
Truly Selective Polygonal Mesh Hierarchies with
Error Control

Stefan Gumhold

MPI Informatik, Saarbr̈ucken

Abstract

In this work a new multi-resolution model is proposed for polygonal meshes. It is based
on the dual edge collapse, which performs face clustering instead of vertex clustering. The
new hierarchical mesh representation combines a truly selective refinement scheme with a
strict control of the two-sided Hausdorff distance. The proposed approach allows to build
hierarchical meshes directly over non triangulated polygonal models. As most dependen-
cies in the hierarchy are in the form of trees, the resulting representation is very compact
and allows for a compressed in-core representation. Furthermore an optimization scheme
is proposed for the hierarchy based on variational shape approximation.

Key words: Error Controlled Simplification, View-Dependent Visualization, Polygonal
Meshes, Hierarchical Modeling

1 Introduction

The emergence of new 3d scanning technologies formed a demand for the efficient
visualization of huge polygonal models. The most important of these models rep-
resent beautiful pieces of cultural heritage, prototypes from car, ship and aircraft
industry or models extracted from medical 3d images.

To handle such large meshes a variety of efficient processing techniques are nec-
essary. Among the core techniques are compression and simplification. The latter
allows to build a hierarchy over the irregular surface tessellation. The mesh hierar-
chy is used to generate meshes of a varying resolution that is adapted to the current
processing task. Among the most important tasks are view-dependent visualization,
adaptive global illumination and adaptive simulation approaches.

In order to extract an adaptively refined mesh from the mesh hierarchy, a quality cri-
terion is defined over the surface. The most commonly used criteria are geometric
error and for visualization approaches also normal and texture deviation. The goal

Preprint submitted to Elsevier Science 12th January 2005

of the mesh hierarchy is to generate an adaptively refined mesh with the smallest
number of mesh elements that fulfills the quality criterion everywhere. To achieve
this, additional attributes are stored within the hierarchy that allow to bound the
different quality criteria.

The most natural measure for the geometric error is the Hausdorff distance. It gen-
eralizes the Euclidean distance between two points to the distance between two
surfacesS1 andS2 and is defined as

HS1→S2

def
= max

p1∈S1

min
p2∈S2

‖p1 − p2‖ . (1)

HS1→S2 measures the maximal distance of a point onS1 to S2 and as its definition
is not symmetric is called theone-sided Hausdorff distance. Taking the maximum
over the two possible one-sided distances yields the[two-sided] Hausdorff distance

HS1↔S2

def
= max {HS1→S2 ,HS2→S1} . (2)

The Hausdorff distance can be used to bound

1 2 3

screen

fine

coarse

max error
view point

Figure 1. Illustration of the er-
ror in screen projection between the
fine original mesh (dotted) and the
coarse adapted mesh (solid).

the screen space error between a meshM and
an adaptively refined approximationMadapt. A
bound onHP(M)→P(Madapt), whereP (.) is the

projection on the screen, ensures that all pix-
els covered byM are also covered byMadapt.
The bounding ofHP(Madapt)→P(M) ensures on

the other hand, thatMadapt does not cover ad-
ditional pixels on the screen. Other error mea-
sures like the quadric error metric [7] do not
allow such guarantees. Figure 1 illustrates the
mentioned cases for the projection of a 2D scene
onto a 1D screen. The fine original mesh is draw
in dotted style and the coarse, adapted mesh in
bold style. On the 1D screen both projections

are shown. The case when the coarse mesh does not cover all pixels covered by the
fine mesh arises in area1. In area2 both meshes project to the same pixels. The
other erroneous case when the coarse mesh covers pixels that are not covered by
the fine mesh is shown in area3. The grey arrows illustrate the one-sided Haus-
dorff distances –HP(M)→P(Madapt) in area1 andHP(Madapt)→P(M) in area3. The

arrows originate from the most distant points on either mesh and point to the closest
location on the other mesh.

Most hierarchies over irregular meshes are built from fine to coarse during the sim-
plification of the irregular mesh with atomic simplification operations, such as ver-
tex removal, edge or triangle collapse. The hierarchical model stores these atomic

2

top part

bottom part

fragmentvertex removal edge collapse reduced fragment

split vertices

Figure 2. Illustration of the faces in the top and bottom part of a fragment for vertex
removal on the left and edge collapse in the middle. On the right, reduced fragment used in
view-dependent polygonal meshes.

coarsening operations, their inverse refinement operations (vertex insertion, ver-
tex split) and the dependencies among them. The dependencies restrict the order,
in which the refinement and coarsening operations can be applied during adaptive
refinement. To balance the hierarchy the simplification algorithm is typically mod-
ified to select independent sets of operations. The balancing comes with a decrease
in the quality of the coarsest approximations. Therefore the independent set based
simplification can be steered by a rapidly computable error measure like quadric
error metrics as well.

Two kinds of approaches have been used to define the dependencies among the dif-
ferent operations. The first kind [14,18] is based on the idea of the multi-triangulation
(MT) [5]. Here the notion of afragmentis important, which is illustrated in Figure 2
for vertex removal and edge collapse simplification. For each coarsening operation
a fragment is defined from two sets of faces: thetop part, which is composed of all
the faces that are changed by the coarsening operation, and thebottom partof the
faces that replace the top part. The dependencies among the operations are defined
therewith relative to the current tessellation: a coarsening/refinement operation is
allowed iff all faces of the top/bottom fragment are present in the current tessella-
tion. These dependencies ensure that all faces of all adaptively refined meshes have
been present during simplification. The attributes stored within the hierarchy bound
the different error terms conservatively for each face and typically over estimate the
error.

The major problem of MTs is the large number of dependencies among the atomic
operations, which prohibit fast changes in the resolution and cost more storage
space. The second kind of approaches like the view-dependent progressive meshes
of Hoppe [9,16,6] therefore reduce the fragment size. Hoppe for example proposes
to use only six triangles in the top and four in the bottom part as shown on the
right of Figure 2. The improved adaptivity makes error control much more difficult.
The affected faces of an edge collapse, which are not part of the fragment (lightly
shaded faces in Figure 2), can assume different shapes depending on which of the
edge collapse operations in their direct neighborhood is performed. To control the
error, all of the different edge collapse configurations would have to be considered.
As this is too expensive, this problem is either neglected [9] or more conservative

3

estimates [16,6] are used. The conservative estimates of Pajarola can only bound
the one-sided Hausdorff distance and therefore cannot guarantee a correct image.

The work of Kim and Lee on truly selective refinement [11,12] aimed on the abo-
lition of all dependencies among edge collapse and vertex split operations, that are
not included in the vertex tree induced during edge collapse simplification. To ac-
complish this they identified each vertex of the original mesh with a dual patch
around it in such a way that the whole surface is partitioned into dual patches. Each
edge collapse simply unifies the dual patches of the collapsed vertices and assigns
the union to the target vertex. In this way do the dual patches of any cut through the
vertex tree partition the original surfaces. The two split vertices (compare Figure 2
on the right) necessary to perform a vertex split operation can be found by tracing
the meeting points of the dual patches on the surface through the hierarchy. There
are several problems with this approach. Firstly, there are additional test necessary
to keep the connectivity consistent. But the major drawback is that the geomet-
ric error can be even less controlled as with view-dependent progressive meshes.
The reason is that all faces in the one-ring of a vertex in a coarse approximation
depend heavily on the edge collapses performed in the close neighborhood and a
huge number of differently refined neighborhoods would have to be analyzed to
bound the error – especially for the two-sided Hausdorff distance.

In this work a new mesh hierarchy is proposed based on the edge collapse operation
performed on the dual mesh, which merges two faces. To equip the mesh hierarchy
with coarse approximations, the merging of faces is interpreted on the primal do-
main as edge-removal operations. Vertices are eliminated whenever their valence
decreases to two by edge-join operations as proposed in [8] for a progressive rep-
resentation. Instead of a vertex tree the new hierarchy is built on a face tree or
rather face forest. The hierarchy allows truly selective refinement of the face forest
with control of the two-sided Hausdorff distance during selective refinement. No
consistency checks for the connectivity are necessary and therefore no such checks
restrict the selectivity as in [11].

The remainder of the paper is structured as follows. The next section reviews mesh
simplification based on edge-removal and edge-join operations. Section 3 describes
how the mesh hierarchy is built and what dependencies are stored. The error con-
trol is introduced in section 4 together with a proof of correctness. The paper is
concluded with some examples.

4

a) b)

e

h1

h2

Figure 3. a)Illustration of the surface definition of a polygonal mesh with non planar faces.
These are tessellated in a star (yellow lines) around the face center with the shown vertex
normal.
b) the twinned half-edge data structure stores with each half-edge the origin vertex and the
next pointer. The half-edges are sorted, such that the twinned half-edges are in successive
order in the half-edge list.

2 Preliminaries

2.1 Polygonal Mesh Surface

The coarsening operations of edge-removal and edge-join as used in [8] can be
applied to triangular as well as polygonal meshes and they always construct poly-
gonal meshes as output. Although their order is optimized for planarity, the vertices
of a face in the simplified model do not have to be coplanar. Therefore a useful
definition of the surface within each polygon is necessary. I follow the ideas of [8]
and tessellate each non triangular polygon with a star around a newly introduced
face center vertex. The face center locationvf is computed as the centroid of the face
vertices. A normal vectornf is added to the face center in the direction orthogonal to
a plane fitted to the face vertices. Figure 3 a) illustrates the polygonal mesh surface
and visualizes the star shaped tessellation (yellow lines) and the added face center
normals. For the rendering of the adaptive polygonal mesh it is useful to store
the center locations and normals explicitly for all polygonal faces arising during
simplification.

2.2 Twinned Half-Edge Data Structure

The connectivity of the adaptive polygonal mesh is stored in the space efficient
twinned half-edge representation used in OpenMesh [2] and also described in Gum-

5

a)

f

v
1

v
2

h1

h2

e f
1f

2

v
1

v
2

edge-remove edge-insert

IeRe

b)

f
1

f
2

h

f
2

v

f
1

e

edge-join edge-split

SvJv

Figure 4. Basic simplification and refinement operations:
a) edge-removal merges facesf1 andf2 into f / edge-insert is based on anchor half-edges
h1, h2 and splitsf into f1 andf2.
b) edge-join eliminatesv and merges adjacent edges / edge-split introduces vertexv by
splitting the anchor half-edgeh.

hold [8]. It is a minimal half-edge data structure [17,10] with a special ordering of
the half-edges. Figure 3 b) illustrates the two fields stored with each half-edge: the
origin vertex and the next half-edge in the same face. The two half-edges compos-
ing an edge are stored in successive order in the list of half-edges such that the
twin or inverse half-edge can be efficiently computed with a binary XOR 1 on the
half-edge index. From the special order follows that also the edges can be used as
basic elements of the data structure. The group of two twinned half-edges form a
winged-edge [1] without the previous pointers. One can efficiently transform half-
edge indices into edge-indices and vice versa by dividing/multiplying with two.

2.3 Polygonal Progressive Meshes

The proposed polygonal mesh hierarchy is built from a polygonal progressive mesh
representation, which has been introduced in [8]. The simplification algorithm uses
edge-removal and edge-join operations as illustrated in Figure 4. Each edge-removal
operationRe merges the two edge-adjacent faces into one face and decreases the
valences of the two vertices incident upon the removed edge. The edge-join oper-
ations are performed automatically, whenever a vertexv of valence two arises to
eliminate it with the join operationJv. In the dual mesh the join operation corre-
sponds to the removal of a face of valence two. This is the dual-equivalent to the
removal of the degenerate faces that arise during edge-collapse simplification. In

6

the pure triangular case every edge-collapse degenerates two triangles, that are au-
tomatically removed. In the polygonal progressive mesh representation zero, one or
two edge-join operations can be induced by an edge-removal operation. Therefore,
the edge-join operations are treated and stored separately.

The simplification algorithm used to build the polygonal progressive mesh sorts all
edge-removal operations, into a priority queue. The induced edge-join operations
also have to be performed before the evaluation of the error measure. Before an
edge-removal is performed two consistency checks are performed and the operation
is prohibited if one of them fails. The first check ensures that two faces never touch
twice and that no face is adjacent to itself. The second check warrants that the star
shaped tessellation around the face center stays a valid tessellation for all faces.
The later test is similar to the normal flip test of edge-collapse based simplification.

The polygonal progressive mesh representation is finally composed of the base
model (coarsest approximation) and a sequence of the inverse refinement opera-
tions. The inverse of the edge-removal is the edge-insertIe operation as shown in
Figure 4 a) from bottom to top. In the notation introduced for multi-triangulations
consists the fragment of the edge-insert operation of only one polygonal bottom
facef, which is replaced by the two top facesf1 andf2. The polygonal mesh is not
at all influenced outside of facef.

The inverse of the edge-join is the edge-splitSv operation (Figure 4 b) bottom to
top). It introduces the vertexv. No new faces are created, such that both bottom and
top part of its fragment consist of the facesf1 andf2.

Both of the atomic refinement and coarsening operations can be implemented very
efficiently with the twinned half-edge data structure allowing for very fast changes
in the resolution of the progressive polygonal mesh. In this work a rapid adaptive
refinement framework is developed based on the edge-insert and edge-split opera-
tions.

3 Construction of Mesh Hierarchy

The polygonal mesh hierarchy is constructed from the progressive representation
in a very similar way as view-dependent progressive meshes [9]. The progressive
representation is read from disk and during the progressive reconstruction of the
original model, the hierarchical representation is created as described in section 3.3.
The main part of the hierarchy is a forest of binary trees over the faces, where each
node corresponds to one polygonal face in the progressive model.

To balance the face hierarchy the original simplification algorithm [8] has been
extended by an independent set selection technique as described in section 3.1.

7

As face cluster hierarchies typically have worse approximation qualities as vertex
clustering hierarchies, I optimized the hierarchy with the variational shape approx-
imation techniques of Cohen-Steiner et al. [4] as described in section 3.2

3.1 Independent Set Simplification

a)
b) c) d)

Figure 5. a) illustration of independent set selection with green edges to be removed, blue
edges blocked, black edges invalid and yellow vertices to be removed. b/c) two kinds of to
be blocked edges (grey) for the to be removed edge (green), d) to be updated and possibly
re-queued edges highlighted in red.

In order to balance the face hierarchy I followed the well-known technique of in-
dependent set selection. The selection of independent sets is just a minor modifi-
cation of the priority based simplification algorithm. The same priority queue is
used to select edge-removal operations. Also the validity checks for connectivity
and geometry are the same. The difference is that whenever an edge-removal op-
eration from the top of the queue passes the validity checks, the operation is not
directly performed, but only marked on the mesh. An edge- and a vertex-flag is
allocated in order to mark the removed edges and vertices that are eliminated by
edge-removal and edge-join operations. A second edge-flag is used to mark these
edges as blocked, which would violate the independence of the selected set of op-
erations. Figure 5 a) illustrates the marking with removed edges colored green,
blocked edges blue and removed vertices yellow.

Figure 5 b) and c) illustrate the two kinds of edges that have to be blocked: b) all
edges of the two edge-adjacent faces, c) all outer edges of valence three vertices that
would cause an edge-join operation in the target face and change the error weight
of the currently performed operation. Newly blocked edges are directly removed
from the queue.

Different to most other independent set approaches is that edges are also re-inserted
into the queue. These are the edges that had been invalid because of one of the
geometric constraints and that could become valid after an edge-removal operation.
d) shows these edges in red. The geometry of one of their adjacent faces is changed
by the removal of the yellow vertex.

8

a)

b) c)

d)

Figure 6. Hierarchy optimization with variational shape approximation: a) santa mesh clus-
tered according toL2.1 norm into 200 clusters, b) close-up of zigzag boundaries between
clusters, c) straightened boundaries, d) coarse model simplified with independent set face
clustering

After the edges have been marked, all the coarsening operations are performed
together and written to the progressive representation. The priority queue is re-built
from the remaining edges and the next independent set is selected until only invalid
edges remain.

3.2 Hierarchy Optimization with Variational Shape Approximation

As the approximation quality of polygonal progressive meshes is lower than edge-
collapse based progressive meshes, I optimized the coarse resolution of the hierar-
chy with the variational shape approximation technique proposed by Cohen-Steiner
et al. [4]. For a given numbern of target clusters theL2.1 norm was used to cluster
the faces inton face cluster as shown in Figure 6 a) withn = 200.

Then I used the proposed independent set based simplification algorithm but avoided
the removal of all edges that are adjacent to two faces of different clusters. Minor
problems arose at the cluster boundaries, which typically have a zigzag shape as
shown in the close-up in Figure 6 b). Two simple cleanup procedures, which were
applied between clustering and simplification, solved the problem. The objective
of both cleanup procedures was the shortening of the cluster boundaries. The first
cleanup moved single triangles to the dominant cluster in its neighborhood, i.e. if
two or three edge-adjacent triangles belong to one different cluster the triangle itself
is also added to this cluster. The second cleanup moved adjacent triangle pairs of
one cluster to the dominant cluster in the neighborhood, if this reduced the length
of the affected cluster boundary. Both cleanup proceedures where repeated until
no more cluster changes happend. Typically, three to ten iterations were necessary.
Figure 6 c) shows a close-up of the cleaned clustering in b).

Figure 6 d) shows the resulting simplified model. I examined several models and

9

target numbers of clusters. It turned out that a simplification to1.5n faces was
best. The approximations had significant smaller two-sided Hausdorff distance as
compared with QSlim approximations of the same number of vertices. In terms of
average squared error QSlim was superior in all cases, which is no drawback to the
proposed method as it is based on controlling the Hausdorff distance. I decided to
build the hierarchies with a target number ofn = 200 clusters and turned off the
cluster constraint during simplification after2n faces had been reached, such that a
complete hierarchy could be constructed.

The proposed combination of face clustering and variation shape approximation
also simplifies the extremely complicated meshing approach described in [4], where
it is hard to show that for an arbitrary clustering a coarse mesh can be found. The
proposed approach on the other hand always generates a coarse polygonal mesh
independent of the connectedness of the clusters. In the example of Figure 6 d) all
faces in the meshed clustering allow for the star shaped tessellation around the face
center. In order to generate convex faces I also implemented a consistency check
for the simplification algorithm that ensures the convexity of all faces. In this way
the clusters could also be meshed with convex faces.

3.3 Hierarchical Structure and Dependencies

Figure 7 gives an example of a polygonal mesh hierarchy. In a) the base model with
two faces and nine vertices is shown. b) to d) show three levels that were generated
by independent set removal of edges. e) is the original mesh and in f) an example
for an adaptively refined mesh is depicted. Upper case letters label the faces in
the hierarchy, lower case the vertices and Greek letters the edges. Inserted edges
are labeled with “eA”, where the subscript corresponds to the face that is split. In
Figures a)-e) only the labels of newly introduced elements are shown, and all the
unlabeled elements keep the name from the previous figures.

3.3.1 Face-Forest

The primary hierarchy of the polygonal multi-resolution model is built from the
edge-removal operations that generate a forest of binary trees over the faces, as
shown in Figure 7 g). The roots of the face-forest are the faces in the base mesh –
in the exampleA andB – and the leaves are the faces of the original mesh, which
can be triangular or polygonal. Each edge-removal/edge-insert corresponds to an
internal node of the face-forest. In Figure 7 g) the removed/inserted edge is written
underneath the node for the first two hierarchy levels. The parent and child relations
of the tree are inherited onto the faces. For example is faceA the parent face ofC
andD, andQ andR are the children faces ofL.

Figure 8 illustrates the face-forest of the santa model. a) shows the base model with

10

a)

BA

a b

c

d

ef
g

h

i

b)

eA eB

k

l

j
D

E
F

C

c)

eF
eE

m n
G

H

J

I

µ

d)

eD

eG

K

L

M

N

o

p

q

e)

eC

eL
eH

eM
eJ

O
P

Q

R

S

T

U

V

W

X

f)

S

T

U

V

FA
N

g)

BA

D E FC

G H I JK L

N M

O P

QR S T

UV

W X

eA eB

eE eFeDeC

h)

eA eB

j k l

eF

eE

m

n
µ

p

qo

eD eGeC eLeH eMeJ

i)

eB k l, j
eE m l, k n

eD o p, j
eG q n, m k l eC o, j m
eH q, j l m

eM k m, n q

eJ n, keA j
eF n, k l eL j p, o

Figure 7. a-e) base model and four sets of refinements, upper case letters label faces, lower
case vertices, and Greek letters edges; f) adaptively refined mesh, where the cuts through
the face- and edge-forests and the face-vertex dependencies are shaded in g) face-forest, h)
edge-forest and i) face-vertex dependencies.

the root faces. b) illustrates the patches of faces from the original surface that are
merged by edge-removals into the same face of the base model. In c) and d) each
face of the base model has been subdivided once, and in e) and f) two levels further
down in the hierarchy are shown.

11

a) c) e)

b) d) f)

Figure 8. Illustration of the first levels of the face forest in the coarse representation and
on the original santa mesh: a/b) base model: roots of forest, c/d) all faces refined once, e/f)
third level of tree.

3.3.2 Edge-Forest

The edge-join / edge-split operations remove / introduce the vertices of the polygo-
nal mesh. Figure 4 b) shows that each edge-split operation replaces one edge of the
mesh by two edges and a new vertex. Although the space of the edge containing
h before the split-operation is re-used for the left of the two new edges on top of
Figure 4 b), one of the end vertices of this edge changes, such that both edges can
be interpreted as new edges. In Figure 7 new Greek labels are given to both edges.
The edges of successive split operations form a binary tree – an edge-tree. Over
each edge of the base model and each edge introduced by an edge-insert operation
a potentially empty binary edge-tree is formed. In Figure 7 h) the edge-forest of the
hierarchy in a)-e) is shown. To each node corresponds the insertion/removal of the
vertex written below the node. In Figure 8 b) all leaves of the edge-trees over the
base edges are colored blue. d) and f) additionally show in green the leaves of the
edge-trees over the insert-edges.

12

3.3.3 Dependencies

Let us illuminate the dependencies among edge-remove/insert and edge-join/split
operations from the point of view of Multi-Triangulations. The bottom and top
parts of the corresponding fragments are shown in Figure 4. Each edge-insert op-
eration replaces the bottom facef with two top facesf1 and f2. This implies that
all operations that need one of the facesf1/2 in the current tessellation depend on
this edge-insert operation. Operations that are based on the bottomf depend on the
edge-removal operation in 4 a). Similarly, depend operations that need the vertexv
in Figure 4 b) on this edge-split operation. Therefore, it is sufficient to declare the
dependencies of an operation by enumeration of all dependent faces and vertices.

In the setting of Multi-Triangulations the edge-insert operation in Figure 4 a) would
thus depend on facef and all its vertices. The edge-remove would depend onf1 and
f2 with all their vertices. The edge-split and edge-join operations in Figure 4 b)
would only be allowed if both facesf1 andf2 are present with all their vertices.

The dependencies of the edge-split and edge-join operations restrict the selectivity
of the hierarchical mesh noticeably. For truly selective refinement the only depen-
dencies among the edge-remove/insert operations should be imposed by the face-
forest (compare Figure 4 a): edge-remove is allowed, whenever facesf1 andf2 are
not split; edge-insert is allowed, whenever facef is present in the current tessel-
lation. These dependencies are calledface-face dependencies. A valid selection of
faces would then correspond to a cut through the face-forest as the one shaded in
Figure 7 g), which corresponds to the adaptive mesh of f).

In the adaptive polygonal mesh the edge-join/split operations are performed au-
tomatically similarly to the simplification process. This automation is triggered
by two further types of dependencies: theface-vertexand vertex-vertex depen-
dencies. The vertex-vertex dependencies implement the dependencies among the
edge-join/split operations that are induced by the edge-forest, i.e. for splits the par-
ent edge has to be present and for joins the child edges must be present and not
split.

The remaining face-vertex dependencies as shown in Figure 7 i) ensure that the ver-
tices necessary for an edge-insert operation are present. The minimum requirement
for the edge-insert in Figure 4 a) would be the presence of verticesv1 andv2. The
minimum required vertices are listed in Figure 7 i) before the comma. The edge-
join operationsJv on the other hand are triggered, whenever the vertex valence of
vertexv becomes two. No explicitly stored dependencies are necessary for that.

To be able to efficiently control the two-sided Hausdorff distance one could go back
to the idea of the Multi-Triangulation and introduce also vertex-face dependencies
that ensure that both facesf1 andf2 in Figure 4 b) are present before performing an
edge-split operation. To keep the mesh hierarchy truly selective I instead increase
the number of face-vertex dependencies and demand that whenever a facef is ac-

13

tive, at least all these vertices must be present that were part of the face during
simplification. All these face-vertex dependencies are shown in Figure 7 i). The
second advantage of the extended face-vertex dependencies is that they automati-
cally ensure a valid connectivity.

To efficiently store the face-vertex dependencies the face-face dependency is used
as precondition. Before the edge insertion ofeA between Figure 7 a) and b) the face-
face dependencies tell us that faceA with all its vertices is present in the current
tessellation. Therefore only the vertexj has to be ensured by an explicitly stored
dependency. Similarly is the insertion ofeE only dependent on faceE and vertex
m.

In order to efficiently store the face-vertex dependencies note that in Figure 4 b)
only the two edge-insert operations that split facesf1 and f2 can depend on the
edge-split operation. Similar to the looping of fragments in [13] can one link all the
edge-split operations, onto which a fragment depends, in a singly linked list. For
this the link to the first edge-split operation is stored in the edge-insert operation
and recursively the link to next edge-split within the referenced edge-split. Each
edge-split needs to store two links, where each link is composed of an edge-split
index and a bit, telling which of the two links of the referenced edge-split carries on
the list. By packing each link into a 32-bit integer, only one integer per edge-insert
and two per edge-split are necessary to store the insert-split dependencies.

All the introduced dependencies can be easily built while reading the progressive
polygonal mesh representation with the help of two additional integer attributes. To
construct the face-forest within each half-edge the index of the parent edge-insert
operation is stored. For the construction of the edge-forest within each edge a link
to the parent refinement operation is stored, where this time the link-bit tells if the
parent is an edge-insert or an edge-split.

The proposed mesh hierarchy is truly selective in the sense that an arbitrary cut
through the face forest can be selected without causing inconsistencies in the con-
nectivity and with the ability of error control. Figure 7 f) shows an adaptively re-
fined mesh of the hierarchy in a)-e). The corresponding cuts through the face- and
edge forests are shown in g) and h).

3.4 Data Structure for Polygonal Multi-Resolution Mesh

The proposed polygonal multi-resolution model consists of the base model in the
twinned half-edge data structure plus two lists of refinement operations: a list of
edge-insert operations and a list of edge-split operations. The basic types of the
data structure are 32-bit integers, 32-bit floats, 3d points and vectors with 32-bit
float coordinates andlinks. A link is composed of an index and a flag, which are
packed into a 32-bit integer. The flag can be used to specify the type of refinement

14

operation or to select one of two links to the next face-vertex dependent edge-split
operations.

The records for edge-insert and edge-split first store the information necessary to
perform the refinement on the current mesh. As the operations can be performed in
arbitrary order, no fixed half-edge indices exist. Therefore, each half-edge is identi-
fied with the operation that it introduces, such that the necessary anchor half-edges
h1/2 andh in Figure 4 a) and b) are stored as links to the introducing operations. A
hash-map is used to map operation indices to half-edges of the current tessellation.

The second information stored within each refinement operation are the dependen-
cies. Each edge-insert stores children and parent edge-insert operations and a link
to the first face-vertex dependent edge-split operation. The edge-split operations
only need to know their parent edge-split and store the two necessary next links of
the face-vertex dependencies as discussed in section 3.3.3.

Finally is the geometry of the introduced mesh element stored for each operation.
The edge-insert operations store face center and face normal of facef and the edge-
split operations position and normal of the introduced vertexv.

To analyze the storage space consumed for the polygonal multi-resolution model
let us usev as the number of vertices,e the number of edges andf the number of
faces of the input model and assume that the size of the base mesh is negligible.
Thenv is also the number of edge-split operations andf the number of edge-insert
operations. The total number of refinement operations ise = v + f , i.e. the Euler
equation without Euler characteristic. The consumed storage spaceS is measured
in bytes per vertex (bpv) or bytes per edge (bpe) and is separated into connectivity
(anchors), hierarchy (dependencies) and geometry (locations, normals and error
bounds). From the discussion above one gets:

S = SC + SH + SG = (8f + 4v) + (16f + 12v) + (24f + 24v) = 48f + 40v.

To compare with Hoppe [9] and Pajarola [16] three additional float attributes per
edge insert operation are necessary yielding60f + 40v bpv. For a triangular mesh
with f = 2v the total storage space is160 bpv. This is much less than the224
bpv reported by Hoppe and only a factor1.4 more than the106 bpv reported by
Pajarola. But my approach consumes less storage space for non triangulated polyg-
onal models.

For practical applications can the geometry cost be reduced further by compressing
the normal vectors into two bytes, the attributes into one byte each and the face
center location and normal can be computed on the fly. After this compression only
SG,compressed = 3f+14v bytes remain. Also the hierarchy can be compressed further
by using compressed representations of binary trees as for example proposed by
Munro and Raman [15]. Only the information theoretic lower bound of two bits per

15

a)

f↓

b)

f

c)

f↓

Figure 9. a) facef↓ as generated by the simplification algorithm shown together with the
boundary ofF (f↓), b) insertion of one vertex causes a larger Hausdorff distanceHf↔F (f),
c) illustration of parametric Hausdorff distance between coarse and fine boundaries

node are necessary with constant time access to parents and children. Therefore, the
hierarchy can be compressed down toSH,compressed = 41

2
f + 81

2
v bytes. The total

storage space would reduce toScompressed = 151
2
f +261

2
v and for triangular models

571
2

bytes per vertex. In comparison does the twinned half-edge data structure with
only two 32-bit pointers per half-edge and the same normal vector compression
already consume26 bytes per vertex, i.e. nearly half of the space necessary for a
compact in-core hierarchical polygonal mesh.

4 Error Control

The two-sided Hausdorff distance fulfills the following partitioning property:

HS1

.
∪S2↔Sa

.
∪Sb

≤ max {HS1↔Sa ,HS2↔Sb
} ,

where the dot over the union sign impliesS1 ∩ S2 = ∅. In my hierarchical mesh
representation any cut through the face-forest leads to an adaptive approximation
Madapt of the original meshM. The faces ofMadapt are a valid partition ofMadapt

and each of the coarse facesf can be naturally identified with the set of facesF (f)
of M that are merged intof. The setsF (f) on the other hand partitionM and
the partitioning property of the Hausdorff distance allows to boundHMadapt↔M by
bounding allHf↔F (f).

From the face-vertex dependencies follows that any facef of Madapt at least con-
tains the vertices, which were also incident on the instancef↓ of f generated during
simplification. But the facef ofMadapt can include further vertices. Figure 9 a) and
b) show a simple example where the insertion of additional vertices increases the
two-sided Hausdorff distance betweenf andF (f). The spot of maximal distance
is shown in red. For an efficient mesh hierarchy it is unavoidable to pre-compute
error bounds. But for this one would have to consider all possible vertex inser-
tions into a facef↓ and measure the Hausdorff distance between all possiblef and

16

F (f) = F (f↓). This is clearly not feasible.

Instead I propose to bound the two-sided Hausdorff distance from above. This
bound is the sum of the Hausdorff distance betweenf↓ andF (f↓) and a parametric
form of the Hausdorff distance between the boundary off↓ and the boundary of
F (f↓). The boundary of a face or surface patch is denoted by the∂-symbol. Fig-
ure 9 c) illustrates the proposed parametric Hausdorff distanceH̃∂f↓↔∂F (f↓) between
the coarse and fine boundaries. For a boundary edgee of f↓ let E(e) define all the
corresponding edges of the original mesh (in Figure 9 c) illustrated by different
colors). Then the parametric Hausdorff distance of the boundaries is defined as

H̃∂f↓↔∂F (f↓)
def
= max

e∈∂f↓
He↔E(e). (3)

Similar definitions can be given for the one-sided parametric Hausdorff distances
between coarse and fine boundaries. With this definition the theorem on the con-
servative error bound can be stated:

Theorem 1 (Conservative Error Bound) Let f↓ be a coarse face generated dur-
ing simplification with boundary∂f↓ and F (f↓) the corresponding patch on the
original mesh with boundary∂F (f↓). Then holds for anyf corresponding tof↓ in
an adaptively refined mesh

Hf↔F (f) ≤ Ξ(f↓)
def
= Hf↓↔F (f↓) + H̃∂f↓↔∂F (f↓)). (4)

Thus the error boundΞ(f↓) does only depend on the coarse facef↓ generated dur-
ing mesh simplification and its corresponding patchF (f↓) on the original surface.
And it bounds for any refinement of the boundary off↓ the two-sided Hausdorff
distance toF (f↓). In the mesh hierarchy for each edge-insert operation that splits
a facef↓ the boundΞ(f↓) is stored and compared to the user defined error bound
during adaptive refinement. During hierarchy construction I computed the Haus-
dorff distance between the faces and their corresponding patches on the original
mesh with the Metro tool [3] and the parametric Hausdorff distance between the
boundaries with a brute force method. In order to speed up the calls to Metro a
ram-disk was used and the simple cases, where the boundary off↓ coincided with
F (f↓), were handled explicitly.

Proof of Theorem 1:The first step in the proof is the application of the triangle
inequality for one-sided Hausdorff distances to the distances betweenf andF (f↓):

Hf→F (f) ≤ Hf→f↓ +Hf↓→F (f)=F (f↓) and HF (f)→f ≤ HF (f↓)→f↓ +Hf↓→f

By comparing with inequality 4 it remains to prove

Hf↓↔f ≤ ∆(f↓)
def
= H̃∂f↓↔∂F (f↓)), (5)

17

p0

p1
p2

(f
)

a)

f↓

p
1

p
2

q
1

q
2

f
p
0

b)

p1

q1
q2

p2
r2

dpr1

Hx p2q2
= (f)

x

dq

c)

f↓e

p
1
0=p

2
0

p
2
1

p
1
1

p
1
2

p
1
3

p
2
2

p
2
3

p
2
4=p

1
4

d)

Figure 10. a) two meeting segments, b) for each inserted vertex onf exists a closest point
(red) on the boundary off↓, c) for eachr1 existsr2 with distance smaller than∆(f↓), d)
connecting the projectionspi

2 of the vertex locationspi
1 of f always covers the edgee.

i.e. one has to show that the two-sided Hausdorff distance between the coarse face
and the face with refined boundary is bound by the two-sided parametric Haus-
dorff distance between the boundary of the coarse face and the boundary of the
corresponding patch on the original surface.

As the face center is stored within the mesh hierarchy, both facesf↓ andf are star-
shaped tessellations around the same center vertexp0. This allows to reduce the
problem to segments fromp0 to points on the boundary off↓ andf. In the following
points with subscript1 will be on the boundary off and with subscript2 on the
boundary off↓. Figure 10 a) shows such a constellation. Independent of lengths
and angle between the segments can the two-sided Hausdorff distance be bound by
the distance between the end-points of the segments:

Hp0p1↔p0p2 ≤ ‖p1 − p2‖ . (6)

After this result remains the task to find for every pointp1 on∂f a pointp2 on∂f↓
within a distance of∆(f↓) and vice versa.

For the first directionHf→f↓ ≤ ∆(f↓) one has to find for each pointp1 on the
boundary off a pointp2 on ∂f↓ within a distance of∆(f↓). The mesh vertices
on ∂f do also lay on the completely refined patchF (f) = F (f↓) and the bound
∆(f↓) = H̃∂f↓↔∂F (f↓) tells us that there exist points on∂f↓ no further apart than
∆(f↓). Let p1 andq1 be two successive mesh vertices on∂f andp2 andq2 the
corresponding closest points on∂f↓ (compare Figure 10 b). From the properties of
the parametric Hausdorff distance follows that one can choosep2 andq2 on the
same boundary edge off↓, such that all points on the segmentp2q2 are also on∂f↓.
This leads us to the situation in Figure 10 c). Both distancesdp anddq are≤ ∆(f↓).
The dashed green line around segmentp2q2 is the boundary of the region of points
x with one point onp2q2 within the range of∆(f↓), i.e.Hx→p2q2 ≤ ∆(f↓). As both
pointsp1 andq1 are inside of this region and as the region is convex, all pointsr1

on the segmentp1q1 are also inside the region. FromHr1→p2q2 ≤ ∆(f↓) follows

18

the existence of a pointr2 with ‖r2 − r1‖ ≤ ∆(f↓). This completes together with
inequality 6 the proof of the first directionHf→f↓ ≤ ∆(f↓) of 5.

For the proof ofHf↓→f ≤ ∆(f↓) one has to find for each pointp2 on the boundary
of f↓ a point on the boundary off, which is not further apart than∆(f↓). For this
one projects the locationspi

1 of the mesh vertices off onto their closest points
pi

2 on the corresponding edgee of the boundary off↓ as depicted in Figure 10
d). From the bound on the parametric Hausdorff distance follows that this can be
done such that‖pi

2 − pi
1‖ ≤ ∆(f↓) holds for alli. Thus the task has been solved

for the pointspi
2. The next step is to form the segmentsp0

2p
1
2, p1

2p
2
2, . . ., which

cover the edgee completely (with potential overlaps). With the same argument as
illustrated in Figure 10 c) one can find for any pointr2 on all the segmentspi

2p
i+1
2

a corresponding pointr1 onpi
1p

i+1
1 within the bound∆(f↓). As the segments cover

e, this holds for any point one, what completes the proof.

5 Results

Figure 11 demonstrates the selectivity of the proposed method at the isis model,
where one of the four faces of the base model was completely refined. A large
number of vertices is inserted on the boundary of the coarse faces, but the model is
still consistent and the resolution varies maximally. The number of triangles neces-
sary to tesselate the three coarse faces of the base tetrahedron depends on the length
of the boundary, which is in the order of the square root of the faces in the refined
patch.

Figures 11 b) to f) show examples of view-dependently refined meshes. The cur-
rent rendering system allows for backface culling, view-frustum culling and screen
space error control. For backface and view-frustum culling a normal cone around
the face normal and a bounding sphere around the face center is computed for ev-
ery facef in the hierarchy and stored with the edge-insert operation that splits this
face. With these attributes the view-dependent refinement tests were implemented
as proposed by Pajarol [16]. Figure 11 e) includes a side view with the view frustum
and the unseen faces drawn as wireframe.

Table 1 tabulates measured quantities of the used models that are shown in the
different Figures of the paper. The first two rows give the total number of vertices
and edges of the models. The second two the corresponding numbers of the base
model. The number of edge-split operations is simplyv − vbase and the number of
edge-insert operationse−ebase. The large number of base faces for the croco model
are due to the 65 unconnected components that all reduce to an isolated tetrahedron.
The feline and buddha model are topologically more complex and have therefore
larger base meshes. Finally, the blade model is topologically complex and has a
large number of components.

19

a)

b) c) d)

e) f)

Figure 11. a) maximal refinement of one face of the base mesh of isis model, b)-f)
view-dependently refined meshes for a screen space error of one pixel at a resolution of
400x570 pixels with backface and view-frustum culling, and error control, e) includes a
side view of the adapted model, where the faces that are not seen on the screen were drawn
empty

20

model cow croco feline santa isis armadillo buddha blade

v 2904 17332 49864 75781 187644 172974 543652 882954

e 8706 51606 149598 227337 562926 518916 1631574 2648082

vbase 4 260 57 4 4 4 2817 4294

ebase 6 390 86 6 6 6 4780 6596

d 27 32 48 48 58 58 55 87

dIS 18 25 29 27 30 30 29 34

tcluster 1.3 8.7 18.4 40.2 130.2 112.1 2012.1 589.1

tsimp 0.7 4.1 12.4 19.3 51.3 48.5 1531.7 262.4

thier 0.8 0.2 0.4 0.8 2.0 2.1 7.0 14.0

tspheres 0.0 1.6 0.8 0.6 1.6 1.5 246.5 680.6

tcones 0.2 2.8 4.5 5.8 14.9 14.2 283.6 758.3

terror 51 431 1464 1667 5202 5851 36713 99809

S 431 2546 7401 11248 27853 25676 80656 130931
Table 1
Sizes and construction timings for the measured models. The rows tabulate: model name,
total number of vertices and edges, vertices and edges in base model, maximum hierarchy
depth without and with independent set approach, number of levels, clustering time, simpli-
fication time, construction times for hierarchy, bounding spheres, normal-cones, Hausdorff
distance and storage space in KB (including base model).

Rows five and six compare the maximal depth of the hierarchy for the standard sim-
plification algorithm and the independent set approach. It can be clearly seen that
the independent set approach balances the hierarchies very well. The balanced hi-
erarchies also result in much faster construction times. In the successive rows only
the construction times for the independent set approach are given. All timings are
written in seconds and were measured on a Pentium IV with 2.4 GHz. The table
separates the running times for clustering, simplification, hierarchy construction,
bounding sphere computation and Hausdorff-distance measurement. The hierar-
chy construction time includes reading the progressive representation from disk
and is similarly to bounding sphere computation negligible. The normal-cone com-
putation is still clearly faster than simplification. Although the Hausdorff-distance
computation with the Metro Tool is the bottle neck at the moment, it allows for a lot
of optimization and has running time ofO(n log n). For the models with more than
500k vertices, there is a jump in the running-time, which is not in accordance to the
O(n log n) complexity. The reason is that the current implementation allocates too
much storage space and forces the operating system into memory swapping mode.

Table 2 tabulates the mesh element counts for the view-dependent renderings in

21

model vadapt eadapt fadapt tadapt

croco 9855 15262 4479 23599

feline 15693 22725 5777 36047

armadillo 20130 27537 6161 46195

buddha 107046 167334 51353 262942

blade 39813 53997 12217 92779
Table 2
View-dependent statistics for the adaptive meshes of Figure 11 b)-f): number of vertices,

number of edges, number of faces and the number of rendered triangles in the adaptive
mesh.

Figures 11 b)-f), which were all acquired at a screen resolution of 400x570 pixels
with a screen space error of one pixel. The last column shows the actual number
of the triangles, which were used to tessellate the visible faces. This number if
slightly more than twice the number of vertices, which is the factor expected for
a pure triangle mesh. The selective refinement of the polygonal mesh hierarchy is
extremely fast. Measurements on the same Pentium IV 2.4 GHz show in average
that one to two million edges can be inserted or removed per second.

6 Conclusion

A new mesh hierarchy was introduced that builds on edge-removal/insert and edge-
join/split operations. It allows for the first time truly selective refinement with con-
trol of the two-sided Hausdorff distance. No initial triangulation of polygonal mod-
els is necessary. Furthermore, a new method has been proposed that optimizes the
face cluster hierarchies with the help of variational shape approximation. This com-
bination also yielded a simple solution to the meshing problem of the variational
shape approximation approach.

In future work it is planed to tackle the problem of potential normal flips that can
arise in the current solution as a cause of vertex insertions. It is probably possible
to restrict the hierarchy construction in a way that no flips are possible. Another
interesting direction for future work is to optimize the whole hierarchy, not only one
target number of faces and to apply the proposed scheme in different applications.

References

[1] B. Baumgart. A polyhedron representation for computer vision.Proceedings of AFIPS
’75, 44:589–596, June 1975.

22

[2] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh – a generic and
efficient polygon mesh data structure. InProceedings of OpenSG Symposium, 2002.

[3] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified
surfaces.Computer Graphics Forum, 17(2):167–174, 1998.

[4] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation.ACM
Transactions on Graphics, 23(3), August 2004. Proc. SIGGRAPH 2004, To appear.

[5] L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution
hypersurface modeling. In R. Rau W. Straßer, R. Klein, editor,Geometric Modeling:
Theory and Practice. Springer-Verlag, 1997.

[6] C. DeCoro and R. Pajarola. XFastMesh: Fast view-dependent meshing from external
memory. InProceedings of Visualization ’02, pages 363–370, 2002.

[7] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In
SIGGRAPH’97 Conference Proceedings, pages 209–216, 1997.

[8] S. Gumhold. Polygonal progressive meshes. Technical Report WSI–2004–4,
Wilhelm-Schickard-Institut f̈ur Informatik, University of T̈ubingen, Germany, July
2004.

[9] H. Hoppe. View-dependent refinement of progressive meshes. InProceedings of ACM
SIGGRAPH ’97, pages 189–198, August 1997.

[10] L. Kettner. Using generic programming for designing a data structure for polyhedral
surfaces. InProceedings of ACM Symposium on Computational Geometry ’98, 1998.

[11] J. Kim and S. Lee. Truly selective refinement of progressive meshes. InNo
description on Graphics interface 2001, pages 101–110. Canadian Information
Processing Society, 2001.

[12] J. Kim, S. Lee, and L. Kobbelt. View-dependent streaming of progressive meshes,
2004. to appear in Shape Modeling International 2004.

[13] R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In
Visualization in Scientific Computing 98, pages 13–24, April 1998.

[14] R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control. In R. Yagel
and G. M. Nielson, editors,IEEE Visualization 96, pages 311–318. ACM Press,
October 1996.

[15] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees.SIAM Journal on Computing, 31(3):762–776, June 2002.

[16] R. Pajarola. FastMesh: Efficient View-Dependent meshing. In B. Werner, editor,
Proceedings of Pacific Conference on Computer Graphics and Applications ’01, pages
22–30, October 2001.

[17] K. Weiler. Edge-based data structures for solid modeling in curved-surface
environments.IEEE Computer Graphics and Application, 5(1):21–40, 1985.

23

[18] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail based rendering
for polygonal models.IEEE Transactions on Visualization and Computer Graphics,
3(2):171–183, 1997.

24

	Introduction
	Preliminaries
	Polygonal Mesh Surface
	Twinned Half-Edge Data Structure
	Polygonal Progressive Meshes

	Construction of Mesh Hierarchy
	Independent Set Simplification
	Hierarchy Optimization with Variational Shape Approximation
	Hierarchical Structure and Dependencies
	Data Structure for Polygonal Multi-Resolution Mesh

	Error Control
	Results
	Conclusion
	References

