
Eurographics Workshop on Natural Phenomena (2009)
E. Galin and J. Schneider (Editors)

A Geometric Algorithm for Snow Distribution in Virtual
Scenes

N. v. Festenberg1, S. Gumhold1

1 Lehrstuhl für Computergraphik und Visualisierung, TU Dresden, Germany

Abstract
Freshly fallen snow is a popular natural phenomenon able to evoke great beauty in all kinds of scenes. However,
there still does not exist an all-purpose algorithm for automated snow distribution in virtual worlds. Previous
works modelled snow either relying on costly particle simulations or oversimplified surface displacements. In this
paper we develop a novel geometric snow model. In a first step, we propose a statistical snow deposition model
inspired by real world observations. This statistical model is used to derive a geometric snow shape formulation.
The geometric scheme is implemented with an enhanced height span map. Scene geometry is expressed with two
parameter fields that enable us to efficiently compute snow cover geometry.
A selection of snow covered scenes demonstrates the realism that can be achieved with this new method.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.6]: Simulation and Modeling—,
Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—

1. Introduction

It is an ever ongoing quest to increase realism in virtual
worlds. Increased realism requires transferring more and
more effects and phenomena from the real world into com-
putable schemes. A wide range of phenomena has already
been reproduced in photorealistic quality (e.g. smoke as in
[SB08], or water [IGLF06] or plants [DL05]).

However, there are many phenomena where automated re-
production could not be achieved yet. Often, manual mod-
elling is not feasible or too expensive. One of these phenom-
ena - ubiquitous at least on the northern hemisphere in win-
ter - is snow. Snow is a powerful means of decoration in
virtual environments. The addition of a layer of frozen wa-
ter can transform scenes drastically evoking an enchanted
fairy tale ambiance. Snow distribution is also a subtle geo-
metrical problem. The problem is principally related to cast-
ing light on a scene. The resulting snow distribution borders
are similar to soft shadows. Though, second order effects
in light as reflection or refraction do not directly translate
to snow accumulation. Instead, in snow one finds complex
superpositions of lateral redistribution. When snow falls on
a conifer for example it will be deflected several times by
branches and needles of different height levels before it set-
tles. The range of phenomena in snow accumulation is vast.

Even a square inch of snow is formed out of thousands of
snow flakes all different in shape and each far from being
isometric or smooth [Nak54]. This complexity is aggravated
by the average winter temperatures in mid-latitudes close to
the melting point of snow. Crust formation can occur due to
subsequent melting and freezing as well as volume reduction
as consequence of local recrystallization and air removal.

This justifies the statement that snow is one of the most
complex materials in the world [GM81]. Until today, even
elaborate models with little limitations in computation time
fail to reliably reproduce snow behaviour, e.g. in avalanches
[Sto05]. Nevertheless, it is possible to formulate useful ap-
proximate models designed to meet the requirements of a
certain context.

In this paper we propose a novel geometric algorithm to
compute realistic snow covers for virtual scenes. We focus
on the snow distribution pattern in the scene. We do not ani-
mate snow fall or develop methods for a scene’s elastic feed-
back to a snow cover nor did we consider particular optical
features of snow. The core innovation is our model’s founda-
tion on real snow observations. We condensed these obser-
vations into a statistical snow deposition model allowing for
the computation of an approximate snow mass probability
distribution. This distribution is implemented as geometric

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

scheme. We explicitly compute the three dimensional shape
of the snow cover delivering the fundamentals for later ma-
nipulation in animations as e.g. foot prints. A wide range of
scenes and lateral transport scenarios is covered. By aiming
at an deterministic model we widely avoid stochastic com-
putations keeping the algorithm efficient.

Section 2 gives a brief overview on previous work on
modelling snow and related phenomena. In Section 3 we de-
scribe the assumptions of our snow accumulation model and
explain its mathematical base. In Section 4 we show how to
implement our algorithm and in Section 5 we present our
results. Discussion and comparison of our results as well as
possible improvements of our algorithm are given in Section
6 and 7.

2. Previous Work on Snow Modelling

There exists some literature on snow models in physics and
environmental engineering. Please refer to [Sto05, Mel74]
for further details.

In Computer Graphics modelling snow has received rel-
atively little attention. The first model for fallen snow was
proposed by Nishita et al. in 1997 [NIDN97] based on meta-
balls and user specified snow distribution. Subsequent model
proposals can be divided into two groups: models based
on particle simulations on the one hand, and surface dis-
placement models on the other hand. The most influential
model from the first group was published by Paul Fearing
in 2000 [Fea00]. The model aims at computing the shape
of fallen snow with particles shot upwards and recursive
snow surface stability tests. Moeslund et al. [MMAL05] pro-
posed a revised combination of the Fearing model with an-
imated snow fall, but still realism was not reached. Several
papers were published on dynamic features of snow, such as
wind driven transport [FO02, WWXP06] or snowflake an-
imation [LZK∗04]. There were also attempts to parallelize
snow simulations [SEN08].

Surface displacement models from the second group are
generally faster in snow cover computation at the expense
of realism. The proposals in [PTS99] and [OS04, Dud05]
present convincing results for large scale scenes based
on surface texturing techniques. Another large scale snow
model borrowing methods from illumination was proposed
by Foldes et al. [FB07].

To our knowledge, most realistic results were presented
by Muraoka et al. [MC00] with a model outside the two
model groups. Their model is derived from the microscopic
physical properties of snow and water. Both snow fall, snow
cover and snow melt can be expressed. Unfortunately, little
implementation details were published.

An approach close to our implementation was introduced
by Tokoi [Tok06]. Similar to [OS04] the author uses the Z-
buffer to determine snow locations, but he finds smooth bor-

ders with the help of several slightly perturbed depth tex-
tures as in soft shadow computation. A simple particle based
stability test is applied. Still - partly due to a manual prepro-
cessing step - performance is high.

Our model is derived from a physical snow deposition
model. Different from preceding works, we use photographs
of snow covered scenes as primary source for model devel-
opment, i.e. we exploit visual scale shape measurements of
snow to formulate a statistical deposition model. We fit the
geometric essence of this model into an efficient data struc-
ture called height span map. Sumner et al. [SOH99] orig-
inally proposed this structure for interactive animation of
granular material and Onoue et al. [ON05] presented an im-
proved version towards real-time applicability. Haglund et
al. [HAH02] connected the height span method with snow
to model real-time snow accumulation, but without great de-
tail in the distribution characteristics.

We will show here that also realistic snow distribution
schemes can be adapted beneficially to a height span map.
By combining real world observations with an efficient
model architecture we present a snow distribution algorithm
both more realistic and more extensible than previous mod-
els.

3. Geometrically distributed Snow

A one-crystal snow flake has a volume of ca. 10−9m3

[Nak54]. Snow crystals contribute about 10 percent of the
volume of freshly fallen snow, the rest is mainly air [Sto05].
This means that around ten million snow flakes are needed
to cover one square meter ground with ten centimeters of
snow. The snow flakes themselves appear as widely varying
dendritic stars complicating simulation.

Fortunately, the complex microscopic structure does not
disturb a stable appearance of snow on visual scales. When
we derive our geometric model, we rely on this visual scale
as observed in common photographs. For simplicity, we as-
sume that the amount of snow deposited per sky area is con-
stant all over the simulated scene. Modelling snow in a scene
consisting of an infinite plane is trivial then: snow height will
be constant everywhere. Characteristic snow shapes will oc-
cur near or below edges, because there snow is forced to
redistribute. In Figures 1, 2, 5 and 8 photographs of snow
covers in real world scenes are shown. You can see that near
the edges of a snow body the snow cover defines a smooth
curve from almost vertical to horizontal angles. Obviously,
no specific angle of repose as stated elsewhere (e.g. [Fea00])
can be observed. Note that thicker snow covers as in 1b co-
incide with steeper edge curves.

When looking at more of these edge curves in the real
world in different weather conditions one can discover a
great variety of possible shapes, sometimes even with over-
hangs. Despite the variety the principal shape remains the

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

Figure 1: Snow photographs for different snow conditions.

same: steep angles close to an edge smoothly evolving to
horizontal angles far from the edge.

We will now propose an explanation for this profile curve.
When a snow flake hits a surface it might stay there, bounce
off or slide along the surface depending on different fac-
tors. On the one hand these factors will be physical prop-
erties such as snow wetness, surface roughness and both
snow and surface temperatures. On the other hand geomet-
ric constraints as snow flake velocity and surface orientation
will play an important role. For simplicity (and feasibility)
we confine ourselves to the consideration of geometric con-
straints and otherwise assume as little as possible. Let ~v de-

Figure 2: Left: Snow covered table. Right: model with snow
reproduced with our method. Grid resolution 60×60, hmax =
0.25,c=8,αm = 20◦, one smoothing pass, computation time
ca. 70 ms. Discretization artefacts could easily be removed
but were left for clarity.

fine the velocity of a snow flake in a scene with an empty,
horizontal surface S with curved boundary ∂S. The veloc-
ity is split into the vertical component ~v⊥ and the horizon-
tal component ~v||. We assume that ~v⊥ is constant for all
snow flakes while ~v|| varies according to a normal distri-
bution with zero mean (i.e. we assume the snow flakes to
tumble through air without directional wind). When a snow
flake hits S at location ~x ∈ S we assume ~v⊥ to be annihi-
lated. The snow flake will slide along the surface before it
settles, and the length of its path then depends on ~v|| only;
and we assume it will be proportional. So if ~x is close to ∂S
the snow flake will probably leave S again. We can quantify

this snow distribution probability delivering a statistical ap-
proximation of the future snow height. The amount of snow
flakes a location ~x will receive depends on the area around
~x inside ∂S. Formally, it is the probability weighted sum of
all flakes that finish their slide exactly at~x. Thus, we simply
need to integrate a bivariate normal distribution centered at
~x = (x,y) over S to obtain a measure of the snow height h(~x)
as illustrated in Fig. 3. As we did not fix the scaling yet we
can assume standard deviations equal to one without loss of
generality, yielding

hexact(~x) = hmax ·
1

2π

∫∫
S

e
−(x′−x)2−(y′−y)2

2 dx′dy′ (1)

which was not proposed before to our knowledge. For a
straight edge bounding a very large plane the snow height
hplane depends only on the distance x = 0..∞ to the edge
and we can solve (1) exactly

hplane(x) = hmax(0.5+ erf(x)), (2)

with the error function erf(x) = 2√
π

∫ x
0 e−x′2 dx′ and hmax the

maximal snow height far from edges. This curve is depicted
in Fig. 4. It is also valid for surfaces where the minimal di-
ameter is large compared to the horizontal snow velocity,
i.e. the standard deviations in (1). This of course is an ide-
alization, but it is a useful foundation to efficiently approx-
imate snow height in visual simulations. Note that moder-
ately curved or tilted surfaces do not change the statement
(1) qualitatively.

Figure 3: Sketch of the statistical snow deposition model:
the snow height depends on the portion of the catchment
area around a snow location that is supported by the under-
lying surface. The radius is proportional the standard devi-
ation of the snow flakes horizontal speed.

In general, (1) will be cumbrous to integrate exactly. We
therefore use (2) as approximation by defining the snow
height h to depend on the scalar distance to the nearest edge
for all surface shapes. We found the polynomial

h(x) = hmax

(
1− (cx−1)4

)
(3)

to be a good computable approximation of (2), though higher
order terms might be added, too. Here, x is proportional to
the distance from the snow edge valid for 0 ≤ cx ≤ 1. The

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

factor c is a real number between zero and infinity used to
model different steepnesses of the edge curve, i.e. different
snow qualities or different standard deviations of the hori-
zontal snow flake velocity. For example c� 0 would repre-
sent an almost perpendicular edge observed in snow fallen
in large snow flakes. Figure 4 shows a selection of different
edge curves according to (3).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Snow Edge Curve

Distance [in fractions of scene diameter]

S
no

w
 h

ei
gh

t [
in

 fr
ac

tio
ns

 o
f h

m
ax

]

c=2
c=3
c=5
c=7
Eq. (2) with σ = 10
hmax

Figure 4: Edge curves as in eq. 3. The factor c is given in
fractions of the scene diameter, i.e. c =5 means that maxi-
mum snow height is reached within 20% of the scene length.

The ideal edge curve is not always realized. First, S might
be curved with respect to the vertical direction. Fig. 1b in-
dicates that steeper slopes as e.g. old snow surfaces close
to edges tend to decrease snow deposition probability creat-
ing smaller snow heights or edge profiles steeper than (2).
Second, the maximal snow height is never reached if snow
patches are very narrow as in Fig. 1c. We focus on two re-
quirements that must be met for an undisturbed edge curve:
A) the sky above that edge is not occluded by objects above
the edge, i.e. the sky can be reached on straight lines and B)
the patch defined by a closed edge is large enough to carry
the full amount of snow fallen from the sky. Obviously, this
is true only for simple scenes. Moreover, we need to redis-
tribute the snow missing in the edge regions to guarantee
snow mass conservation. We will show now how to conserve
the snow mass when requirements A and B are not fulfilled.
Again, real world observations and (1) deliver essential in-
sights. We first need to define what a snow patch is. Gener-
ally speaking - though not true in exotic cases neglected here
- snow can only settle on surfaces with a normal direction~n
smaller than 90◦ with respect to the direction of snow fall ~f .
This defines a set of candidate locations for snow deposition.
However, gentler slopes are required to allow fallen snow to
form contingent snow patches. Let Si be one of these snow
patches, i.e. a subset of the candidate locations. It can be
defined as union of all connected infinitesimal surface seg-
ments dS with local angles α := 6 (~n(dS), ~f) less then some

limit αm < 90◦

Si = {all connected dS with α < αm}. (4)

For simplicity, we choose to neglect potential snow depth re-
duction in steep slopes, which is reasonable when we treat
h as horizontal snow depth and not as snow thickness. We
can further assign a radius rmax,i to each patch denoting
the patch’s maximum border distance. There may be small
patches, i.e. patches with rmax,i < 1 so that the full edge
curve (3) won’t fit on them. In nature, this corresponds to
the situation in Fig. 1c. We solve this by setting the maxi-
mum snow height for small patches to hmax,i = rmax,i. Ad-
ditionally, we need to rescale the edge distance according to
x′ = x/rmax,i so that hmax,i can be reached for at least one
location within the patch.

The subdivision of the candidate locations into several
snow patches Si is similar to the patch subdivision for ra-
diosity illumination as we also partition a scene for the com-
putation of some resource balance, snow in our case. We
now need to determine the amount of snow in each location
dS when it comes to occlusions. Evidently, occluded faces
should receive less snow than free surfaces. In eq. (3) we
defined how to reduce the maximal snow height near patch
edges, so we know how much snow is left for redistribution.
Following our statistical model (1) we could again look at
the distribution of the horizontal snow flake speeds after the
first surface hit. But this may be arbitrarily complicated in
general scene layouts. So we draw an approximate solution
from a real world observation.

In Figure 5 a snow covered set of garden furniture is de-
picted. The snow on the table shows the typical edge pro-
file. The feature essential to redistribution can be seen on the
bench on the right. Apparently, the edge profile is approxi-
mately complementary to the profile above. This encourages
our principal redistribution scheme for snow removed near
edges:

If the full snow amount cannot settle at a location dS then
the rest of it is passed downwards to the location lying di-
rectly below dS (in direction ~f).

Figure 6 shows a sketch on how this shapes the snow
cover. The definition above is sufficient in all cases, where
there are snow locations below an edge region. If there are no
snow locations directly below an edge we need an additional
rule. In the close up inlay in Figure 8 you can see this kind of
situation in the real world. One can see that the excess snow
from above is transported horizontally and deposited there.
Thus, we need to identify the regions that receive additional
snow by horizontal transport. We call them inner edge re-
gions. An inner edge is specified as a patch’s border that has
no lower neighbours (see Fig. 6). We denote the height of the
additional amount of snow h+. We define h+ with the help
of (3) in the new variable x̃, which is the distance to the inner
edge

h+(x̃) = 1−h(x̃). (5)

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

Figure 5: Left: Snow covered garden furniture. Right: model with snow reproduced with our method. Grid resolution 150×104,
hmax = 0.16,c=23,αm = 60◦, computation time ca. 370ms.

The inner edge distance x̃ is stretched in the same way as
the outer edge distance x of the outer edge that deposits its
snow mass onto the inner edge. h+ is only added for patches
with inner edges. With this indirect modelling of horizon-
tal transport we largely compensate for the snow mass loss
encountered with the principal redistribution scheme only.
In summary the total snow height H at a location j is com-
puted as a function of x and x̃ (and possibly rmax,i for small
patches)

H j(x, x̃) = h+(x̃)+h(x). (6)

Obviously, our model characteristics (3) - (5) are sim-
plified and not exhaustive for a comprehensive description
of snow distribution. But they suffice to produce visually
plausible snow covers as we will show in the next chapters.
Moreover, we believe that our proposal (1) can serve as start-
ing point for more precise snow cover approximations.

4. Implementation

Our implementation relies on a height span map [ON05].
The height span map consist of a square grid of transition
lists. Each list is sorted by its transition height along the
snowfall direction ~f . There are two possible types of tran-
sitions: potential snow sites with their normal tilted less than
90◦ with respect to ~f i.e. air-object transitions seen from
the sky, and object backsides, i.e. object-air transitions. In
Figure 6 these transitions are indicated as red circles and
squares. Each snow site transition holds its height, its snow
height, the indices of its eight neighbouring indices, its snow
patch index corresponding to i in eq. (4), and the discrete
outer and inner edge distances corresponding to x and x̃ from
eq. (3) and (5). There are three main steps in the implemen-
tation.

1. At first, we compute the all transitions in the height span
map of a scene with a GPU-based depth peeler where
the viewing volume corresponds to the scene’s bounding
box aligned along ~f . One surface segment dS from (4)
corresponds to one pixel in each depth peel layer. Depth-
Peeling is both fast and easily adaptable for any snow
cover resolution (see Fig. 6a). Typically, 3D - models
contain unexpected face orientations contradicting their
visual behaviour. This requires the application of two
depth peel passes, one for front faces and one for back
faces. We merge both depth texture groups in a way
that every depth entry from a front side is followed by a
backside. If this is not the case, i.e. if there are front faces
without back faces or vice versa, we insert back (or front)
faces directly below (above) it. This handled all mesh
inconsistencies we found in our experiments.

2. In the second step, we group contingent snow patches as
defined in (4). We achieve this by flood filling a patch
from a random start site until all sites are assigned to
a patch. On a square grid with a 4-neighbourhood the
maximum surface tilt α from (4) can be translated to
a maximal height difference ∆zmax = cell size * tanα.
As there might by several neighbouring snow sites in
one grid position lying in this height range we choose
to always prefer higher sites. This is efficient because
the transitions lists are sorted by height. Moreover,
during flood fill, inner edges, i.e. edges with a neighbour
site larger than ∆zmax are marked as seeds for further
processing. The neighbour site above is also marked with
a flag t which we will explain when computing the snow
height.

3. In the third step, we compute outer and inner edge dis-

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

tances per patch. Again, we consider the four nearest
neighbours and apply two distance transforms, i.e. we se-
quentially clip all sites in touch with the current border
marking it with the current distance. For the outer distance
transform we can trivially determine border contact by
counting unprocessed neighbours (and by treating inner
edge seeds as non-border). For the inner distance trans-
form we use the seeds computed in the second step. We
also save the maximum border distance for each patch.
The regions marked with the flag t are grown to cover at
least a region as broad as the edge curve’s base.

* * *
* * * * *

*
*
*
*
*
*
*
*
*

* * * * *

*
*
*
*
*
*
*
*
*
*

* * * * * *

*
*
*
*
*
*
*
*
*
*
*
*

Snow geometry

Back side

0
-1

1
-1

2
-1

3
-1

4
-1

5
-1

6
-1

7
-1

8
-1

9
-1

10
3

11
2

12
1

13
0

0
-1

1
-1

2
-1

3
-1

4
-1

6
-1

5
-1

4
-1

3
-1

2
-1

1
-1

0
-1

0
-1

1
-1

3
-1

2
-1

1
-1

0
-1

0
-1

1
-1

0
-1

* * * * * * * * * * *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Outer and
inner edge
distances

Snow site

Height span map

Inner Edge

t t t t

2
-1

5
-1

Scene object

Figure 6: Schematic view of the snow distribution algo-
rithm. For clarity, the snow geometry is better resolved than
the depicted height spans. The numbers in the squares de-
note inner and outer edge distances. The number -1 stands
for undefined inner edges. For details see text.

Then, we have provided all information to compute the final
snow height. We simply need to iterate through each height
span on every grid position. For one height span, we start on
the top most position j and compute the snow height there
according to (3). If x̃ is defined, i.e. if we are close to an inner
edge, we increase the snow height by h+(x̃) (cf. (5)). Then,
if the maximum snow mass from the sky cannot be fully de-
posited i.e. if h j < hmaxi(j) we transfer the excess to the next
snow site below, on the same grid position (as in the prin-
cipal redistribution scheme). Like this, we sweep through
all snow sites until we reach the ground. Figure 6 shows a
sketch of the resulting snow shape in a schematic scene. We
could include a test here making sure that the snow height
does not penetrate objects above a site. For rendering, the
snow shapes defined by the snow height and the underlying
objects are triangulated. We add gentle normal noise to in-
crease realism when illuminating the scene. In very angular
scenes or at low ground grid resolutions we finish snow dis-
tribution with a smoothing pass shifting each snow surface
location towards the average position of its neighbours. For
vertices at a snow patch’s outer edge, we consider only those
neighbours that also lie at the outer edge.

Figure 7: Animated table. See movie in additional mate-
rial. Computation time 90 ms for the generation of the initial
mesh, all frames can be interpolated then. Grid resolution
75×75, hmax = 0.15,c=20,αm = 60◦. Note [Tok06] Fig. 8
and [Fea00] Fig. 11 for comparison.

5. Results and Rendering

All pictures in this paper were rendered with commercial 3D
software if not indicated differently. All computation times
refer to an AMD Athlon 64x2 Dual 3800+ 2.01 GHz CPU
with 1 GB RAM and a NVIDIA GeForce 8800 GTS GPU.
Maximal snow heights hmax are given in fractions of the
scene height. Computation times refer to snow probability
distribution calculation and mesh generation. To increase re-
alism in the rendered pictures we added gentle noise to the
snow height (< 5%) and bump map texture.

In Figure 2 you can see an edge curve of a snow shape
generated by our algorithm. Figure 5b shows garden furni-
ture with snow cover. Note the realism of our reproduction
of the vertical snow transport on the bench on the left. In
the snow covered EG-Logo in Fig. 9 you can see both edge
curves and vertical transport. In Fig. 7 one frame of a ten
second snow cover build-up is shown. In Fig. 8 deposition
close to inner edges are shown in comparison to a real world
example. Figure 10 shows a complex virtual scenes covered
in snow rendered in OpenGL. Figure 11 is composited scene
with several snow covers generated separately.

6. Discussion and Future Work

As mentioned above, snow is a very complex material dis-
playing a wide variety of shapes and structures. We showed
that even a model as simple as ours can create convincing
snow covers for scenes modelled without snow - if the model
layout is chosen carefully. Our model’s simplicity princi-
pally allows for faster computation than previously possible.
In the scene shown in Figure (9) for example the creation
of the snow model took about one and a half seconds with
our conceptual C++-implementation. Comparison to previ-
ous models is difficult because either timing documenta-
tion is sparse (e.g. [Fea00]) or detail depth is much lower
(e.g. [SEN08]) than in our model. The only work with de-
tailed performance analysis [Tok06] unfortunately relies on

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

Figure 8: Left: Snow covered garden furniture. Right: model with snow reproduced with our method. Grid resolution 187×300,
hmax = 0.065,c=40,αm = 80◦, computation time 1.7 s.

a manual preprocessing step. Though not directly compara-
ble, our computation times are slightly faster. Moreover, for
the animation of growing snow surfaces (see Fig. 7) our al-
gorithm is principally faster as we don’t need any stability
tests. This improvement is the reason why our snow cov-
ers look more realistic than in [Tok06] Fig. 8 and [Fea00]
Fig. 11. Our approach is ideal for animations: we com-
pute a snow cover probability distribution once and can use
it to determine a range of snow heights very fast and lo-
cally. With more optimization steps, we expect further per-
formance gains. We only used efficient data structures and
algorithms which were thoroughly investigated already.

A problem in our algorithm stems from the discrete scene
sampling. Small segments in the scene e.g. the armrest in
Fig. 8 might contain just a single line of snow with an
outer border distance of zero at maximum so that no snow
shape can be computed there. Two workarounds are possi-
ble: either the ground resolution must be as high as to cover
each object in the scene with more than one snow site per
grid direction. We found that best results can be achieved if
one ground grid position corresponds to less than a square
centimeter in the real world. The other work around could
be a method we call small patch inflation. One would use
the metaball technique as in [NIDN97] for all patches with
ri ≤ 1. A randomly blurred implicit function would be sam-
pled around all snow sites in the small patches. The snow
surface would be rendered as isosurface then. But computa-
tion time would be significantly increased with this method,
eventually outweighing timing gains due to lower resolution.

As shown above, our treatment of vertical snow redistri-
bution is a coarse approximation. The snow redistributed at
patch edges for example will not exactly settle below the
edge in the real world as we assumed. Instead it will be dif-

fused and spread depending on the vertical distance between
the edge and the ground below. The same applies to inner
edge redistribution. We could fit in these effects into our
model by rescaling x and x̃ depending on the vertical dis-
tance to the edge where the snow comes from. Furthermore,
in the real world, we observe additional wind driven redistri-
bution. We could include a third distance similar to x̃ which
was controlled by a wind field.

More subtle critical situations can arise with our inner
edge redistribution method: e.g. an inner edge which is only
accessible by a narrow cleft from above. In the real world,
the cleft would be covered by snow and the inner edge would
receive very little snow only. In our model all snow is trans-
ported to the bottom most inner edge. But when follow-
ing our recommendation that one snow site covers about a
square centimeter in the real world still a snow bridge would
form if the cleft is smaller than a centimeter. We do not ex-
plicitly consider topological changes due to the snow cover
neither. This would open up a huge range of new possibilities
an algorithm would have to handle beyond the scope of our
algorithm. Our algorithm aims to efficiently produce visually
convincing snow covers in virtual scenes but not physical
exactness. By further exploiting our statistical model snow
bridges could be modelled as well: they will arise where
the distance between two patches is small compared to the
catchment area.

Two beautiful effects could also be included into our
model. Single ungrouped snow sites at steep slopes could
be group into thin-layer patches that could be painted with
a semitransparent snow flake texture. And finally, overhangs
observed after snowfall with large snowflakes could be mod-
elled by adding an offset vector to the snow surface near
edges. We leave these enhancements open to future works.

c© The Eurographics Association 2009.

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

Figure 9: Eurographics logo after snow fall. Grid resolution
100×118, hmax = 0.18,c=14,αm = 70◦, computation time
350 ms.

7. Conclusion

We demonstrated a simple geometric algorithm to compute
three dimensional snow covers of virtual scenes. Our algo-
rithm covers a wide range of effects observed in snow distri-
bution, although many effects necessarily remained ignored.
We were able to create pictures close to photorealism and
suitable for further usage in animations.

We thank David Körner for his support with rendering and
3D model creation.

References
[DL05] DEUSSEN O., LINTERMANN B.: Digital Design of Na-

ture - Computer Generated Plants and Organics. Springer, 2005.
1

[Dud05] DUDASH B.: Snow Accumulation. Tech. rep., NVIDIA
Corporation, 2005. 2

[FB07] FOLDES D., BENEŠ B.: Occlusion-based snow accumu-
lation simulation. VRIPHYS (2007). 2

[Fea00] FEARING P.: Computer modelling of fallen snow. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
2000), ACM Press/Addison-Wesley Publishing Co., pp. 37–46.
2, 6, 7

[FO02] FELDMAN B. E., O’BRIEN J. F.: Modeling the accu-
mulation of wind-driven snow. In SIGGRAPH ’02: ACM SIG-
GRAPH 2002 conference abstracts and applications (New York,
NY, USA, 2002), ACM, pp. 218–218. 2

[GM81] GRAY D. M., MALE D. H.: Handbook of snow: prin-
ciples, processes, management and use. Pergamon Press, 1981.
1

[HAH02] HAGLUND H., ANDERSSON M., HAST A.: Snow ac-
cumulation in real-time. SIGGRAD (2002). 2

[IGLF06] IRVING G., GUENDELMAN E., LOSASSO F., FEDKIW
R.: Efficient simulation of large bodies of water by coupling
two and three dimensional techniques. In SIGGRAPH ’06: ACM

SIGGRAPH 2006 Papers (New York, NY, USA, 2006), ACM,
pp. 805–811. 1

[LZK∗04] LANGER M. S., ZHANG L., KLEIN A., BHATIA A.,
PEREIRA J., REKHI D.: A spectral-particle hybrid method for
rendering falling snow. Eurographics Symposium on Rendering
(2004). 2

[MC00] MURAOKA K., CHIBA N.: Visual simulation of snow-
fall, snow cover and snowmelt. icpads 00 (2000), 187. 2

[Mel74] MELLOR M.: A review of basic snow mechanics. In
Proceedings of the Grindelwald Symposium, IAHS Publication
No. 114 (1974). 2

[MMAL05] MOESLUND T., MADSEN C., AAGAARD M.,
LERCHE D.: Modeling falling and accumulating snow. Vision,
Video and Graphics (2005). 2

[Nak54] NAKAYA U.: Snow Crystals: Natural and Artificial. Har-
vard University Press, 1954. 1, 2

[NIDN97] NISHITA T., IWASAKI H., DOBASHI Y., NAKAMAE
E.: A modeling and rendering method for snow by using meta-
balls. Computer Graphics Forum 16, 3 (1997). (Proc. Eurograph-
ics’97) http://diglib.eg.org/EG/CGF/volume16/issue3/
CGF172.html. 2, 7

[ON05] ONOUE K., NISHITA T.: An interactive deformation
system for granular material. Computer Graphics Forum 24, 1
(2005), 51–60. 2, 5

[OS04] OHLSSON P., SEIPEL S.: Real-time rendering of accu-
mulated snow. SIGGRAD (2004). 2

[PTS99] PREMOŽE S., THOMPSON W. B., SHIRLEY P.: Geospe-
cific rendering of alpine terrain. In In Eurographics Workshop on
Rendering (1999), pp. 107–118. 2

[SB08] SCHECHTER H., BRIDSON R.: Evolving sub-grid tur-
bulence for smoke animation. In Proceedings of the 2008
ACM/Eurographics Symposium on Computer Animation (2008).
1

[SEN08] SALTVIK I., ELSTER A. C., NAGEL H. R.: Parallel
methods for real-time visualization of snow. In Applied Parallel
Computing. State of the Art in Scientific Computing. Springer-
Verlag, 2008, pp. 218–227. 2, 6

[SOH99] SUMNER R. W., O’BRIEN J. F., HODGINS J. K.: An-
imating sand, mud, and snow. Computer Graphics Forum 18, 1
(1999), 17–26. 2

[Sto05] STOFFEL M.: Numerical Modelling of Snow Using Finite
Elements. PhD thesis, ETH Zürich, 2005. 1, 2

[Tok06] TOKOI K.: Real-time rendering of accumulated snow. In
CGIV ’06: Proceedings of the International Conference on Com-
puter Graphics, Imaging and Visualisation (2006), 310–316. 2,
6, 7

[WWXP06] WANG C., WANG Z., XIA T., PENG Q.: Real-time
snowing simulation. Vis. Comput. 22, 5 (2006), 315–323. 2

c© The Eurographics Association 2009.

http://diglib.eg.org/EG/CGF/volume16/issue3/CGF172.html

N. v. Festenberg, S.Gumhold / Geometric Snow Distribution

Figure 10: Virtual scene covered with snow created with our method. Grid resolution 275×350, hmax = 0.075,c=50,αm = 80◦,
computation time ca. 2.7 s, one smoothing pass, rendering in OpenGL with Alpha-Blending at low snow heights.

Figure 11: Landscape in snow with a track of foot prints towards snow model optimization. Effective grid resolution 647×460,
bulk computation time ca. 6.0 s, several snow covers computed separately.

c© The Eurographics Association 2009.

