
Hierarchical Shape-Adaptive Quantization for Geometry Compression

Stefan Gumhold

Max-Planck-Institute, AG4 Room 207
Stuhlsatzenhausweg 85,D-66123 Saarbrücken

Email:gumhold@mpi-sb.mpg.de

Abstract

The compression of polygonal mesh geometry is
still an active field of research as in 3d no theoretical
bounds are known. This work proposes a geometry
coding method based on predictive coding. Instead
of using the vertex to vertex distance as distortion
measurement, an approximation to the Hausdorff-
distance is used resulting in additional degrees of
freedom. These are exploited by a new adaptive
quantization approach, which is independent of the
encoding order. The achieved compression rates
are similar to those of entropy based optimization
but with a significantly faster compression perfor-
mance.

1 Introduction

In connectivity coding exist very efficient close to
optimal coding techniques. Spectral coding [9]
seems to be optimal for geometry compression,
what has been shown for 2d by Ben-Chen and Gots-
man [1]. The major disadvantage of spectral coding
is its slow compression and decompression perfor-
mance. Therefore are techniques based on predic-
tive coding still very interesting and in most appli-
cations more

practical. Predictive coding has been introduced
by Deering [2]. The predictor coefficients have
been optimized by Taubin and Rossignac [13]. But
it turned out to be more efficient to simply use a
parallelogram prediction as proposed by Touma and
Gotsman [14].

The parallelogram prediction is also used in this
work. Geometry coding is directed by the connec-
tivity encoder, for which the improved cut-border
machine has been used [8, 4] but any other region
growing scheme would work as well. The three ver-
tex locations of the first encoded triangle are stored
uncompressed. After that each newly encountered

vertex is added together with a new triangle, which
is edge-adjacent to an already processed triangle,
whose vertex locations are known to encoder and
decoder. The known triangle is called reference tri-
angle and the edge connecting to the new triangle is
called gate. The new vertex location is predicted by
extending the reference triangle to a parallelogram.
As both encoder and decoder can compute the pre-
dicted location, only the correction vector from the
original vertex location to the prediction has to be
encoded.

The parallelogram prediction has been improved
in several ways: Lee and Ko [11] use vector quan-
tization to encode the correction vectors. Kronrod
and Gotsman [10] optimizing the traversal order of
the connectivity encoder to minimize the length of
the correction vectors. Gumhold and Amjoun [6] fit
higher-order polygonal surfaces to improve predic-
tion performance. In this work the simple parallel-
ogram prediction is used. But instead of quantiz-
ing uniformly a new adaptive quantization strategy
is proposed that bounds the Hausdorff-distance be-
tween original and quantized mesh. Although the
proposed approach increases compression times no-
ticeably, the decompression speed is not lowered at
all and the compression rates are significantly bet-
ter.

Two important issues of predictive coding are
the coordinate system used to express the correc-
tion vectors and the entropy coding method used
for coding the quantized vertex coordinates. Be-
sides the commonly used world coordinate sys-
tem, angular coordinates have been proposed by
Lee et al. [12] and cylindrical by Gumhold and
Amjoun [6]. In the proposed work the

local coordinate system is used that has been pro-
posed by Lee and Ko [11]. The direction of the gate
edge is identified with the x-axis and the normal of
the reference triangle, which points to the exterior
of the surface, is used as z-axis. The y-axis com-
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pletes an orthonormal coordinate system. The use
of the local coordinate system typically saves be-
tween one and three bits per vertex (bpv).

In section 4 an optimization scheme is proposed
for the coding of the indices resulting from the
shape adaptive quantization of the local coordi-
nates. The method determines that best package
size for the grouping of bits into adaptive probabil-
ity models, which are used by the arithmetic coder.
Although the scheme is very simple, it allows to
save further one to three bpv, which has an impor-
tant impact on the final compression rates.

In the following section the notation of valid-
ity region and shape adaptive quantization is in-
troduced. Section 3 motivates and describes the
proposed hierarchical quantization approach, which
is independent of the encoding order. Results are
given in section 5 before the paper is concluded
with directions for future work.

2 Validity Regions

Adaptive quantization has first been proposed by
Lee and Ko [11]. They collected the prediction cor-
rection vectors expressed in a local coordinate sys-
tem. Then the LBG algorithm was applied to op-
timize a codebook of correction vectors. As the
quantization step leads to error accumulation, not
only the codebook but also additional correction
bits needed to be transmitted in order to control the
error.

Lee et al. [12] quantize adaptively by transform-
ing the correction vectors into an angular coordi-
nate system with a fixed quantization. No maxi-
mum error is guaranteed. Comparison to previous
approaches is done with the root mean squared er-
ror (RMS). Also the use of validity regions was
proposed in the work of Lee et al. A validity re-
gion is assigned to each of the vertices. It defines
the region in space of all valid quantization loca-
tions around the vertex location. The quantizer then
chooses from all valid quantization locations, the
one that minimizes the current coding cost. An ex-
tensive sampling strategy was used to find the best
quantization location. For each sampled location
the entropy after coding was computed, what re-
sults in impractical compression times. Lee et al.
only investigated rectangular regions although also
quadrics were imagined; but they did not propose
how to compute them and no implementation was

reported. The results with the rectangular regions
were disappointing and other more simple quanti-
zation schemes yielded better compression rates.

In this work the ideas of Lee et al. are developed
further. We propose to define the validity regions
from the Hausdorff distance between the original
mesh M(�pi) and the quantized mesh M(�qi) with
adaptively quantized vertex locations �qi. To be able
to compare the results with uniform quantization,
the Hausdorff-distance was bound to

εb = maxBBoxExtent/2b,

where b is the number of quantization bits.
To realize the Hausdorff-bound for each vertex i

of the to be encoded mesh a validity region Ri was
constructed. The validity region Ri is defined as
the union of all locations, onto which the vertex po-
sition �pi can be quantized without introducing a dis-
tortion larger than εb. As the explicit computation
of the validity regions is complicated and as the re-
gions are also affected by changes in the neighbor-
hood, the Ri were approximated with ellipsoids in
the following manner.

For each vertex a quadric error metric [3] was
computed from the plane equations of the incident
triangles and border edges. The iso-surfaces of the
quadric error metric approximate the shape of the
validity region. The iso-surfaces have larger ex-
tent in flat areas and smaller extent in curved areas.
The validity region was set to the iso-surface of the
quadric error metric whose smallest radius is εb. As
the ellipsoids are oriented in tangential space, they
do not follow a best fit curvature hyperboloid and
we shrunk the validity regions by a safety factor of
0.6.

In order to avoid flipping of triangles in very flat
areas, where the validity regions have a large ex-
tend, the maximum radius of the validity ellipsoid
was limited by half of the length of the shortest edge
adjacent to the corresponding vertex.

3 Adaptive Hierarchical Quantization

3.1 Overview

Figure 1 illustrates the proposed adaptive quantiza-
tion approach. It shows the original mesh in light
grey with darkly filled vertex locations. The va-
lidity region around the original vertex is the el-
lipse shaded in very light grey. The predicted loca-
tion is shown as the vertex with inverted shading.
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Figure 1: Illustration of the adaptive hierarchical
quantization approach.

The hierarchical quantization grid is built around
the predicted location in the local coordinate sys-
tem. In uniform quantization the quantized loca-
tion would be the small ball on the fatly dotted grid
lines shaded in grey. In the adaptive quantization
approach one can choose from all valid grid loca-
tions (inside the validity region) the one with the
smallest coding cost.

In the next section the coding cost for the differ-
ent grid locations will be examined. It turns out that
every second grid line – the ones with even indices
– save one coding unit, every fourth two units and
so on. Remember that the counting of the grid lines
starts with zero at the predicted location. In Figure 1
the most expensive grid lines are finely dotted, the
ones that save one unit are dashed and the ones that
save three units are solid. In 3d the saved units are
summed over the three coordinate directions and the
adaptive quantization location is chosen as the one
with the largest sum. In Figure 1 it is the location
of the small ball on the intersection of the fatly dot-
ted grid lines in dark grey, for which 4 units can be
saved.

3.2 Quantization Approaches

Four approaches have been implemented to find the
optimal adaptive quantization location. The first
and very fast approach – called logarithmic – sim-
ply quantizes the vertex locations to b bits, b − 1
bits, . . ., 1 bit and determines the smallest num-
ber of bits, where the quantized location falls in-
side the validity region. There is no guarantee to
find the optimal quantization location. The second
approach, which is called logarithmic 2, quantizes
each coordinate independently to b bits, b − 1 bits,

. . ., 1 bit. All combinations of coordinate quanti-
zations are examined resulting in b3 test. The third
approach always finds the optimum by checking all
quantization locations that fall inside the bounding
box of the validity region and is therefore called ex-
tensive.

For comparison to the ideas of Lee et al. we also
implemented an extensive sampling strategy that
searches the valid quantization location with min-
imal coding cost. The coding cost was determined
by computing the intervals used by the arithmetic
coder for the different coordinates and their pack-
ages (see section 4). This approach is by far the
slowest.

3.3 Entropy and Motivation

One crucial observation is that the encoding of in-
dices with an adaptive arithmetic coder can have
different costs depending on the probability of the
indices. To make a more quantitative statement
let us assume that the prediction correction vectors
have a distribution that is close to a normal distribu-
tion. For our analysis it is useful to re-normalize the
coordinates such that the bounding box of the mesh
is [0, 1]3. Let us further suppose that the probability
distributions for the different coordinates are inde-
pendent and that σ � 1 is the standard deviation
for one of the coordinates. Then the entropy H of
the coordinate indices quantized uniformly to b bits
is given by equation (1.80) on page 56 of [5]:

H(σ, b) = b − s(σ), s(σ) = − log2

√
2πeσ,

(1)
with the base e of the natural logarithm and the
number of saved bits s(σ). As σ is much smaller
than one, the argument of the logarithm is also
smaller than one, such that the number of saved bits
is larger than zero.

This means that the entropy depends on the num-
ber of quantization bits minus the number of saved
bits, which only depend on the distribution. The
idea of adaptive hierarchical quantization is to in-
terpret an index resulting from a quantization to b
bits with k successive zeros at the front of its bi-
nary representation as an index from a quantization
to b−k bits. Such an index is denoted to be of hier-
archy level k. If all the indices could be adaptively
forced onto hierarchy level k equation 1 tells us that
k bits could be saved.
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b = 12 #V TG AA n uni log log2 ext ent
cow 2904 1 20.6 20.4 20.1 18.3 17.6
random 4338 15.6 11.2 1 16.2 15.8 15.4 10.7 10.2
horse 19851 15.2 12.9 5 10.7 10.3 10.2 9.1 8.7
bunny 34835 6 11.6 11.4 11.1 10.0 9.5
feline 49864 14.2 13.2 3 14.2 13.7 13.2 11.0 10.6

Table 1: Comparison of geometry cost in bpv with Touma-Gotsman (TG) and Angle Analyzer (AA). Opti-
mal package size n for extensive approach in middle column.

But not all of the indices can be forced to a higher
level. Therefore is k interpreted as the number of
saved units, where one unit is less than one bit.
The adaptive quantization algorithm maximizes the
saved units in three dimensions over all valid quan-
tization locations. Nothing has to be modified in the
arithmetic coder that automatically exploits the in-
creased probabilities of indices in higher hierarchy
levels.

4 Optimization of Package Size

An arithmetic coder either has to know the probabil-
ity model, or it can learn it adaptively by counting
for each symbol, i.e. signed index in our case, the
number of appearances and use these counts to esti-
mate the probabilities. As for geometry coding the
number of different indices is very large – for ex-
ample 4096 for 12 bits quantization – the explicit
encoding of the distribution would be too expensive
and the adaptation does not work either as the total
count for each index is too small.

Therefore did Gumhold et al. [7] propose to
group the bits of each index into packages of n = 4
bits, such that only sixteen symbols per package re-
mained. For the encoding of tetrahedral mesh ge-
ometry this was the best choice for the used data
sets. The same approach was investigated in this
work for surface meshes. It turned out that the opti-
mal package size n varied significantly for the dif-
ferent models. Therefore, we determined for each
model the best package size and added this single
number to the code. The package size optimization
allowed to save up to two bits per vertex over a fixed
package size that performs well in average.

For the proposed three approach it was possible
to implement the package size optimization as an
efficient post processing step. The list of signed in-
dex triples produced by the shape adaptive quantiza-
tion stage was encoded arithmetically with all pos-

sible package sizes in order to determine the best
choice. The overall runtime did only increase no-
ticeably for the simple logarithmic quantization ap-
proach as this approach is already very fast.

It is not possible to implement the package size
optimization as a post processing step in the case
of quantization based on entropy optimization. The
reason is that the selection of the optimal quantiza-
tion location depends on the previously seen indices
and on their encoding costs. If the package size is
changed, the coding cost also changes, what results
in a different choice of the optimal quantization lo-
cations. In the case of the proposed hierarchical
quantization scheme the cost of all quantization lo-
cations is independent of the previously encoded in-
dices and therefore allows for further optimizations
such as the proposed package size optimization.

5 Results & Conclusion

Table 1 compares the compression rates in bits per
vertex of uniform quantization, logarithmic (2) hier-
archical quantization, extensive hierarchical quan-
tization and entropy optimized quantization to the
Touma-Gotsman (TG) coder [14] and the Angle-
Analyzer (AA) [12]. The numbers for TG and AA
were taken from [12] and were not available for all
the used meshes. Quantization was to b = 12 bits.
The extensive adaptive quantization proofed signif-
icantly superior to the logarithmic approaches in all
cases and slightly worse as the entropy optimiza-
tion based approach. The uniform quantization ap-
proach for the horse mesh was significantly better
than the original TG approach. This is probably due
to the package size optimization or the use of a local
coordinate system, with which the regular structure
of the scanned horse and bunny meshes can better
be exploited. In the middle of the table the opti-
mal package size is tabulated. It is largest for the
scanned meshes.
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Figure 2: Comparison of the different strategies
(uniform sampling, logarithmic adaptive, loga-
rithmic 2 adaptive, extensive adaptive, entropy
based) in dependence of the number of quanti-
zation bits: a) saved bits per vertex s, b) runtime
in seconds on logarithmic scale, c) two-sided
Hausdorff-distance and RMS both divided by εb
for cow mesh.

Figure 2 shows three diagrams analyzing the be-
havior of the proposed approaches in dependence
of the number of quantization bits b. a) and b)
plot the number of saved bits per vertex (com-
pare equation 1) and the runtime of the four im-
plemented approaches: uniform quantization, log-
arithmic adaptive, logarithmic 2 adaptive, extensive
adaptive and entropy optimized. The uniform and
logarithmic approaches show the typical behavior
of most prediction based compression schemes: the
number of saved bits nearly stagnates for quanti-
zation to a number of bits larger than 10. Below
that all schemes seem to converge to the same rates.
But the extensive adaptive approach is – similarly
to the entropy optimizing approach – different for
quantization to a higher number of bits b, where it
achieves significant savings. Similar behavior can
be found for the other models. This is very con-
vincing and one can suspect that adaptive quantiza-
tion as well as entropy optimizing quantization has
a better asymptotic behavior as previous predictive
coding schemes.

Figure 2 b) shows that the extensive hierarchi-
cal quantization scheme is in the order of ten times
faster than the entropy optimizing approach. But the
running time is still much higher as for the uniform
approach. The author believes though that a more

sophisticated search for the best quantization loca-
tion can significantly improve the runtime of the ex-
tensive approach. Furthermore, is the decoding time
not affected at all. The time for decompression of
all the analyzed approaches is slightly faster than
the encoding of the uniform quantization approach
and reaches about 100,000 vertices per second.

A final remark has to be made on the quantiza-
tion errors. Figure 2 c) plots the Hausdorff-distance
divided by εb for the different approaches. This
fraction should be below 1, but the adaptive ap-
proaches have larger maximum errors. This is due
to the approximate computation of the validity re-
gion. The RMS as used for comparison in [12] and
plotted with dashed lines was nearly the same for
all approaches. One can conclude that controlling
the two-sided Hausdorff-distance is much more dif-
ficult than controlling the RMS.

5.1 Conclusion and Future Work

We presented a new shape adaptive quantization
method based on the approximate control of the
Hausdorff-distance. It achieves compression rates
similar to the direct optimization of the entropy,
what is significantly slower. Furthermore, does the
new method allow to optimize the resulting triples
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of signed integers, as the quantization process is in-
dependent of the order of vertex quantization. We
exploited this property to optimize the package size
used for adaptive arithmetic coding in a post pro-
cessing step.

In future work the extensive search for the opti-
mal quantization location will be speeded up with
the following idea. Whenever a valid quantiza-
tion position is found that allows to save k bits,
no further grid locations that would save k or less
bits have to be tested. The unnecessary tests can
be avoided by skipping the corresponding grid lo-
cations without any additional computational cost.
We believe that this significantly speeds up the ex-
tensive approach. With the entropy optimization
strategy proposed by Lee et al. this acceleration
strategy is not possible, as the cost of each quanti-
zation location depends on the quantization history.

Further future investigation includes a more ac-
curate calculation of Hausdorff distance based va-
lidity. There is actually no need to construct the
validity region explicitly as long as it can be safely
bound. Only a validity test is necessary, where a
two-sided vertex to surface distance should be suf-
ficient for our application, as the connectivity stays
the same and the vertices only move slightly.
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