕ(x ∈ [0, 1]), that has to fulfill the following constraints

• ϕ ∈ [0, 1], ϕ(0) = 0 andϕ(1) = 1

• ϕ(k)(0) = 0 = ϕ(k)(1)

• ϕ(1− x) = 1− ϕ(x).

The first constraint ensures interpolation ofλ0 andλ1. The second guarantees aCk-connection
to the previous and next function and the third assures symmetry.

From the first two constraints one can compute for any continuity orderk a unique polyg-
onal functionϕk(x) of order2k +1, which also fulfils the symmetry constraint. The first five
of these functions are

ϕ0(x) = x

ϕ1(x) = −2x3 + 3x2

ϕ2(x) = 6x5 − 15x4 + 10x3

ϕ3(x) = −20x7 + 70x6 − 84x5 + 35x4

ϕ4(x) = 70x9 − 315x8 + 540x7 − 420x6 + 126x5.



The functionϕ4 was used to interpolateλi andηi along the curve. Given the valuesλi andηi

at the edge centers of the polygonpi, the values at eachpi were defined to be the averaged
valuesλ̄i = (λi−1 + λi)/2 andη̄i = (ηi−1 + ηi)/2. Each segmentSi was then split in the
middle into two parts and in the first halfλ was interpolated from̄λi to λi and in the second
part fromλi to λ̄i+1. The resultingC4 functionsλ(s) andη(s) where finally plugged into
the functional 10 withq(s) = q(η(s)).

a) b) c)

Figure 8: Curve design with local changes of the parametersλi. The adjusted parameters
are written close to the edge centers of the polygonpi. a) allλi are the same, b) twoλi set
to one, dragging the curve tocsimp(1), c) the same twoλi set to zero, dragging the curve to
csimp(0).

Figure 8 gives an example for the design of a curve with differentλis adjusted. During
the curve design the reference curvescsimp(0) (black) andcsimp(1) (yellow) were drawn to
guide the user.

3.3 Arbitrarily Smooth Curves

As a second application of the general optimization functional the creation of highly continu-
ous interpolating curves was examined. Figure 9 shows a study of interpolating curves, were
the squaredk-th derivative of the curvature was minimized fork = 1, 2, 3, 4. The implicit
side conditions of the Euler-Langrange equation up to the(k−1)-th derivative imply that the
shown curves areC2, C3, C4 andC5 continuous.

One of the future goals is to design an interpolatingC∞-curve, probably with allαk = 2
and an appropriate choice for theβk. For this an analysis similar to the previous section has
to be performed in order to findλ-parameters for eachβk. With theseλks one can define a
C∞-curve from a sequenceλ0, λ1, ....

4 Conclusion and Future Work

In this work an optimization algorithm was implemented that allows to compute interpolat-
ing curves that minimize a very general functional based on the curve length, curvature and
curvature derivatives. A new formula for the computation of the discrete curvature was in-
troduced, that provides a useful gradient for optimization also at arbitrarily sharp corners.



κ κ′ κ′′ κ′′′ κ(4)

Figure 9: Study of minimizing higher and higher derivatives of the curvature.

The second part of the paper studies the support for additional constraints on the normal of
the curve. A functional with one intuitive parameterλ was proposed that allows to trade off
between short and low-curvature curves. Finally, the use of a functional with all curvature
derivatives was suggested to define aC∞ interpolating curve.

There are a lot of avenues for future work. The first direction would be a generaliza-
tion to three dimensions in order to allow camera path planning. Further constraints defined
by obstacles could be easily incorporated as long as an initial intersection free path is pro-
vided. The second direction of future work would be the generalization to surfaces. There
is a lot of ongoing research on how to compute good curvature approximations on discrete
surfaces [15, 5, 8]. Surfaces, of which curvature and area can be traded off could provide
an important reference to analyze new approaches. Finally, there are a lot of applications
in medical imaging and computer vision, where optimal curves and surfaces are placed in a
potential field derived from a 2d or 3d image in order to solve the segmentation problem in a
robust way.
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