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Figure 1: Polygonal progressive representation of the feline model.

Abstract

In this work we build a progressive polygonal mesh based on face clustering. The basic
simplification operations are the edge-removal and the edge-join operations. There is no need to
tessellate non-triangular models as the proposed representation is fully polygonal. We investigate
three different error measures to build the progressive representation based on a priority queue
based face clustering algorithm.

The progressive polygonal mesh representation is built with the inverse refinement operations
– the edge-insert and edge-split operations, which can be implemented very efficiently within a
newly proposed half-edge data structure. We suggest a progressive file format that allows to read a
polygonal model faster than with the standard binary file formats. Finally, we extend the proposed
half-edge data structure to a progressive representation that does not consume any further storage
space and allows for very fast changes in the mesh resolution.
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1 Introduction

The success of surface representations based on polygonal meshes is due to the large number of
available processing tools. Simplification is a very important tool for the efficient processing of
large meshes. Most state of the art simplification techniques are based on the mesh decimation
technique, that successively applies atomic decimation operations to the original mesh. Among the
most important decimation operations are vertex-removal, edge-collapse and triangle-collapse.

A typical simplification algorithm sorts all possible decimation operations into a priority queue,
with a priority, that estimates the approximation error caused by the decimation operation. In the
decimation loop the simplification algorithm greedily chooses the next best decimation operation
in the order given by the priority queue. After the best operation has been performed, the error
measure has to be re-evaluated for all remaining decimation operations, which are in the affected
neighborhood of the performed operation. The position of the re-evaluated operations in the priority
queue is updated before the decimation loop continues with the next best operation until a user
specified target mesh size or maximum approximation error is reached.

One important application of mesh decimation is the creation of a progressive representation, that
allows for incremental transmission over the internet and the selection of the resolution of a model.
To create a progressive representation the simplification algorithm is run as far as possible in order
to create the coarsest possible approximation, which is called thebase model. During simplification
the inverse of the decimation operations, i.e. the refinement operations, are stored. The refinement
operation of vertex-removal is vertex-insertion and of edge- and triangle-collapse the vertex-split
operation. The progressive representation finally consists of the coarse base model together with
the refinement operations given in the opposite order, in which they have been recorded during
simplification.

The simplification paradigm has also been used for several other applications. Among these are
the construction of hierarchical mesh representations that allow for the extraction of meshes that
can locally adapt their resolution, incremental computation of a surface parameterization and the
clustering of the model into patches. The latter is often used to create a texture atlas of a given
model. One important efficiency aspect for the creation of a texture atlas is that the mesh has to
be partitioned into non-overlapping patches. This is typically hard to achieve with the previously
mentioned simplification operations. Instead are all the patch generation approaches based on face
growing or face clustering.

Hierarchical face clustering is very similar to the previously introduced mesh decimation ap-
proach, if viewed in the dual domain. The dual graph of a polygonal mesh consists of a node for
each face and a face for each vertex of the original mesh. The dual graph has edges between the
nodes that correspond to edge-adjacent faces of the original mesh. The original mesh is also called
primal as opposed to the dual graph. Collapsing an edge of the dual graph corresponds to the merg-
ing of the faces corresponding to the end nodes of the edge. With this mapping between primal and
dual graph the hierarchical face clustering algorithm decimates the dual graph with edge-collapse
operations.

Non of the existing face clustering approaches allow to create a progressive mesh representa-
tion. The existing approaches are either not progressive or have no suitable surface definition in the
primal domain. In this work we combine the advantages of hierarchical face clustering with pro-
gressive mesh representations that are suitable for rendering. Figure 1 shows an example of the new
progressive polygonal representation of the feline model. The progressive representation is based on
a surface definition in the primal domain and a simplification algorithm that ensures a valid surface
throughout the simplification process, such that the resulting progressive representation can always
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be visualized. To better understand what happens in the primal domain, where also the approxi-
mation error is measured, we interpret the dual edge collapse in the primal domain. This leads to
theedge-removaloperation and its inverse theedge-insertoperation. During primal edge-collapse
simplification, each edge-collapse eliminates the two triangles adjacent to the collapsed edge. This
corresponds in a dual edge-collapse to the removal of a vertex of valence two in the primal domain,
what is achieved by choining the two edges incident upon the valence two vertex into one. As in the
dual edge collapse not always two primal vertices are removed, we consider theedge-joinoperation
separately from the edge-removal. The inverse of the edge-join is theedge-splitoperation, which is
used in the polygonal progressive model to insert vertices.

One very interesting property of the proposed polygonal progressive representation is the sim-
plicity of its refinement operations. In section 3 we describe how to implement the refinement opera-
tions extremely efficiently with a half-edge based data structure. Based on the polygonal progressive
representation we propose a new progressive file-format and a new progressive in-core representa-
tion for polygonal meshes that are superior to existing formats.

The remainder of the paper is structured as follows. Before the description of the new simplifica-
tion and refinement operations in section 3 related work is discussed in the next section. In section 4
we introduce the used surface definition necessary to render non planar polygons and to measure
error between approximating and original surface. The simplification algorithm is discussed in sec-
tion 5 and results are given in section 6.

2 Related Work

Mesh Simplification: There is a vast amount of related work on mesh simplification and we refer
to some good surveys [10, 5, 8]. Nearly all of the work is on purely triangular mesh. We found
only the work of Ramsey et al.[17], where also polygonal meshes are simplified with primal edge-
or half-edge-collapse. A very simple error measure based on normal derivation together with an
independent set selection technique are used. The proposed face clustering algorithm uses a priority
queue as proposed by Klein and Krämer [15]. We implemented three different error metrics: a dual
quadric that measures the average distance of points to a best fit plane as proposed by Garland et
al. [7], a primal quadric based metric similar but different to the original one from Garland and
Heckbert [6] and a one-sided Hausdorff distance, which is close to the one proposed by Klein et
al. [14]. In the results section it will turn out that our modification to the primal quadrics give by far
the best trade-off between approximation quality and speed.

Face Growing: Kalvin and Taylor [12] grow superfaces from seed triangles, which can be
chosen in different ways. They grow each superface by adding faces on the boundary until an user
specified planarity limit is reached. They continue growing superfaces until no more triangles are
left. Next the boundaries between the superfaces are straightened and a polygonal mesh is created,
whose polygons are triangulated with a minimum number of triangles. Compared to our approach is
the superface technique not hierarchical.

Sorkine et al.[20] follow a similar face growing strategy to find patches, which can be flattened
with bounded distortion. The patches are then used for parameterization.

Face Clustering:The dual edge-collapse has been proposed first by Inoue et el. [11], who form
rectangular face clusters on CAD-models with large planar parts. The face clusters are used to
remesh the surface with quadrilateral faces.

Garland et al. [7] use the dual edge collapse to construct a hierarchy of nested face clusters.
These are used to speed up radiosity computations but no proper surface representation is proposed
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to render a coarse approximation. The cluster merging criterion is chosen to minimized the average
squared distance of the vertices in the cluster to the plane that minimizes this planarity criterion.
We tried to use this error measure for our purposes but with limited success as shown in the results
section.

Sheffer [19] uses the face clustering technique to simplify CAD models. She follows the pri-
ority queue based decimation paradigm and uses several heuristically weighted criteria to order the
clustering operations. Among them are the region curvature and optimization criteria for the patch
boundary shape. Like Inoue et al. does Sheffer use the clustering as preprocessing to remeshing.

Sander et al. [18] and Ĺevy et al. [16] use the face clustering approach to split a given input model
into disjoined patches, which are used for texture mapping. The clustering is steered by measuring
the distortion in the patch parameterizations. After the clustering stage the patch boundaries are
straightened. Sander et al. do a second simplification of the original mesh based on primal edge-
collapse, where they respect previously built patches.

3 Progressive Polygonal Mesh Data Structure

This section describes the proposed progressive representation and the used data structure, which
is based on a combination of half-edge and winged-edge data structure as described in 3.1. This
combined data structure is denoted as thetwinned half-edgedata structure. In section 3.2 the basic
coarsening and refinement operations are discussed before the progressive representation is intro-
duced in 3.3.

3.1 Single Resolution Polygonal Data Structure

Both the half-edge data structure [21, 13, 4] and the winged-edge data structure [2] have their ad-
vantages and disadvantages in representing the connectivity of polygonal meshes. In this work we
combine both approaches to the so-calledtwinned half-edgedata structure. Figure 2 illustrates the
two fields stored with each half-edgeh: a referenceh.nxt to the next half-edge in the same face
(magenta arrows) and a referenceh.origin to the origin vertex (blue arrows). The important step
towards the winged-edge data structure is to rearrange the half-edges such that the two half-edges
composing one edge are in successive order in the list of half-edges. This allows to compute the
inverse half-edgeh.inv with a binary XOR 1 on the half-edge index and makes the explicit storage
of the inverse pointer unnecessary. The re-ordered list of half-edges can also be interpreted as a list
of edges. Each edge is formed by two half-edges and identical to a winged-edge without explicit
storage of the referencesh.prv to previous half-edges.h.prv is implemented with a loop through
the face along the next pointers. One can efficiently transform half-edge indices into edge-indices
and vice versa by dividing/multiplying with two.

In order to later on store quadrics with each face, we extend each half-edge by a face index and
construct an additional list of faces. This additional storage space is not needed for the progressive
representation.

3.2 Coarsening and Refinement Operations

The proposed progressive representation is based on two primitive operations and their inverse: The
edge-removal and edge-insertion operations as illustrated in Figure 2 and the edge-join and edge-
split as shown in Figure 3. The edge-removal operation is used by the simplification algorithm to

4



e

h1

h2

removeEdge(e)
e.h1.prv .nxt= e.h2.nxt
e.h2.prv .nxt= e.h1.nxt

a)

hp1

hp2

insertEdge(hp1, hp2, e)
e.h1.nxt = hp2.nxt
e.h1.origin= hp1.nxt.origin
e.h2.nxt = hp1.nxt
e.h2.origin= hp2.nxt.origin
hp1.nxt = e.h1

hp2.nxt = e.h2

b)

Figure 2: a) before edge-removal operation, b) after edge-removal and before edge-insert operation.

merge two faces. It simply eliminates the edge from the data structure and corresponds to an edge-
collapse in the dual graph. Its inverse – the edge-insert operation – splits the previously merged
face by re-introducing the removed edge. The edge-join operation is triggered by the edge-removal,
whenever a valence two vertex arises. The two edges incident upon the valence two vertex are joined
into one edge by eliminating the valence two vertex from the data structure. Its inverse – the edge-
split operation – splits the joined edge and re-introduces the previously eliminated vertex to the data
structure.

The edge-insert operation is uniquely defined by the two half-edgeshp1 andhp2 preceding the
half-edges of the to be inserted edgee (compare Figure 2 b). These are called theanchorhalf-edges.
As the anchor half-edges have to be in the same face, the second anchor can optionally be defined as
the numberi of edges that separate it from the first anchor. The edge-insert operation is abbreviated
as

I(hp1, hp2) or I(hp1, i).

The edge-split operation only needs one anchorh (see Figure 3 b) and the geometric location
(x, y, z) of the introduced vertexv. The short notation for a split operation is

S(h, x, y, z).

The updates in the twinned half-edge data structure are very simple for all the coarsening and
refinement operations. The necessary commands are shown in the corresponding figures. For the
removal of an edgee one only needs to relink the next pointers of the previous half-edges. The
method implementing the edge-insert operation in turn has the anchor half-edges and the inserted
edge as parameters. It inserts the half-edges of the new edge into the face loop of half-edges, which
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e1 e2

e1.h2 e2.h2

e1.h1 e2.h1

joinEdges(e1, e2)
e1.h1.nxt = e1.h1.nxt.nxt
e1.h2.origin= e2.h2.origin
e2.h2.prv .nxt= e1.h2

a)

h

splitEdge(h, e, v)
e.h1.nxt = h.nxt
e.h1.origin= v
e.h2.nxt = h.inv
e.h2.origin= h.inv.origin
h.inv.origin= v
h.inv.prv .nxt= e.h2

h.nxt = e.h1

b)

Figure 3: a) before edge-join operation, b) after edge-join and before edge-split operation.

a)M0 b)M1 c)M2 d)M55 e)M114

S(h3, 0.3,−0.9, 0)
S(h10, 0.5,−0.2, 0.8)

I(h10, h3)
S(h0, 0, 0,−1)

...

f) first ops

Figure 4: An example for the progressive representation of a small sphere, where in a)-d) the next
refinement operation is illustrated. e) shows the original mesh corresponding toM114 and f) lists
the first refinement operations

is split into two loops. Also the implementations of edge-join and edge-split are straight forward.
In the edge-split operation the origin vertex of one anchor half-edge is replaced by the introduced
vertex. This would not be necessary in a “not twinned” half-edge data structure. In a primal vertex-
split the origin vertices of all triangles in one of the resulting vertex fans has to be changed, what is
far less efficient as the proposed refinement operations.

3.3 Progressive Representation

The proposed polygonal progressive representation consists of the base modelM0 and the sequence
of refinement operations. As each refinement operation increases the number of edges by one,
the refined meshesMn are enumerated by the number of introduced edgesn. Figure 4 shows
an example of the progressive representation of a small sphere. In a) we see the base meshM0
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and an illustration of the first edge-split operationS(h, x, y, z), where the yellow arrow shows the
half-edgeh and the magenta arrow points to(x, y, z). In b) we see the result of the first split, the
meshM1 with another split to follow. In c) the next operation is an edge-insertI(hp1, hp2) with
the half-edgeshp1 andhp2 shown as cyan arrows and the newly introduced edge as green arrow. d)
showsM55 and e) the original mesh corresponding toM114. On the right of the figure the first
refinement operations are given.

The ordering of the mesh elements is arbitrary in the base model, but the remaining elements are
given in the order, in which they are inserted to the progressive representation. A counterv for the
current number of vertices and a countere for the current number of edges is kept. These counters
are used to determine the index of newly introduced vertices and edges and in the end hold the total
number of vertices and edges.

3.4 Binary Progressive File Format

A first application of the progressive polygonal representation is a simple binary file format, that
contains the base mesh together with the refinement operations. The base mesh is stored as a list
of vertex coordinate triples and a list of half-edges consisting of two indices each, the index of the
origin vertex and the index of the next half-edge in the same face.

The refinement operations follow with two 32-bit indicesh1, h2 for each edge-insert operation
I(h1, h2) and one 32-bit indexh plus three 32-bit floatsx, y, z for or each edge-split operation
S(h, x, y, z). The indices and coordinates are simply concatenated. In order to be able to distinguish
insert and split operations, the indexh of the split operation is marked by replacing it with the
negative index(−1 − h). This is possible because all indices are zero or positive and therefore a
negative one can always be recognized.

The size of the binary format can be easily computed to be2v + 2e + vbas + 22bas, with the
number of base model verticesvbas and edgesebas. As the base model is typically very small, only
2v + 2e indices or floats are consumed, i.e.v indices less than in any face-based mesh format like
ply, obj or vrml.

The second advantage of the progressive binary format is that it implicitly stores all the connec-
tivity information of the mesh. After reading one of the face-based file formats the inverse pointers
of the half-edges have to be computed by some sorting strategy. An optimized linear time bucket-
sorting algorithm for this task was nearly three times slower than the construction from the progres-
sive binary format.

3.5 In-Core Progressive Representation

The second application of the proposed format is an in-core progressive half-edge data structure.
The goal is to alter the mesh resolution and always have an active half-edge data structure in-core,
i.e. one extends the API of the twinned half-edge data structure by a method that adjusts the mesh
resolution ton.

Instead of storing the progressive representation in a separate memory block, one can store it
inside the half-edge data structure without any additional storage space consumption. Figure 5
illustrates this interleaved memory layout. Suppose that resolutionn is adjusted. Then the first
(ebas + n) edges represent the twinned half-edge data structure ofMn. In the remaining half-
edge records the information of the edge-insert and edge-split operations is kept, where no vertex
locations have to be stored with the edge-split operations as the vertices are kept in a separate vertex
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ebas n

next
origin

hp2

hp1 h

half-edge records refinement records

e-n-ebas

current resolution

Figure 5: Illustration of the interleaved progressive in-core half-edge data structure. Each block
corresponds to one half-edge and two successive blocks to one edge.

list. Therefore, only the anchor half-edges have to be stored and only half of the available storage
space is used for this.

To increase the mesh resolution, the refinement operation stored in edge(ebas +n+1) is applied
and overwritten by the newly constructed edge. To decrease the resolution the edge with the index
(ebas + n) has to be eliminated. If the valence of the origin vertex is two (which is the case, iff
h.inv.nxt.inv.nxt = h), a join operation has to be performed and the number of vertices decreased,
otherwise a remove-edge operation is performed. In both case the parameters of the corresponding
coarsening operation overwrite the two half-edge records of the removed edge.

Experiments on the previously used P4 with 2.4 GHz test machine show that with this approach
about 1.5 million edges can be inserted or removed per second.

4 Polygonal Surface Definition

In order to allow for efficient rendering and to measure the approximation error an essential ingre-
dient to the polygonal progressive mesh representation is a proper definition of the surface spanned
by non planar polygons. There are several possible choices: minimal area surfaces, polygonal sub-
division surfaces, tesselation, etc.

There are three requirements that we think should be fulfilled by a practical surface definition:
first should the surface definition be local. If the definition is not local like as for example in the
case of subdivision surfaces, the measuring of the approximation error and potential view-dependent
refinement applications will be much more difficult. Secondly, the surface definition has to allow for
efficient rendering. And thirdly must the definition be symmetric with relation to the vertices of the
polygon. Otherwise it makes not much sense to use polygons.

We found that the best compromise for the three requirements is a star shaped triangulation of
the polygons around a face center vertex, that is computed from the polygonal mesh. A triangulation
with a minimum number of triangles as used by Kalvin and Taylor [12] is not symmetric with relation
to the polygon vertices and would demand for extra information. We want to emphasize here that
the face center vertex and the star shaped tessellation can be efficiently computed on the fly and do
not contributed to the storage space consumed by the progressive polygonal representation.

We experimented quite a lot with different definitions for the face center location, but it turned
out to be most robust and also fastest to simply use the center of mass of the vertices in the tesselated
polygon. This definition makes the surface definition only dependent on the vertices of the polygon
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Figure 6: Collection of the different cases of triggered edge-join operations. The resulting merged
face f is outlined dotted in brown. a) no triggered operations, b) two triggered joins, c) triggered
joins degenerate neighbor faces, d) joins degenerate merged face.

and fulfills all three requirements. The rendering performance could be slightly improved because
of the two additional triangles per polygon, but the star shaped triangulation allows for the use of tri-
angle fans, which can be rendered faster than independent triangles. Furthermore, in the application
of progressive transmission over the internet is the rendering cost negligible.

5 Polygonal Mesh Simplification

For the construction of the progressive polygonal mesh representation we follow the priority queue
based mesh decimation approach. Three different error measures have been investigated to sort the
edge-removal operations into the priority queue. These are discussed in section 5.3. Important is
that the error measure is evaluated on the mesh where not only the edge-removal has been performed
but also all induced edge-join operations. Before the next best edge-removal operation is performed
during the decimation loop, we check, if it leads to degenerate topological or geometrical constella-
tions. If yes, the edge-removal operation is skipped. The validity tests are described in sections 5.1
and 5.2. If the edge-removal is valid, it and all triggered edge-join operations are performed and the
anchor half-edges and in case of a edge-join also the index of the removed vertex is recorded for the
creation of the progressive representation.

For a clean implementation it is very helpful to distinguish the different cases of triggered edge-
join operations and to build a temporaryremoval-infodata structure that captures the necessary data.
The different cases are shown in Figure 6. The dotted brown outline shows the facef after the
removal and triggered join operations. Facef is used to measure the error of the operation. In a)
the simplest edge-removal case is shown without triggered edge-join operation. b) shows the cases
with one or two triggered edge-joins. The half-edgesi1...4 are stored in the removal-info or set to -1
where no join is triggered. The neighbor facesn1/2 are influenced by the join operations (compare
section 5.3.4). Figure 6 c) shows the third case, when the neighbor faces have degree three end
degenerate. This case is distinguished in the removal-info by the additional storage ofk1/2. Case c)
is translated into the following sequence of edge-removal and edge-join operations: removei2, join
i1, removei4, join i3, removeh1. As the valence of the verticesu1...4 is decreased by one, further
edge-join operations could be triggered. We avoid this combinatorial explosion by prohibiting the
removal of edgee in case c) whenever an edge-join operation would be triggered on anuj . Cases b)
and c) can also arise only on the left or right or mixed.

One of our topological constraints says that two faces may not touch in more than one vertex or
edge. This rules out the nasty case d) of Figure 6, where also the merged facef would degenerate.
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But for that the neighbor facesn1/2 would have to touch in the two verticesu1/2.
Compared to primal edge-collapse simplification does case a) have no pendant, b) corresponds

to the regular case and c) is the case of a degree three vertex incident to one of the triangles that are
edge-adjacent to the collapsed edge. This case is typically forbidden and the corresponding edge-
collapse discarded. Case d) can arise in the primal approach for triangulated models only in the case
of a tetrahedron.

5.1 Topological Constraints

In the presented approach it is assumed that the connectivity of the input mesh fulfills the following
properties:

• manifoldness

• the minimal vertex valence is three

• the minimal face degree is three

• no face touches itself

• the intersection of any two faces is empty or connected

If the input mesh is non-manifold it has to be cut into manifold pieces. If the face properties are
violated, they have to be enforced by cutting the faces, but in practice we did not encounter any
polygonal model, where the face properties were violated.

All properties are preserved during simplification. This will also preserve the genus of the input
mesh. The manifoldness cannot be violated by edge-removal or edge-join operations without violat-
ing one of the other three properties. The vertex valence and face degree properties are ensured by
the triggered join operations and the avoidance of all case c) in Figure 6, where a vertex valence of
uj decreases below three.

Also the face touching properties can be easily enforced. As no vertex of valence two arises, the
intersection of two faces cannot have any connected component with more than one edge. Thus the
second face property is valid, if two faces do not touch in more than one edge or one vertex and no
edge. Only one face flag is necessary to check this. Before the decimation loop the flag is set to false
for all faces. To check the second face property we cycle once around the resulting merged facef
with the help of the removal info data structure. At every half-edge we check the flag of the edge-
adjacent face. If this is set, we found a violation. Otherwise we mark the flag. Next we cycle around
the end vertex of the half-edge and do the same check and mark commands on the not edge-adjacent
but vertex-adjacent faces. After the complete cycle we know if the face property has been violated.
In anycase we set the changed flags to false again. To check, whether a face touches itself we simply
compare the indices of the edge- and vertex-adjacent faces with the current face.

5.2 Geometric Constraints

The only geometric constraint important to rendering is that no normals flip. We implemented
the following normal flip test: compute the face center of the resulting merged facef (compare
Figure 6 a-c), compute the least square fit plane to the vertices of facef and extract its normal as the
reference normal, compare the cosines of the angles between the triangle normals of the star shaped
tesselation off and the reference normal. If one of the cosines is below a user defined threshold, the
edge-removal operations is rejected. For all experiments we used a threshold of0.5.
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5.3 Error Measures

5.3.1 Planarity Based Dual Quadric

The first attempt for the error measure was the dual quadrics approach as described in [7]. It uses
the squared average distance of all points in a face-cluster to a best fit plane. A similar approach is
found in [18] with the difference that the squared average distance is integrated over the triangles
of the original patch. We only tried the simpler version as the planarity based error measure does
not perform well. This is on the one hand clearly reflected in the results section and on the other
hand also intuitively explainable: one can easily show that the dual quadric error measure does not
change if an edge-join operation is performed. As the edge-join operations remove the vertices from
the mesh, it is hard to believe that the planarity based error measure makes sense. We could also not
easily generalize the method to models with border.

5.3.2 Primal Quadric Based Error Measure

The second attempt was much more successful. It uses the primal quadrics to approximate the
squared distance function to the original mesh as proposed by [6]. In the original work, that is
based on primal edge-collapse, the target vertex of the edge-collapse is placed at the location that
minimizes the approximated distance function. The error measure is then taken as the distance
function evaluated at the optimized target vertex location. The quadric error metric approximates
the distance of the coarse approximation to the original mesh by sampling the coarse mesh at one
location – the location of the target vertex.

This idea cannot be directly transferred to the simplification based on edge-removal as here
the original vertex locations are preserved. If we evaluate the approximate distance function at an
original vertex, this will nearly always result in an error larger than zero, what is wrong as we known
that the error is zero at original vertices. Therefore, the approximate distance function is not useful
at the original vertex locations.

Instead we argue that the approximate distance function becomes more and more valid the farther
we move inside of the merged facef resulting from the edge-removal operation (compare Figure 6
a-c). We therefore propose to sample the approximate distance function in the face center instead
of on any original vertex. The result section proofs that this is a very good choice and it would
be interesting to apply this idea also to simplification based on primal half-edge collapse or vertex-
removal.

The proposed idea can easily be generalized to meshes with border and sharp creases. Border
edges can only be decimated by edge-join operations as we do not allow the removal of border
edges. To approximate the distance to the mesh border, we accumulate the border [6] and crease [3]
quadrics separately from the surface quadrics. The distance function is then sampled on the edge
center of the joined border or crease edge. The final error of an edge-removal operation, which
changes the mesh border, is computed as the maximum error of surface- and border-error.

5.3.3 Hausdorff-Distance Based Error Measure

If viewed in terms of the number of vertices are the rate distortion curves for the proposed approach
with the primal quadric error metric a bit worse than the results achieved with QSlim. To examine
the best achievable result with face clustering we also implemented an error measure that is based
on the one-sided Hausdorff distance from the original meshM∞ to the coarse approximationMn
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of resolutionn:
dHD1 (M∞,Mn) = max

p∞∈M∞
min

pn∈Mn

||p∞ − pn||.

We approximated the one-side Hausdorff distance in the following parametric way: we sampled
M∞ on its vertices and on the edge centers, we assigned the sampled vertices to edges and faces in
the coarse approximation and computed the error of a merged facef as the minimal distance of all the
samples, that have been assigned to the face and its boundary edges, to the star shaped tessellation
of the facef. This modified Hausdorff-distance also tries to keep straight patch boundaries and
automatically measures the error at the mesh border. It does not solve the problems resulting from
the use of the one-side Hausdorff distance though. For this one could additionally measure the
distance of the face and border edge centers to the original model, but we did not implement this.

The sample assignments are updated as follows: In the preprocessing stage we create the samples
on the edge centers and assign them to their edges. No vertices are assigned to original faces. After
each removal operation, the vertices assigned to the removed edge and the two adjacent faces are
unified and all assigned to the resulting face. After each join operation the vertices assigned to the
joined edges together with the eliminated vertex are assigned to the resulting edge.

The running time of simplification with the Hausdorff based error measure is quadratic in the
size of the simplified model and only suitable for small models. To overcome this problem, we
allowed the user to restrict the maximum number of vertices in assignment lists of edges and faces
to a constantamax. In order to select the vertices that are kept in an assignment list, we attached
an age to the vertices according to their removal from the mesh. The earliest removed vertices were
eliminated first from the lists.

With the introduction of the parameteramax it became possible to also reduce large models with
the Hausdorff-based error measure. In the results section we examined, the influence ofamax on the
achieved rate distortion curves.

5.3.4 Induced Errors

In the case b) of Figure 6 the geometry of the neighboring facesn1/2 are changed. This changes
the primal quadric based and the Hausdorff distance based error measures of the affected neighbor
faces. We account for that by also evaluating the new value of the error measure of the affected faces
and by taking the maximum over all evaluated error measures.

6 Results

All rate distortion curves in this section were measured with the MESH-tool [1]. For this we had to
tessellate the polygonal faces as described in section 4. We had problems though for models with
border loops such as the Stanford bunny. The measurements were taken on a machine with 512MB
and a Pentium 4 with 2.4GHz. All rate-distortion curves are shown in double logarithmic diagrams,
what makes the curves close to linear and much easier to read than curves on a singly logarithmic
scale.

In the first experiment we examined the influence of the parameteramax, that limits the maximum
number of samples considered per edge or face, on the rate-distortion curves for simplification with
the Hausdorff-distance. The results are shown in Figure 7 a) for the horse model from the large model
archive of Georgia Tech. The increase ofamax does improve the curve slightly. In b) the running
time for simplification is plotted overamax. As a compromise between accuracy and running time
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Figure 7: Examination of Hausdorff-distance based root mean squared error rate-distortion curve in
dependence on maximum number of assigned samplesamax: a) rate-distortion curves foramax =
1, 3, 5, 7, b) running time to simplify model in seconds.

we chose to use the parameter valueamax = 6 for all the models larger than 10,000 vertices, where
the unrestricted version of the Hausdorff-distance measure was too slow.

In the second experiment we compared the different error measurements. Figure 8 shows the
results for the shark model. In a) and b) the average error is plotted over the number of vertices
and the number of edges. We also plotted the results of QSlim with vertex position optimization.
The planarity measure is clearly the worst. The primal quadric based measure is comparable with
the Hausdorff-distance based measure. Both are worse than QSlim. This is not surprising especially
when drawn over the number of vertices. The proposed edge-removal based simplification algorithm
does remove a lot of edges before vertices are removed. If the rate-distortion curves are plotted
over the number of edges the proposed approach becomes much closer to QSlim. Figure 9 shows
another example of the armadillo model. Here also the result of QSlim configured to preserve the
original vertex locations is shown. This is approximately the quality that we can reach, what is quite
surprising as we do face clustering, which is more difficult as edge-collapse simplification because
of the additional constraint of the creation of disjoint patches on the original surface.

A visual analysis of the different proposed error measures is shown in Figure 10 a-c) for the
shark model. One can clearly see that the Hausdorff-distance based approach preserves the features
to much coarser resolutions. This is also true for the triceratops model, whose progressive represen-
tation built with the Hausdorff-distance is shown in d). More examples are shown in Figure 11.

Table 1 tabulates the results of further measurements. The first five models are polygonal,
whereas the other five models are purely triangular. Planarity based simplification is a bit slower
as the evaluation involves an eigenvalue decomposition. Compared to QSlim is our algorithm about
eight times slower. This is on the one hand due to the more complex consistency checks and on the
other hand to the larger number of failed validity tests, that are due to the difficulty of disjoint face
clustering. The Hausdorff-distance based approach is much slower and was primarily implemented
to check how well the proposed primal quadric based error measure is.
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Figure 8: Comparison of rate-distortion curve for shark model over number of vertices a,c) and over
number of edges b,d). Root mean squared error in a,b) and maximum two-sided Hausdorff distance
in c,d).

7 Conclusion & Future Directions

This work introduces a new progressive mesh representation based on the edge-split and edge-join
operations. It allows to handle polygonal meshes without the need for initial triangulation. The
method is based on the hierarchical face clustering paradigm and therefore partitions the original
mesh hierarchical into disjoint patches. For a lot of applications is this an important advantage.
The interpretation of the face clustering operation in the primal domain together with a suitable
surface definition for polygons with non planar faces allows to use the new progressive represen-
tation also for visualization. We introduced an error measurement based on efficiently computable
quadrics, which is fast and achieves very good results compared to our reference implementation of
a Hausdorff-distance based error measurement. Compared to triangular mesh simplification meth-
ods does the newly proposed method perform a bit worse in speed and a bit worse in approximation
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Figure 9: Comparison of root mean squared error rate-distortion curve for armadillo model a) over
number of vertices, b) over number of edges.

model v e vbas ebas tplanar tqem tHD6 tHD

cupie 2968 6004 85 156 1 1 - 64
shark 2560 5120 4 6 1 1 - 90
cessna 3737 7650 46 83 1 1 - 87
triceratops 2832 5664 4 6 1 1 - 107
croco 17,332 51,606 260 390 6 7 216 -

cow 2,904 8,706 4 6 1 1 44 120
feline 49,864 149,598 57 86 38 32 1002 -
santa 75,781 227,337 4 6 45 37 1421 -
armadillo 172,974 518,916 4 6 83 89 3225 -
isis 187,644 562,926 4 6 92 97 1213 -

Table 1: Measurements for the used models. From left to right: number of vertices/edges in original
and base model, construction time for simplification with planarity measure, primal quadric measure,
Hausdorff-measure with maximum of six samples per assignment list and if available not restricted
Hausdorff-measure. The first five models are polygonal and the other five triangular.

quality but generates disjoint hierarchical face clusters.
The second advantage of the proposed technique is the very efficient progressive representation,

from which we designed a progressive file format that improves disk read times and we presented
an extension to the twinned half-edge data structure, that allows to efficiently select a resolution in
the progressive representation without any additional storage space consumption.

Some future work [9] already has shown that the new progressive representation can be used to
efficiently build a view-dependent polygonal mesh, which allows for very fast and localized changes
in the resolution. Further future work will include the compression of progressive polygonal meshes
and the combination with texture and normal-maps mapping.
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Figure 10: Visual comparison of the investigated error measurements on the shark model for the
approximationsM100,M300,M600,M1200,M2400: a) planarity (dual quadrics), b) distance from
coarse to fine (primal quadrics), c) distance from fine to coarse (Hausdorff-distance)
d) the same approximation resolutions of the triceratops constructed with unrestricted Hausdorff-
distance.
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Figure 11: More examples of progressive representations all built with the primal quadrics
approach: a) croco model withn = 0, 100, 500, 3000, 10000, b) bunny model with
n = 0, 100, 1000, 5000, 20000, c) santa model withn = 50, 200, 1000, 5000, 20000, d)
isis model with n = 0, 100, 500, 2000, 10000, 50000, 200000, e) armadillo model withn =
50, 100, 1000, 10000, 100000
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