
Optimizing Markov Models with Applications to Triangular Connectivity
Coding

Stefan Gumhold∗

Abstract

In this work Markov Models are constructed to describe

the asymptotic stochastical behavior of regular languages,

what allows for optimal arithmetic coding of words from the

language. A new method is presented for the optimization

of Markov Models such that also constraints are captured

that cannot be described within a regular language. The

new technique is applied to the encoding of the connectivity

graph of triangle meshes of low genus and boundary fraction.

The resulting compression rates are up to one percent

optimal and the best known upper bound for this class of

models.

1 Introduction and Overview

Arithmetic coding [28] became very popular in informa-
tion theory and coding application because of its opti-
mality. If the statistical properties of the letters in a
word from a given language can be expressed in a prob-
ability model that is suitable for an arithmetic coder
a simple enumeration argument can be used to show
the optimality of the arithmetic coder in the asymptotic
limit for very long words. The enumeration argument
leads to an information theoretical lower bound, which
is typically called the “entropy” of the language and
specified in bits per symbol (bps).

In section 3 an algorithm is developed for the con-
struction of asymptotically optimal probability models
for strings from a regular language. The construction
is based on a regular language given in form of a de-
terministic finite automaton (DFA). It is well known
that non-deterministic finite automatons (NFA) can be
converted into deterministic ones, although the num-
ber of states can explode exponentially and asymptotic
counting becomes #P -complete [15]. A construction of
a Markov Model from a DFA similar to the one pre-
sented in section 3 has been described by Marcus et
al. in the context of constrained systems [20]. A con-
strained system is used to store recorded information in
binary codes, which obey constraints that can be ex-
pressed in a regular language. The Markov Model is
used to map information to the constrained codes in a

∗Max-Planck-Institut für Informatik Saarbrücken.

way that optimally exploits the channel capacity of the
constrained system.

An important contribution in section 3 is a new
proof for the optimality of the constructed probability
models. This proof can be directly generalized to the
setting of section 4, where the probability model is op-
timized for further constraints on the symbol counts of
the words from the regular language. These constraints
cannot be implemented with a regular grammar but are
important for a lot of coding applications including the
one developed in sections 5 and 6.

The proposed optimization technique is applied
to the encoding of the connectivity graph of trian-
gle meshes over surfaces of low genus and low bound-
ary fraction. A slightly modified version of the Edge-
breaker [22] algorithm as introduced in section 5 is used
to transform the connectivity of a triangle mesh into a
string over a five-symbol alphabet.

A complete set of constraints on the symbol string
can be derived from the Edgebreaker algorithm [9].
Although the constraints can be shown to be complete,
previous work [9] demonstrated that they cannot be
captured within a regular language - even with a huge
number of states. Section 6 applies the optimization
method of section 4 to the Edgebreaker constraints
resulting in a coding performance that is only one
percent above the information theoretical lower bound.

The coding of triangular mesh connectivity is an
especially interesting application as a lot of recent work
in the computer graphics community [5, 10, 19, 25, 24,
22, 17, 2, 14, 12, 1, 18, 13] as well as in the graph coding
community [26, 16, 4, 21] has been devoted to it. Denny
and Sohler [6] showed that the connectivity graph of
a planar triangulation can be efficiently encoded in a
permutation of its vertices. This approach has not
been generalized to meshes of higher genus and is
based on the knowledge of the vertex locations. Most
mesh coding applications also compress the geometric
information in the vertex locations. All of these schemes
are based on special orderings of the vertices and cannot
be combined with the method of Denny and Sohler.

For the special case of planar triangulations or
equivalently triangle meshes of genus zero the informa-

tion theoretical lower bound of log2
256
27 ≈ 3.245 bits

per vertex has been known since 1962 from the work of
Tutte [27]. Algorithmic upper bounds have been con-
stantly improving in the last years. The idea of Tu-
ran [26] to encode a planar connectivity graph by a ver-
tex and a triangle spanning tree has been applied to the
purely triangular case by Taubin and Rossignac [24] in
their topological surgery method, for which an upper
bound of 6 bits per vertex can be proven. Gumhold [11]
established an upper bound of 4.92 bits per vertex for
the Cut-Border Machine encoding scheme. The origi-
nal Edgebreaker encoding scheme by Rossignac [22], on
which also this work is based, allows a simple proof of
a bound with 4 bits per vertex. Chuang et al. [4] also
established an algorithmic upper bound of 4 bits per ver-
tex. King and Rossignac [17] improved the Edgebreaker
coding to 3.667 bits per vertex and Gumhold [11] to 3.5
bits per vertex. An interesting observation is due to
Alliez and Desbrun [1]: the entropy of the vertex va-
lences coincides with Tutte’s lower bound and therefore
would the valence based encoding scheme of Touma and
Gotsman [25] be optimal if no split codes would arise.
This statement was revised by Gotsman in [7], where
he showed that the valence entropy is slightly below
Tutte’s bound and a linear number of split codes is nec-
essary in the general case. Only recently Poulalhon and
Schaeffer [21] proposed an optimal coding scheme for
planar triangulations, which is based on a bijection be-
tween planar triangulations and trees, where each in-
terior node has exactly two children. But the method
does not easily generalize to triangle meshes of higher
genus and with boundary loops such as the proposed
method.

The contributions of the proposed work are

• an optimization scheme for Markov Models, which
allows to incorporate constraints that cannot be
expressed with a regular language,

• a coding scheme for triangular meshes of low genus
and with small boundary fraction, which is only
one percent above the information theoretical lower
bound and the best known result for non planar
triangulations.

The Cut-Border Machine [8] and the Edgebreaker
scheme [23] have been improved for the regular case
of meshes with a large number of valence six ver-
tices. Szymczak et al. [23] derived a formula for the
upper bound in dependence on the fraction of va-
lence six vertices. For a sufficiently large fraction
they achieve an upper bound of 1.622 bits per ver-
tex. In future work it is planed to also general-
ize the proposed approach to the setting of regular
meshes.

2 Preliminaries

For a given not necessarily regular language L over an
alphabet A all words of length m are called m-slice and
abbreviated by Lm. With the number of words |Lm| in
a slice the asymptotic lower bound β is defined in bits
per symbol

β
def= log2

(
sup

m→∞

|Lm|
m

)
bps.

A coding scheme C for the language maps each word
ω ∈ L to a binary code C(ω) ∈ {0, 1}∗. The asymptotic
upper bound B of C is defined as

B def= sup
m→∞

max
ω∈Lm

|C(ω)|

m
bps.

A coding scheme is asymptotic optimal for L, iff β(L) =
B(C).

An arithmetic coder maps a word σ1σ2 . . . σm to a
sub-interval I ⊂ [0, 1), which is encoded as the shortest
binary fraction that defines an interval contained com-
pletely in I. Interval I is determined by iterated subdi-
vision of [0, 1) according to the probabilities of the sym-
bols. The symbol probability P (σi) can depend on all
previous symbols: P (σi|σ1 . . . σi−1). This dependency
is called the probability model and the arithmetic coder
is known to be asymptotic optimal for languages in cor-
respondence with their probability model.

A DFA D over A is a quadruple (S, S0, T , τ) of a
set of states S, an initial state S0 ∈ S, a set of terminal
states T ⊂ S and a set of transitions τ ⊂ S × A × S,
each of which is composed of a start state A, a symbol
σ and an end state B and also abbreviated by A

σ→B.
For the DFA all outgoing transitions of a state have
distinct symbols. The set of states S together with the
transitions form a directed graph, where each directed
edge is attributed by a symbol from A. Each path
(A1

σ1→A2, A2
σ2→A3, . . . , Am

σm→B) in the graph is identified
with the partial word σ1σ2 . . . σm. The set of all paths
from A to B of length m is denoted by A

m⇒B. If one
of the arguments to .

m⇒. is replaced by a set of states,
the union over all states is implied. The m-slices of
the regular language L defined by D = (S, S0, T , τ) are
identified in this notation with Lm ' S0

m⇒T . A simple
example of a DFA is shown in Figure 1.

A Markov Model M is a probability model that
extends a deterministic state machine D by a transition
probability p(A σ→B) for each transition, where for each
state the probabilities of the outgoing transitions must
sum to one

∀A ∈ S :
∑

B∈S,σ∈A
p(A σ→B) = 1.(2.1)

By the use of a Markov Model one assumes (Markov
Assumption) that probability P (σi|σ1 . . . σi−1) depends
only on the state reached by the state machine after
seeing σ1 . . . σi−1. An arithmetic coder based on a
Markov Model is asymptotic optimal for languages that
fulfill the Markov Assumption. Upper and lower bounds
coincide with the entropy of the Markov Model

H = −
∑
A∈S

P (A)
∑

B∈S,σ∈A
p(A σ→B) log2 p(A σ→B),

with the state probabilities P (A) of the state machine
being in state A. The transition matrix T with TAB =∑

σ p(A σ→B) allows to compute the state probabilities
as the left eigenvector to eigenvalue one, i.e. ~PS = ~PST,
where ~PS is the vector of all state probabilities.

The adjacency matrix A of a deterministic state
machine is defined with entries AAB =

∣∣∣{A
σ→B

}
σ

∣∣∣,
which count the number of transitions/edges from A
to B. The adjacency graph of a deterministic state
machine is strongly connected, iff for any two states A,
B there is a path from A to B. To simplify proofs we
restrict ourselves in the following to strongly connected
graphs. For these the theory of Perron and Frobenius
states

Theorem 2.1. (Perron-Frobenius) The largest ei-
genvalue α of the adjacency matrix A of a strongly
connected graph fulfills

1. α is positive, unique and all components of the
corresponding eigenvector ~r are strictly positive.

2. α has the largest absolute value among all eigenval-
ues.

3 Optimal Markov Models for Regular
Languages

The Markov Model design problem for a given DFA
D = (S, S0, T , τ) is to find the transition probability
function p(τ) such that the resulting arithmetic coder
is asymptotically optimal for the regular language L(D).
Our approach for the computation of p(τ) is based
on the analysis of the asymptotic growth of a regular
language and uses ideas similar to [20, 3].

For our analysis we define the number gA
m of word

suffixes of length m, which can be generated from state
A, i.e.

gA
m

def=
∣∣∣Am⇒T

∣∣∣ .

As all suffixes of length m that can be generated from
state A have to be generated with one of the outgoing
transitions from the target state with one symbol less,

a)

Ba
a

b
A

b)

m gA
m gB

m A
a→A A

b→A B
a→A

0 0 1 - - -
1 1 0 0 1 1
2 1 1 1 0 1
3 2 1 .500 .500 1
4 3 2 .666 .333 1
5 5 3 .600 .400 1

29 514k 317k .618 .382 1
30 832k 514k .618 .382 1

Figure 1: a) DFA D =
(
{A,B}, A, {B}, {A a→A,A

b→B ,

B
a→A}

)
for L = {b, ab, aab, bab, aaab, abab, baab, . . .},

b) suffix counts and transition probabilities for different
word lengths m.

we get a recursion in m

a) gA
m =

∑
B∈S,σ∈A

gB
m−1 b) ~gm = A~gm−1,(3.2)

where equation b) is in matrix notation. If we define
gA
0 to be 1 for terminal states and 0 otherwise, we get

~gm = Am~g0. The first two columns of Figure 1 b) give
the first ~gm for the example state machine in Figure 1,
for which equation 3.2 specializes to gA

m = gA
m−1 + gB

m−1

and gB
m = gA

m−1.
The optimal transition probabilities for the creation

of a suffix of length m from state A can be compute from
gA

m simply to

pm (A .→B) def=
gB

m−1

gA
m

.(3.3)

and have to sum to one because of the recursion 3.2.
The third and fourth columns of Figure 1 b) tabulate
the transition probabilities for the example of Figure 1
and show that the transition probabilities converge for
m →∞.

The transition probabilities pm are not suitable for
the design of a Markov Model as they depend on m.
To investigate the limit for m →∞ we define the total
number Gm of suffixes of length m, the relative number
rA
m of generatable suffixes from A and the growth factor

αm as

Gm
def=

∑
A∈S

gA
m

rA
m

def= gA
m/Gm ∈ [0, 1]

αm
def= Gm/Gm−1

equation 3.2 becomes

a) αmrA
m =

∑
B∈S,σ∈A

rB
m−1,b) αm~rm = A~rm−1.(3.4)

In the limit for m → ∞ the indices ~rm and ~rm−1 are
identified with the asymptotic relative numbers ~r of suf-
fixes, which can be computed together with the asymp-
totic growth factor α as the eigenvector to the largest
eigenvalue of the adjacency matrix A (compare theo-
rem 2.1). The computation of the optimal asymptotic
transition probabilities p follows equation 3.3, where the
difference in the m-index can be balanced by dividing
with α:

Theorem 3.1. (Markov Model Design) Given a
deterministic state machine D and its adjacency matrix
A with unique largest eigenvalue α and eigenvector ~r,
then

p(A .→B) =
rB

αrA

are valid transition probabilities, that are asymptotically
optimal for L(D).

Proof: From theorem 2.1 we know that all tran-
sition probabilities are positive. As ~r is eigenvector of
A with eigenvalue α, we have α~r = A~r, from which
directly follows that the outgoing probabilities of each
state sum to one and are all valid transition probabili-
ties.

The asymptotic lower bound β can be computed
from the asymptotic growth factor to be log2 α bits per
symbol as α is the largest eigenvalue of A. There can
be further complex and negative eigenvalues of the same
absolute value, but the absolute value grows per symbol
by a factor of α.

To show that the upper bound B of arithmetic
coding matches β, we could compute its entropy, which
would result in log2 α. A simpler proof that generalizes
to the optimization approach in the following section
shows for all cycles of finite length m that the arithmetic
coder does exactly consume m log2 α bits. This is
sufficient as the state machine is finite and we are
interested in its asymptotic behavior, which can only be
based on cycles. The arithmetic coder consumes for an
arbitrary cycle (A1

.→A2, A2
.→A3, . . . , Am

.→A1) minus
log2 (p(A1

.→A2) · p(A2
.→A3) · . . . · p(Am

.→A1)) bits. If
we plug in the probabilities as defined in the theorem,
all factors of rAi cancel out as they appear once in the
counter and once in the denominator. Only m αs remain
in the denominator, yielding m log2 α and completing
the proof. 2

The optimal transition probabilities are indepen-
dent of the set of terminal states. To compute the
transition probabilities for the state machine in Fig-

ure 1 we need A =
(

1 1
1 0

)
, of which α = 1+

√
5

2 and

~r = 1
1+α

(
α
1

)
. According to theorem 3.1 we com-

pute p(A a→A) = 1
α ≈ .618, p(A b→B) = 1

α2 ≈ .382 and
p(B a→A) = 1, what allows us to encode the words of
L(D) with β = B = log2 α ≈ .694 bps.

In general can α and ~r be computed efficiently with
the always convergent power iteration (αm + 1)~rm =
(A + 1)~rm−1, which avoids problems of negative and
complex eigenvalues of the same absolute value.

4 Optimization of Markov Models under
Constraints

The language of five-symbol strings used for triangle
mesh connectivity coding is not regular. There are
additional constraints that relate the counts of different
symbols in each valid word. To generalize this notion
we define #σ(ω) as the number of σ in the word ω and
~#(ω) as the vector of all symbol counts for ω.

Definition 4.1. (linearly constrained language)
Let A be an alphabet with n symbols and Γ ∈ ZZk×n the
matrix of k ≤ n − 1 linearly independent constraints,
then

CΓ
def=

{
ω ∈ A∗|Γ~#(ω) = 0

}
.

Only n − 1 constraints are possible because of the
implicit constraint

∑
σ #σ(ω) = |ω|. With LΓ(D) we

abbreviate L(D) ∩ CΓ. It is clear that β(LΓ) ≤ β(L),
what allows to save more bits during coding.

As the constraints apply to every word of the
language, they also hold for the probabilities P (σ) of
seeing a symbol σ. With the vector ~PA that combines
all symbol probabilities P (σ) we get

Γ~PA = 0, and
∑

σ

P (σ) = 1.(4.5)

For the simple example of Figure 1 we can add only
one constraint P (b) = λP (a), where λ is a rational
that includes the coefficient of P (b) in the denominator.
From P (a) + P (b) = 1 follows P (a) = 1/(1 + λ) and
P (b) = λ/(1 + λ).

The optimization problem for a Markov Model is
to minimize the achieved upper bound B

(
p(A σ→B)

)
for all transition probabilities under the constraints on
the symbol probabilities 4.5. The main problem here
is to efficiently compute B for arbitrary p(A σ→ B).
The proposed solution follows the idea of the proof of

theorem 3.1, where we showed with the examination of
an arbitrary cycle that each symbol costs the arithmetic
coder log2 α bits. The transition probabilities of the
theorem assigned the same cost for all different symbols
in A.

For the generalization we introduce a different ασ

for each symbol σ resulting in different costs log2 ασ.
The ασs are collected in the n-dimensional vector ~α.
The adjacency matrix of the transition graph is modified
to M(~α) with MAB =

∑
σ|Aσ→B∈τ

1/ασ. This fixes the
eigenvalue to one

~r = M(~α)~r(4.6)

with the matrix M depending on ~α. In the special case,
where all α ≡ ασ are the same, one can multiply with
α, what brings us back to α~r = A~r. In the general case
one component of ~α is fixed by the condition that the
largest eigenvalue of M must be one. A research issue
for future work is to examine, whether there is always
an ασ with which M can be adjusted in this way.

For now we assume that such an ασ exists, as was
the case for the application to triangle connectivity
coding. One can show with a proof very similar to the
proof of theorem 3.1 that with the following transition
probabilities each symbol σ asymptotically costs log2 ασ

and that the upper bound B of the coding scheme can
be computed according to:

p
(
A

σ→B
)

def=
rB

ασrA

⇒ B(ασ) = max
~PA|Γ~PA=0

∑
σ∈A

Pσ log2 ασ.(4.7)

The optimization strategy for the Markov Model can
now be stated as the minimization of the upper bound:

min
~α|∃~r:~r=M(~α)~r

B(~α).(4.8)

The vector ~α that minimizes the upper bound together
with the corresponding eigenvector ~r to eigenvalue one
are used to compute the optimized transition probabil-
ities according to the top of equation 4.7.

Let us exemplarily optimize the transition proba-
bilities for D in Figure 1 under the constraint P (a) =
λP (b). As λ fixes both symbol probabilities, no maxi-
mum is necessary to compute B. We vary αa and com-
pute αb to fulfill equation 4.6. With qa = 1

αa
and

qb = 1
αb

we can construct M =
(

qa qa

qb 0

)
, with

largest eigenvalue α = (qa +
√

q2
a + 4qaqb)/2. From

α = 1 we get qb = αa − 1. Plugging all in yields
B(αa) = [log2 αa − λ log2(αa − 1)]/(λ + 1), what we
minimize by setting the derivative for αa to zero and
get αa = 1/(1 − λ). The resulting upper bound

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.2 0.4 0.6 0.8 1

Figure 2: The achieved upper bound for the DFA
of Figure 1 in bps with the constraint P (a) = λP (b),
plotted over λ.

B = [λ log2 λ − (1 − λ) log2(1 − λ)]/(λ + 1) is plotted
in Figure 2. It hits the unconstrained upper bound for
λ = (3−

√
5)/2 ≈ .382 and is less otherwise.

5 Modified Edgebreaker Coding

Our application is the encoding of triangle mesh con-
nectivity. A triangle mesh consists of an indexed list
of vertices with 3D locations and a list of index triples
defining the so called connectivity, i.e. the information
about the connectedness of the vertices. We restrict
ourselves to manifold triangle meshes with boundary,
where to each edge are one or two triangles incident
and the triangles incident upon a vertex form an open
or closed fan.

We used the well known Edgebreaker technique [22]
to transform the connectivity information into a word
over the alphabet A = {C,L,R, S,E}. A growing
region is defined by a stack of closed edge loops to
separate the processed triangles from the unprocessed
ones. One edge of each loop is labeled as gate edge.
The region is initialized to a boundary loop or an
arbitrary triangle with an arbitrarily chosen gate. Each
letter corresponds to one of the five operations shown
in Figure 3. It defines how the triangle incident to the
gate of the loop on top of the stack is incorporated to
the processed region. C introduces a new vertex, L and
R shorten the current loop, S splits the current loop and
pushes the left loop on the stack, E removes the loop
on top of the stack and proceeds with the loop below or
terminates if the stack is empty. Each operation defines
the gate location after the operation – S defines two, one
for each loop, and E none – in order to fix the traversal
order.

To avoid the need of a position index for the third
vertex in the S operation, decoding is performed in
reverse order [14] with the inverse operations shown
in the bottom row of Figure 3. The inverse split

C EL SR

C-1 E-1L-1 R-1 S-1

Figure 3: top: Edgebreaker operations, bottom: inverse operations for spiral reversi decoding. Processed region
before operation shaded dark with black boundary, currently processed triangle shaded bright, operation name
inside. Gate edge(s) before grey solid arrows, gate(s) after operation dashed black arrows. Old vertices and edges
black and new ones grey.

combines the two top most loops on the stack at their
gates without the need of any additional information.
For the treatment of holes and handles we basically
follow the approach of spiral reversi [14] but do not
use additional symbols M and H, but instead encode
a position index in the CLRSE-word. For meshes
with g handles and b boundary loops, additional 2b +
4g + 2 integers are necessary, which we assume to be
asymptotically negligible.

6 Optimized Triangular Connectivity Coding

The used arithmetic coder also works in reverse order.
By examining the inverse operations we find similarly
to [9] the following constraints:

1. manifold constraint: C−1 must not re-create an
already existing edge as this would make this edge
non-manifold in the next step.

2. loop constraint: E and S operations must be bal-
anced ⇒ P (S) = P (E).

3. Euler constraint: for triangle meshes of low genus
and small border fraction the Euler equation says
that the number of triangles is about twice the
number of vertices. As each Edgebreaker operation
introduces one triangle and only each C operation
introduces in addition to a triangle also one vertex,
this leads to the second constraint: P (C) = P (L)+
P (R) + P (S) + P (E).

Only the manifold constraint cannot be mapped to a
linear constraint on the symbol probabilities. Instead

we approximated the constraint with a regular language.
The edge introduced by an inverse C can be present
because the length of the current loop is three or because
the same edge has been introduced before, i.e. an
interior edge connecting the target vertex of the gate
with another vertex of the current loop. The inverse L
introduces an interior edge that disallows a succeeding
inverse C. The inverse R operation on the other hand
resolves all possible conflicts with interior edges. The
right interior edge created by the inverse S is also a
candidate, which disallows a sequence of k successive
inverse C operations, where k is the number of edges
in the left of the two loops merged by the inverse S. In
terms of the manifold constraint one can identify the
inverse L with k = 1. The inverse E finally does not
create an interior edge but a loop of length three.

The manifold constraint is implemented in a state
machine, where the states describe the top most loops
on the stack. Each loop is represented by its length l
and the position k of a potentially conflicting interior
edge. If two top most loops are considered, a state is
represented by two pairs of integers. [(5, 1), (4, .)] would
for example correspond to a top most loop of length
5 with a conflict edge at k = 1 and a loop of length
4 without conflicting edge below. The initial state is
always S0 = [(3, .)]. From this we determined all states
that are reachable. The user specifies maximal values
for the different loop lengths and k-values. Transitions
to states with lengths or ks larger than the limits were
redirected to S0. As in the end of decoding all loops
must have been encoded, S0 also served as the only

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 10 100 1000

3,25

3,3

3,35

3,4

3,45

3,5

1 10 100 1000states

B in bpv

3,245

3,28

60Tutte‘s β

not optimized B

[(8,6),(4,0)]

a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000

log2αC

log2αE

log2αRL

log2αSbps

states

b)

Figure 4: a) the achieved upper bound in bits per vertex (bpv) plotted over the number of states used to
approximate the manifold constraint, b) plot of the symbol cost log2 ασ in bps over the number of states

terminal state. The manifold constraint is implemented
by removing all C transitions, when the length of the
top loop is 3 or k = 1.

With the number of considered top loops and the
maximal values for l and k the number of states in
the DFA could be varied. For the optimization of the
Markov Models with respect to the two linear con-
straints stated above, the technique proposed in sec-
tion 4 was combined with a gradient descent optimiza-
tion technique. Figure 4 a) shows a diagram of the
achieved upper bound in dependence of the number
of states used to approximate the manifold constraint.
The diagram includes the information theoretic lower
bound as well as the result achieved in previous work
without the new optimization technique.

Theorem 6.1. (Connectivity Coding) The con-
nectivity of a triangle mesh with v vertices, genus
g and b boundary loops, which contain a sub-linear
fraction of the mesh vertices, can be encoded and
decoded in linear time in asymptotically less than
3.28v + (2 + 4g + 2b) log2 v bits with a Markov Model
with 60 states.

7 Conclusion and Future Work

In this paper we showed how to design asymptotic opti-
mal arithmetic coders based on Markov Models for reg-
ular languages given in form of DFAs. We introduced
the notion of constrained regular languages and pro-
posed a feasible scheme to optimize Markov Models for
these languages. We applied the optimization scheme to
the encoding of triangular meshes of low genus and bor-
der fraction. The resulting coding scheme is up to one

percent optimal with relation to the information theo-
retic lower bound. This shows that the proposed op-
timization scheme performs very well in the presented
example.

In future work we want to examine further appli-
cations of the proposed technique in the area of mesh
compression, such as polygonal mesh and progressive
mesh coding. We also want to develop the theory of con-
strained regular languages and optimized Markov Mod-
els further and examine the important open questions:
which non regular languages can be asymptotically ap-
proximated well with constrained regular languages and
whether optimized Markov Models always allow to en-
code constrained regular languages asymptotically op-
timal.

References

[1] P. Alliez and M. Desbrun. Valence-driven connectivity
encoding for 3D meshes. Computer Graphics Forum,
20(3), 2001. ISSN 1067-7055.

[2] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolu-
tion compression of arbitrary triangular meshes with
properties. In Data Compression Conference’99 Pro-
ceedings, pages 247–256, 1999.

[3] T. Ceccherini-Silberstein and W. Woess. Growth-
sensitivity of context-free languages. Theoretical Com-
puter Science, 307(1):103–116, September 2003.

[4] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I.
Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. Lecture Notes in
Computer Science, 1443:118–127, 1998.

[5] M. Deering. Geometry compression. In SIG-
GRAPH’95 Conference Proceedings, pages 13–20,
1995.

[6] M. Denny and C. Sohler. Encoding a triangulation
as a permutation of its point set. In Proceedings of
9th Canadian Conference on Computational Geometry,
pages 39–43, 1997.

[7] C. Gotsman. On the optimality of valence-based con-
nectivity coding. Computer Graphics Forum, 22(1):99–
102, March 2003.

[8] S. Gumhold. Improved cut-border machine for triangle
mesh compression. In Erlangen Workshop 99 on
Vision, Modeling and Visualization, pages 261–268,
Erlangen, Germany, November 1999.

[9] S. Gumhold. Connectivity coding: New perspec-
tives for mesh compression. Informationstechnik und
Technische Informatik, December 2002. available at
http://www.mpi-sb.mpg.de/~sgumhold.

[10] S. Gumhold and W. Strasser. Real time compression
of triangle mesh connectivity. In SIGGRAPH’98 Con-
ference Proceedings, pages 133–140, 1998.

[11] Stefan Gumhold. New bounds on the encoding of
planar triangulations. Technical Report WSI–2000–1,
Wilhelm-Schickard-Institut für Informatik, University
of Tübingen, Germany, January 2000.

[12] J. Ho, K.-C. Lee, and D. Kriegman. Compressing
large polygonal models. In Proc. of IEEE Visualization
2001, pages 357–362, 2001.

[13] M. Isenburg and S. Gumhold. Out-of-core compression
for gigantic polygon meshes. ACM Transactions on
Graphics, 22(3):935–942, July 2003.

[14] M. Isenburg and J. Snoeyink. Spirale reversi: Reverse
decoding of the Edgebreaker encoding. In Proceedings
of 12th Canadian Conference on Computational Geom-
etry, pages 247–256, 2000.

[15] S. Kannan, Z. Sweedyk, and S. Mahaney. Counting
and random generation of strings in regular languages.
In Symposium on Discrete Algorithms, pages 551–557,
1995.

[16] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. In Discrete Applied Mathematics,
pages 239–252, 1995.

[17] D. King and J. Rossignac. Guaranteed 3.67v bit en-
coding of planar triangle graphs. In Proceedings of
11th Canadian Conference on Computational Geom-
etry, pages 146–149, 1999.

[18] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A
triangle-quad mesh codec. Computer Graphics Forum,
21(3):383–383, 2002.

[19] J. Li and C. C. Kuo. A dual graph approach to
3D triangular mesh compression. In Proceedings of
ICIP’98, pages 891–894, 1998.

[20] B.H. Marcus, R.M. Roth, and P.H. Siegel. Con-
strained systems and coding for recording channels. In
W.C. Huffman V.S. Pless, editor, Handbook of Coding
Theory, pages 1635–1764. Elsevier, Amsterdam, 1998.

[21] D. Poulalhon and G. Schaeffer. A bijection for triangu-
lations of a polygon with interior points and multiple
edges. Theoretical Computer Science, 307(2):385–401,
October 2003.

[22] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, 1999.

[23] A. Szymczak, D. King, and J. Rossignac. An
Edgebreaker-based efficient compression scheme for
connectivity of regular meshes. In Proceedings of
12th Canadian Conference on Computational Geom-
etry, pages 257–264, 2000.

[24] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[25] C. Touma and C. Gotsman. Triangle mesh compres-
sion. In Graphics Interface’98 Conference Proceedings,
pages 26–34, 1998.

[26] G. Turan. Succinct representations of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

[27] W. T. Tutte. A census of planar triangulations.
Canadian Journal of Mathematics, 14:21–38, 1962.

[28] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Communications of the
ACM, 30(6):520–540, 1987.

	Introduction and Overview
	Preliminaries
	Optimal Markov Models for Regular Languages
	Optimization of Markov Models under Constraints
	Modified Edgebreaker Coding
	Optimized Triangular Connectivity Coding
	Conclusion and Future Work

