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Abstract

In this work we present a new analysis technique
for dynamic 3D images. The method allows the re-
construction of dynamic surfaces describing object
boundaries in the 3D images over time. The only
input of the user is a grey value threshold used for
boundary detection and a bounding box around the
surfaces of the object of interest. The output of our
method is a dynamic surface mesh that tracks the
object boundary over time.

We first extract a set of weighted points from
the MR image data using a local boundary vot-
ing scheme. The dynamic surface is defined as
an extremal surface on the resulting point-sampled
boundary probability density. In this way a surface
with adjustable smoothness is obtained that can be
reconstructed using projection operators similar to
the ones used for point set surfaces.

We extend the projection operators to 3-
manifolds in 4D and obtain a much better track-
ing performance of the dynamic surface model. In
contrast to computationally expensive active con-
tour algorithms, the new algorithm can be easily
parallelized. The proposed approach is applied to
4D-MR images of a human heart in motion.

1 Introduction

Image segmentation is an important task in many
medical applications. Almost all computer-based
medical methods include a segmentation step to in-
fer relevant information from image data. A variety
of segmentation approaches have been proposed in-
cluding model-based methods, like active contours,
and pixel-based ones, e.g. watershed transforma-
tions or morphological segmentation.

We follow a probabilistic approach, where the
probability density of object boundaries is derived

from a local voting scheme. It is sampled on a set
of points with the weights measuring the boundary
probability. The object boundaries are defined as
the surfaces of probability maxima in direction of
the gradient of the probability density. The problem
of dynamic boundary segmentation therefore boils
down to a space-time meshing problem. We solve
this by an implicit meshing of the first time frame
and a tracking procedure that is guided by the 3-
manifold of gradient maxima residing in 4D space-
time.

One important advantage is that the number of
parameters that have to be adjusted is reduced to
one intuitive intensity threshold and the surface
component of interest. The proposed approach is
applied to 4D space-time MR images of the human
heart in motion.

The paper is structured as follows. First we intro-
duce the estimation of the object boundary probabil-
ities in Section 2. The successive section describes
the definition of the dynamic surface of maximal
probability and introduces projection operators for
almost orthogonal projection onto the dynamic sur-
face. Section 4 describes the incremental meshing
approach for the dynamic surface. The application
to 4D cardiac MRI is presented in section 5. Related
work is stated at the beginning of each section.

2 Boundary Probability Density

In this work we aim at a tool to reconstruct surfaces
from cardiac MR images. Measurement parameters
of the given images make blood voxels appear at a
higher intensity than tissue. The inner walls of the
cardiac chambers are therefore determined by big
discontinuities in image intensity values from high
to low.

A variety of algorithms have been proposed for
analyzing image intensity variation, including sta-
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tistical methods [34, 11, 27, 12] and [16], differ-
ential methods [30, 18] and [24] and curve fitting
methods [14, 17, 13, 28] and [29]. Edge detec-
tion in noisy environments can be treated as an op-
timal linear filter design problem [35, 6, 31, 23]
and [32]. Canny [6] formulated edge detection as
an optimization problem and defined an optimal fil-
ter, which can be efficiently approximated by the
first derivative of a Gaussian function in the one-
dimensional case. Canny’s filter can be imple-
mented recursively [8], which provides a more ef-
ficient way for image noise filtering and edge de-
tection. Parametric models, that are often found for
edge detection, restrict the type of step edge geome-
tries considered and cannot cope easily with close
by features.

There exist a lot of close by features in the hu-
man heart and the images can be locally poor in
contrast but contain significant noise. Moreover,
MR images tend to have biases1. For the reasons
mentioned, high-end edge detectors are necessary
for our application such as Canny’s edge detector.
However, Canny has many parameters that must
be adjusted to obtain an optimal result, which can-
not be easily done interactively for 3D or 4D im-
age data. Furthermore, generalization to higher di-
mensions is complicated. Therefore, a different
approach was chosen to infer boundary informa-
tion from the given images, based on the follow-
ing demands: only few input parameters should be
required and adaption to local contrast should be
possible. Furthermore, detected boundaries should
be narrow and generalization to higher boundaries
straightforward.

2.1 2-Means Cluster Edge Detection in 2D

In this section we describe a boundary detector,
which fulfills the demands stated in the introduc-
tion to this section, for edge detection in 2D. This
allows a comparison to the Canny edge detector as
shown in Figure 4.

The boundary detector analyzes the local neigh-
borhood of each image pixel, searching for step
edges within the neighborhood. The pixels of the
neighborhood are clustered into two sets according
to their intensity values. This is done using a stan-
dard k-means clustering approach based on the in-
tensity values of the pixels. LetN (p) denote the
local neighborhood around pixelp andI(p) its in-
tensity value. The 2-means clustering procedure
partitions the pixels fromN (p) into two clusters
C1 andC2 by assigning a representative intensity

1regions of equal tissues can have different intensities

valueI1/2 to each cluster. The representatives are
updated incrementally in a two step procedure. First
all pixels pj ∈ N (p) are assigned to the cluster
Ci = argi min |Ii − I(p)| whose intensity value
is closer to the intensity value of the pixel. Then
each representative value is updated to the mean in-
tensity valueIi = |Ci|−1 ∑

p∈Ci
I(p) of the pixels

assigned to its cluster. This Lloyd iteration is known
to converge to a global optimum, where the squared
distances of the pixel intensity values to their clus-
ter representatives are minimized. In the simple 2-
means clustering the Lloyd iteration converged after
an average of three to four iterations. The k-means
clustering of the pixels results in a stable classifi-
cation of the local neighborhood into interior (high
intensity) and exterior (low intensity) components.

In Figure 4 a typical local clustering result is il-
lustrated with the interior cluster pixels with green
frames and the exterior ones with red frames. One
can easily see that the boundary shape can be quite
complicated even in the local neighborhood without
doing harm to the classification of each pixel into
inside and outside. The clustering is stable, which
means that pixel classifications do not change if the
neighborhood mask is moved on to the surrounding
pixels. The cluster boundary in the local neighbor-
hood is not located on the pixels but on the edges
between pixels. The boundary probability of the
edges is accumulated by a local voting scheme that
sweeps the neighborhood mask once over the im-
age and counts for each edge between two pixels
the number of transitions from one cluster to an-
other. To avoid classifying boundary edges falsely
positive, we introduce a significance test (the num-
ber of pixels in each of the clusters must be larger
than ten percent of the number of pixels in the lo-
cal neighborhood) and a step-height test (the dif-
ference between the cluster representative intensity
values must be larger than a user defined threshold
τ ) that a clustering has to pass before we vote its
pixel boundary edges.

The final output of the boundary detector is a set
of weighted edges, which we transform to a set of
weighted points that can be used as input to the sur-
face definition as described in Section 3. The points
simply inherit the weights of the edges and are lo-
cated on the edge centers, which compose a stag-
gered grid on the image. To compare the quality of
the boundary detector to the Canny edge detector,
we combine the staggered grid by adding for each
pixel the square root of the two weights of its top
and right edge. The square root can be motivated
by considering the fact that diagonal edges would
receive too many counts because of the rasteriza-
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tion and thus obtain higher boundary strengths than
straight edges. The detected boundary is blurred
by this staggering- and combining-procedure a lit-
tle bit and shifts half a pixel to the lower left as
can be seen in Figure 4 b). A comparison to the
Canny edge detector is shown in c). Adapting the
standard derivative, the Gaussian smoothing and the
two threshold values of the Canny filter to obtain a
good result was a difficult task. Our algorithm, in
contrast, only takes the intuitive step-height thresh-
old τ . Despite the blurring, the boundaries detected
by the algorithm are reasonably good, i.e. they are
comparable to Canny’s edge detection, if not bet-
ter. This contributes to the fact that our boundary
detector is much easier to handle. The generaliza-
tion of our boundary detection approach to higher
dimensions is straightforward. The dimension of
the local neighborhood is increased. This results in
a higher computational complexity but the 2-means
clustering procedure remains the same. The voting
is finally done on the (hyper-)faces of the (hyper-)
voxels.

3 Defining Dynamic Surfaces from
Weighted Points

Recent work on the approximation of point sam-
pled surfaces provides powerful tools for the def-
inition of approximating smooth surfaces. Levin
et al. [21, 3, 22] defined a smooth surface that ap-
proximates a set of scattered data points as the fixed
points of a projection operator. Inspired by Levin’s
work, Adamson and Alexa [1, 2] defined smooth
approximating surfaces from an implicit definition.
Shen et al. [33] defined implicits that allow to ap-
proximate or interpolate point clouds and polygon
soups. Amenta and Kil [4] pointed out the relation
to extremal surfaces, which were previously used
by Medioni et al. [26] to reconstruct surfaces from
very noisy point and normal data.

In this work, we closely follow the implicit sur-
face definition by Adamson and Alexa [2]. We ap-
ply it to the output of the boundary detector from
Section 2 in order to compute a surface of local
probability maxima in the gradient direction, where
the boundary detector samples the probability den-
sity on a set of weighted points. In Section 3.2 the
framework is generalized to dynamic point clouds
sampled on several time slices. To facilitate the ex-
traction of a 3D mesh representing a time slice of
the dynamic surface, we propose a new version of
the almost orthogonal projection operator in Sec-
tion 3.3, which works for arbitrary subspaces ofR4.

This operator allows to project points onto the dy-
namic surface subject to linear constraints. We ex-
tend this projection operator to a more robust ver-
sion, using damping factors.

3.1 Static Surfaces for Weighted Points

The boundary detector samples the boundary prob-
ability density on a set of weighted 3D pointsP =
{(pi, ωi)}i,pi ∈ R3, ωi ∈ R. In order to de-
fine the surface of probability extrema, a gradient
direction and a test for an extremum is necessary.
Both ingredients can be derived from a weighted
least squares fitting plane similar to Adamson and
Alexa [1] and Amenta and Kil [4]: For each pointx
in space we define a weighted least-squares fitting
planeH(x) represented by a normal vectorn(x)
and its signed distanced(x) from the origin. We
call x the reference point because the input points
pi are weighted by their distancesri = ‖pi − x‖
to x. The weighted least-squares plane is abbrevi-
ated byWLS plane. A positive, monotonically de-
creasing weighting functionθ(r) is used to map the
distances from the reference point to weights. A
secondary weighting is done by the point weights
ωi. The WLS planeH(x) = (n(x), d(x)) is cho-
sen to minimize the weighted least-squares energy
functione(x,n, d)

e(x,n, d)
def
=

∑
i

(
ntpi − d

)2
ωiθ(ri)∑

i

ωiθ(ri)
(1)

in the argumentsn andd with ri
def
= ‖pi − x‖.

Formally, the WLS planeH(x) can be defined as

H(x) = (n(x), d(x))
def
= min argn,d e(x,n, d).

(2)
Algorithmically, the WLS planeH(x) of each
reference pointx can be computed by the stan-
dard least-squares fitting procedure from the nor-
mal equations. Its normal can be considered as a
robust estimation of the gradient of the probability
density. Note that, in general, the reference point is
not located on its WLS plane itself, if the reference
point is not a maximum of the probability density
in direction of the WLS normal. The surfaceS of
maxima in gradient direction is then defined as the
reference points in space that are contained in their
WLS planes:

S def
= {x|x ∈ H(x)} . (3)

This definition is equivalent to the definition by
Adamson and Alexa [1] but avoids the direct use of
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the weighted average pointa(x). It is replaced by
the distanced(x) = nta(x) of the WLS plane to
the origin. The surface can therefore be interpreted
as an implicit surface:

S =
{
x|n(x)tx− d(x) = 0

}
(4)

It is a smooth manifold in the region of space, in
which the WLS plane is uniquely defined. This was
shown by Adamson and Alexa in [1] for the case
without point weightsωi. The proof can be easily
generalized to the weighted case by interpreting a
point with weightωi ≈ ni/N asni points at the
same location, whereN is a natural number that
tends to infinity.

3.2 Dynamic Surfaces from Weighted
Points

In the dynamic case, the input is a setP̄ of weighted
points (p̄i = (pi, ti), ωi) in 4D space-time. Vec-
tors and operators in space-time are marked by the
bar over the symbol. All the definitions of the pre-
vious section can be generalized easily. For each
reference point̄x in space-time we define a WLS
hyperplaneH̄(x̄) from the distance weighted WLS
energy. The dynamic surfacēS is then the 3-
manifold in space-time consisting of all reference
points contained in their WLS hyperplanes:

S̄ def
=

{
x̄|x̄ ∈ H̄(x̄)

}
. (5)

3.3 Projection onto lower Dimensional
Sub-Spaces

We did not extend the weighted least-squares ap-
proach to the fitting of higher order polynomials as
proposed by Levin [22] because the given surface
definitions 3 and 5 allow further projection opera-
tors. A projection operatorΠ projects a pointp,
located close to the [dynamic] surface, onto the sur-
face. In Section 4, we need an operator that projects
onto the dynamic surface at a given timet = ti for
the extraction of dynamic meshes, which change in
time. One cannot simply use the space-time version
Π̄⊥̃ of the projection operator, because it does not
necessarily project onto the required hyperplane,
defined byt = t0.

Instead we define a new projection operator
Π̄⊥̃|R, which operates on a linear sub-spaceR of
R4. This sub-space can be defined by any set of
linear constraints. One can therefore restrict the op-
erator to a 3D-plane in space-time, a 2D-plane in
space or space-time and a space-time line. The re-
stricted projection operator̄Π⊥̃|R takes a point̄p

from the sub-spaceR and projects it to that point̄x
on S̄ withinR. The projection is almost orthogonal
within R. In Section 4 we will use the time slices
t = ti as a linear constraint.

The only change in the restricted projection pro-
cedure is that we project the reference pointx̄ not
to the WLS hyperplanēH(x̄) but to the subset of
the hyperplaneH̄(x̄) defined by the lower dimen-
sional spaceR, i.e. we project̄p ontoH̄(x̄) ∩ R.
Together with a damping factorβ, that gradually
slows down the projection, resulting in more stabil-
ity, the restricted projection is computed using the
following iteration:

procedure Π̄⊥̃|R(p̄)

x̄0
def
= p̄ ∈ R

repeat
x̄i+1

def
= βΠH̄(x̄i)∩R(p̄) + (1− β)x̄i

until convergence

Figure 1: Illustration of the projection operator
Π̄⊥̃|t=t0 restricted to the time slicet = t0.

Figure 1 illustrates the restricted projection op-
erator for the case thatR is the time slicet = t0
shown in light grey. The WLS hyperplane is fitted
in 4D space-time to the weighted points. It has the
space-time normal̄n. The restriction of the WLS
hyperplane to the time slice is the bold line, which
represents a 2D-plane in the time slicet = t0 with
normaln. The pointp̄ is projected alongn onto
this 2D-plane resulting in the next reference point
x̄. As p̄ has to be in the restriction spaceR, this
projection makes sense. In the next iteration the hy-
perplane is fitted with distance weights relative to
the new reference point̄x. Again, it is restricted
to the time slice and̄p is projected to the resulting
2D-plane.

If the iterative projection procedure converges, it
is clear that the resulting point̄x is withinR. What
remains to be shown is thatx̄ is also on the dynamic
surfaceS̄. Let us assume that the procedure con-
verged afteri iterations. For anyβ > 0 the conver-
gence criterion tells us that̄xi must have projected
onto itself and therefore be located on the restriction
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of its own WLS planeH̄(x̄i)∩R. This implies that
x̄i is also on the hyperplanēH(x̄i) itself, which is
exactly definition 5 of a point on̄S, q.e.d.

4 Dynamic Meshing

Hoppe et al. [15] introduced the atomic connec-
tivity operations used by most dynamic meshing
approaches: edge-collapse, edge-split and edge-
flip. They used it in the context of mesh opti-
mization. Lachaud and Montanvert [20] extended
Hoppe’s basic operations by operations that allow
to merge and split surface components and therefore
allow to change the topology. They also propose
the use of

√
3-subdivision with successive edge-

flips to increase mesh resolution globally. McIn-
erney and Terzopoulos [25] propose a dynamic sur-
face mesh called T-Snakes, whose connectivity is
adapted based on a surrounding regular grid. T-
Snakes also allow changes in topology.

Kobbelt et al. [19] make use of three opera-
tions proposed by Hoppe et al. and come up
with a multi-resolution framework for meshes with
changing connectivity but identical topology. First,
all edges are adjusted to lengths within an inter-
val [lmin, lmax] by application of edge-collapse and
edge-split operations. In a second update stage,
edges are flipped in order to bring the vertex va-
lences as close to six as possible, i.e. they perform
an edge-flip whenever the sum of the squared dif-
ference of the vertex valences to ordinary valence
six can be reduced.

Zhukov et al. [36] use the same update criteria for
their deformable model. Each of these approaches
does not allow changes of the topology. Cheng et
al. [7] base dynamic meshing on the skin surface
by Edelsbrunner [9]. The skin is defined by a fi-
nite set of control spheres as the envelope of an infi-
nite number of convex combinations of the spheres.
Edge-collapse and edge-split operations are used to
adjust the vertex density, which is given by a sam-
pling of the skin according to the local curvature
with a maximal meshing errorε.

4.1 Meshing the First Frame

There are different possibilities to create a mesh for
the first frame. We chose to use a marching cubes
approach, making use of the implicit surface def-
inition given in equation 4. The advantage of the
marching cubes algorithm is its ability to handle
surfaces of arbitrary topology. To improve the mesh
quality we extracted the first frame in a high resolu-
tion and simplified it using the edge-collapse based

mesh simplification approach proposed by Garland
and Heckbert [10].

As input to the marching cubes algorithm we
used a signed distance function derived from equa-
tion 4. The distanceg(x) can directly be defined up
to its sign as

g(x)
def
= ±

∣∣n(x)tx− d(x)
∣∣ . (6)

The sign cannot be found by means of the WLS-
fitting procedure as bothn and−n are solutions to
the normal equations.

a) b) c)

Figure 2: Calculation of the consistent normal ori-
entation. a) shows the neighborhood and the pre-
liminary normal. b) shows the transformation on an
axis along the normal direction. The least squares
fit is shown as an arrow. c) Positive slope of the
least squares fit results in a switch of the normal di-
rection.

Consistent orientation of the normals can be
achieved in our case by taking into account that in
our MR images the inside of the heart chambers
are regions of higher image intensities. Therefore,
the correct normal must be oriented from the region
of high intensity to the region of low intensity as
shown in Figure 2 c). Again we use a voting scheme
for a robust determination of the correct sign of the
distance functiong evaluated at the reference point
x. First (Figure 2 a) we assume the normaln from
the plane fitting procedure to be correct. Then we
compute the signed distances for all voxel locations
in the neighborhood ofx and construct a 2D dia-
gram of the intensity values of the voxels over their
signed distance as shown in Figure 2 b). If the
normal was oriented correctly, the diagram should
show a decreasing function, which can be checked
with the slope of a least-squares fitted linear func-
tion as illustrated by the arrow in Figure 2 b). Here
the slope is positive and therefore the normal must
be oriented in opposite direction as shown in c).

The marching cubes algorithm is performed on a
region of interest, which is selected by a bounding
box provided by the user. The extracted mesh is first
broken down into its connected components. Usu-
ally, the component of interest is the one, consisting
of the largest number of triangles.
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4.2 Time Evolution of Vertex Locations

The positions of the mesh vertices must be located
on the 3-manifold in space-time. Given a meshmti

at time t = ti, to which positions̄pv should the
vertices be moved at timet = ti+1? A simple ap-
proach would be to just transform the 3D position
p̄v = {pv, ti} of a vertexv to p̄v = {pv, ti+1}
and to perform a projection as defined in 3.3 start-
ing at the space time point̄pv = {pv, ti+1} and
converging in a vertex position̄p′v = {p′v, ti+1}

However, this approach does not make use of the
dynamic surface information that is available. A
better idea is to use the space-time information at
p̄v = {pv, ti} to make a prediction for the probable
position of a vertex at timet = ti+1 and to perform
a projection afterwards that is likely to converge the
faster the better the prediction.

Our approach for making a prediction is visual-
ized in Figure 3 for a vertex point̄pv = {pv, ti}
from the dynamic surface att = ti. The hyper-
surfaceS(t = ti) at t = ti is shown as a dark
curved line. We assume that motion of a vertex is
linear with respect to the time domain. The idea is
to calculate the WLS hyperplanēH framed in grey
at p̄v = {pv, ti} and make use of the fact that it is
close to the tangent hyperplane of the dynamic sur-
face as̄pv = {pv, ti} is a point on the surface. If
we project the unit vector in time direction onto this
tangent hyperplane, we obtain a vectord̄, as visu-
alized in the figure. Following the vector̄d to the
intersection with the hyperplane att = ti+1 yields
a prediction for the next position of the vertex. The
following projection then yields the actual position
p̄′v = {p′v, ti+1} on the 3-manifold. Figure 3 vi-
sualizes the steps of the prediction for one vertex.

Figure 3: Space-time view of the prediction opera-
tion. The three manifold is shown in dark grey and
the hypersurfaceS(t = ti) at t = t0 as the dark
curved line. The tangent plane is framed in light
grey, while the prediction vector̄d is painted bold.

4.3 Time Evolution of Mesh Connectivity

In this work we follow a similar approach to Zhukov
et al. [36]. After providing an initial mesh, we
maintain mesh quality in the subsequent frames by
applying the following operations if necessary:

1. If the length of an edge drops below some
threshold valuelmin, it is collapsed, if the
mesh connectivity allows a collapse.

2. If the length of an edge exceeds some thresh-
old valuelmax, it is split by midpoint inser-
tion.

3. while there are vertices, whose valence dif-
fers from an optimum of 6, edge flips are per-
formed, until the sum

∑
i
(valence(vi)− 6)2

has reached a minimum.
4. After applying all dynamic meshing opera-

tions, all vertices are projected back to the sur-
face.

This approach allows maintaining mesh quality
within reasonable limits. The constantslmin and
lmax are initialized by using statistical values of the
average edge lengths of the initial mesh, i.e.lmin =
cmin · laverage andlmax = cmax · laverage with the
constantscmin = 0.25 andcmax = 1.5.

During the time propagation process, as vertices
are moved individually, triangles can flip chang-
ing their normal orientations, which results in in-
valid twisted mesh connectivities. These triangle
flips can be avoided by either using smaller tem-
poral sampling steps, thus preventing triangle flips
from happening at all, or by detecting flipped tri-
angles and adapting connectivity consistently. We
have chosen the first alternative. The second alter-
native is left out for future work.

5 Application to 4D-MRI

5.1 Data Acquisition and Pre-Processing

25 frames of 25 slices were taken of the cardiac cy-
cle of a 26-year old male proband.2 Each slice had
an in-plane resolution of 156x192 pixels with pixel
spacings of 1.67 mm and a slice thickness of 5 mm.
The slices were acquired without gaps perpendic-
ular to the central long axis of the heart. The data
were prepared by assembling the slices according to
their spatial and temporal locations to a regular 4D
image.

2The cardiac data were provided by courtesy of the Department
of Radiology of the University Hospital of T̈ubingen.
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5.2 Slice Enrichment

Since resolution in direction of the slice normal is
less than half of the resolution in both other di-
rections, an interpolation step, that introduces addi-
tional slices, was necessary. While usual techniques
of linear, sinc or spline interpolation did not yield
satisfying results, an optical flow based interpola-
tion scheme was chosen. In this approach, the op-
tical flow between two neighbor slices is calculated
according to Bergen et al. [5], resulting in two dense
disparity maps with a vector for each pixel, pointing
to the pixel with the most probable correspondence
in the neighbor slice. The interpolation method is
visualized in Figure 5. Interpolation using optical
flow is done by introducing a new image of identi-
cal size between the two slices. We then warp the
image according to the disparity vectors given by
the optical flow field and rescale the image. This
method produces good results without over- or un-
dersampling artifacts.

The slice enrichment process yields approxi-
mately isotropic voxels. Subpixel interpolation on
the isotropic grid, which is necessary for the surface
reconstruction process, is done, for performance
reasons, by using quadrilinear interpolation.

6 Conclusions and Future Work

We presented an algorithm capable of reconstruct-
ing smooth dynamic surfaces from 4D image input
data. We reconstructed the surface of the left ven-
tricle and atrium of a human heart requiring only
little human interaction. The results are shown in
Figure 6. Although the 4D-MR image data used
as input are not of optimal quality, the method has
proven stable. In clinical routine, however, the MR
image input is expected to be of even worse quality.
Future work should therefore be directed towards
further improving the boundary detection. More-
over, extraction of the first frame could be done by a
method that allows more flexibility like an adaptive
step size, which reduces or increases the sampling
rate according to the local curvature. Thus, meshes
of better quality would be obtained for the first
frame, making the preprocessing step of the connec-
tivity unnecessary. The remeshing step should be
improved, introducing predefined quantitative sur-
face error criteria for the collapse and splitting pro-
cess. Future work should also consider connectivity
adapting schemes that allow efficient resolution of
inverse triangles that have been flipped during the
reconstruction process, as mentioned in Section 4.3.
Furthermore, topology changes could be supported

during the reconstruction process by searching for
critical points. Last but not least, edge flips could be
replaced by a sequence of insertions, vertex trans-
lations and collapses, avoiding popping effects and
making the animation really smooth.
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a) b) c)

Figure 4: a) one 2D slice of the MRI data set from Section 5 with a local 2-means clustering shown with
voxels framed red (low intensity) and voxels framed green (high intensity). b) proposed edge detector
with a threshold of15; the staggered grids are merged for comparison. c) Canny edge detector with
standard derivative of0.5, lower threshold of10, higher threshold of20 and scaling factor of10.

a) b) c) d)

Figure 5: Interpolation between two slices a) and b) using optical flow based interpolation (c)) respec-
tively linear interpolation (d)). c) shows higher contrast at the step edges between blood and tissue. d)
shows a linear interpolation with blurred borders. Contrast at the step borders is smaller.

Frame 0 Frame 3 Frame 6

Frame 9 Frame 15 Frame 21

Figure 6: The figure shows the extracted mesh (red) blended with a volume rendering of the result of the
boundary detection. Frame 6 shows the surface during the systole of the heart cycle, while frame 15 shows
it during the diastole.
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