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Abstract

Many algorithms for point cloud processing espe-
cially surface reconstruction rely on normal infor-
mation available at each point. Normal directions
are typically taken from a local tangent plane ap-
proximation which is obtained by fitting a surface
model to the neighboring point samples. While the
direction can be estimated locally, finding a consis-
tent normal orientation over the whole surface is
only possible in a global context. Existing meth-
ods for this problem can be classified into volumet-
ric and propagation based approaches. Volumetric
methods are trying to divide the space into inside
and outside regions which is often complicated to
implement and have problems with open surfaces
and large holes. Propagation based methods can
deal with open surfaces but often fail on sharp fea-
tures. This paper analyses the behavior of surficial
orientation methods, gives a better understanding of
the underlying model assumptions of existing tech-
niques and proposes a novel and improved propaga-
tion heuristic.

1 Introduction

Surface reconstruction from unstructured three-
dimensional point sets sampled from the surface of
a real world object has become a major research
topic in computer graphics and vision. Beside the
pure spatial positions a very important surface prop-
erty is the normal of the underlying surface asso-
ciated with each sample point. This information
is essential for a variety of processing algorithms
like denoising, filtering, matching and registration,
reconstruction [10, 5, 9] or rendering. If nor-
mal information is not provided directly by the ac-
quisition process a standard approach is to recon-
struct the normal at a given position directly from
the point samples. Hoppe [4] proposed to estimate
the local tangent plane by applying a PCA to the

k-neighborhood around a given point p⃗. Pauly et
al.[11] use the normal of a fitted plane or alterna-
tively the gradient of an additionally fitted bivariate
polynomial. The main difference to Hoppe’s ap-
proach is the use of a distance decaying exponential
weighting function inspired by Levin’s work [6]. In
[10] general 3D quadrics, bivariate quadratic poly-
nomials in local coordinates and piecewise quadric
surfaces are used as local shape functions. They
propose to separate points from different surface
sheets or at sharp creases by clustering. Mitra et
al.[8] propose to use the points within a ball of ra-
dius r instead of a k-neighborhood. They also pro-
pose an iterative method to estimate an optimal ra-
dius assuming zero mean noise with known stan-
dard deviation.

Beside such numerical techniques there also ex-
ists some combinatorial methods. The Voronoi
based technique in [1] shows that the line from the
pole of point p⃗ to the point p⃗ itself can be used as
an approximation to the surface normal at this posi-
tion. Later the big Delaunay ball method [2, 3] was
suggested as an improvement to handle noisy point
cloud data. One large drawback of these combina-
torial methods is the computation of Voronoi cells
which can be quite difficult and slow especially in
the context of extremely large data sets produced by
state-of-the-art scanning technologies.

Numerical methods are often preferred due to
easier implementation and faster running times. A
drawback of these method is that they only provide
the normal direction at a given point but not a con-
sistent normal orientation over the whole surface.

In this paper we focus on the problem of finding a
consistent normal orientation which in our opinion
has not been solved satisfactorily yet.

Our main contributions can be summarized as
follows: We give a careful analysis of existing surfi-
cial orientation methods and provide a better under-
standing of the underlying model assumptions and
limitations. Based on these insights we propose ad-
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ditional improvements to further reduce the possi-
bility of orientation failures.

The relevance of the normal orientation prob-
lem can also be seen due to the many relations to
other research areas like image segmentation, ran-
dom field optimization or computational physics.

1.1 Terminology and Problem Statement

First we want to introduce some terminology, be-
fore we give a more formal problem definition. The
input of a normal orientation method is an unorga-
nized set of points P= {p⃗1, ..., p⃗n} sampled from an
unknown orientable, two dimensional manifold sur-
face S embedded in ℝ3. The surface S can possibly
be a surface with boundary e.g. due to an incom-
plete acquisition process. Additionally, we have the
set of normal directions N = {⃗n1, ..., n⃗n} where n⃗i
denotes the normal direction on S at point p⃗i.

The problem we wish to solve is to find a
global consistent set of normal orientations O =
{o1, ...,on} with oi ∈ {+1,−1} be the orientation
of normal n⃗i so that n⃗i is locally consistent in a small
neighborhood Ni around p⃗i. Intuitively speaking
a locally consistent normal orientation is achieved
if all orientated normals o j ⋅ n⃗ j of points in N j are
pointing to the same side of S. A globally consis-
tent orientation is achieved if each normal n⃗i is ori-
ented locally consistent by oi. Later in section 3
we give an overview of several possible criteria to
define such consistencies.

The main data structure on which the discussed
algorithms are working is the Riemannian graph.
As described in [4], a Riemannian graph G is an
undirected graph, which can be constructed by en-
riching the Euclidean minimal spanning tree EMST
over all points p⃗ ∈ P by adding additional edges ei j
between p⃗i and p⃗ j if p⃗i is in N j or p⃗ j is in Ni.
The neighborhood Ni is typically defined as the k-
nearest neighbors of p⃗i in P but other meaningful
neighborhood definitions are possible.

2 Related Work

We classify normal orientation techniques into sur-
ficial methods and volumetric methods. Surficial
methods try to establish a consistent normal orien-
tation by propagating the orientation information by
one or more normal consistency rules over the sam-
pled surface. Volumetric methods try to segment the

surrounding space into inside and outside regions.
Surface normals then have to point from inside to
outside.

2.1 Surficial methods

The most frequently cited algorithm in this class is
described by Hoppe in [4]. First a Riemannian
graph is constructed. Each edge between two points
is assigned a weight measuring the unreliability for
propagating the normal orientation along this edge.
Hoppe uses the absolute value of the dot product
of the two associated normals which is a simple
measure of normal variation. Normal orientations
are propagated along the minimal spanning tree of
the graph starting at a point with known orientation.
The algorithm can deal with open surfaces but can
suffer in the presence of sharp edges or corners.

In [13] Xie et al. propose to start the propaga-
tion from multiple seeds. In a first step the algo-
rithm tries to avoid propagation along high curva-
tures. This results in multiple orientated patches
touching each other at sharp edges or corners. In
a second step neighboring patches are consistently
orientated with a modified normal consistency rule
which can deal with sharp features.

2.2 Volumetric methods

Mello et al. [7] suggest a method to construct a
signed distance function representation from a point
sampled closed surface by constructing an adap-
tively subdivided tetrahedral volume decomposi-
tion. All vertices of a tetrahedron which lie on the
same side of a locally fitted plane should be labeled
either positive or negative while the vertices on the
other side should be labeled with the opposite sign.
Requiring a global consistent labeling over all tetra-
hedrons is exactly equivalent to the problem formu-
lation of finding a minimum energy configuration
of an Ising model [7]. To solve the optimization
problem a simulated annealing method is used.

Another volumetric approach is described in
[12] by Xie. Starting the surrounding space of
the point cloud is segmented into so called mono-
orientated regions by growing active contours from
multiple seeds. Mono-oriented regions are then
consistently determined as inside or outside by a
voting algorithm. To speed up the computation a hi-
erarchical implementation using an octree is used.
Volumetric methods are typically limited to closed



surfaces and cannot easily deal with partial scans or
scans with large holes but are in general more ro-
bust against noise and outliers. Surficial methods
are mostly easier to implement and can handle in-
complete scans with holes, but more often fail at
sharp features.

In this paper we focus on the analysis and im-
provement of surfacial orientation methods.

3 Consistent Normal Orientation

As described in the problem statement the input
to the normal orientation algorithm consists of the
points P and the corresponding normals N. From
the points P we construct a Riemannian graph G.
As suggested by Hoppe the consistent normal ori-
entation problem can be reduced to a graph opti-
mization problem. Each edge ei j is assigned a cost
that measures the unreliability in the orientations of
the incident normals n⃗i and n⃗ j. The goal is to find
a global orientation of all normals that minimizes
the sum of all edge costs resulting in a most consis-
tent normal orientation. In [4] it is noted that this
problem is NP-hard.

Although one could use a simulated annealing
approach to find the global orientation, we follow
the simpler approach proposed by Hoppe. The ba-
sic idea is to first define the orientation of one seed
normal either by hand or by a simple automatic ap-
proach - for example by using the normal of the
point with largest x coordinate as seed and by set-
ting the corresponding orientation such that the x-
component of the seed normal is positive. In the
second step one propagates the orientation of the
seed normal along edges of the Riemannian graph.
To propagate orientation along edge ei j from an ori-
ented normal n⃗i to normal n⃗ j a flip criterion is nec-
essary that tells whether to flip the original orien-
tation of n⃗ j. The flip criterion is typically imple-
mented by minimizing the edge cost over both pos-
sible orientations of n⃗ j.

The edges used for propagation are computed
through a minimal spanning tree (MST). A new
edge cost is defined that measures the unreliability
of propagating normal orientation. The unreliabil-
ity cost must be independent of the initial normal
orientation.

In the following we analyze existing flip crite-
ria and unreliability costs before proposing a new
approach that improves upon existing method and

widens the applicability of the simple and efficient
MST approach.

3.1 Zero Curvature Assumption

Hoppe proposed in the original MST approach [4]
to assume that the tangent spaces of points that are
adjacent in the Riemannian graph should be close
to parallel, i.e. that the curvature should be small
or even close to zero. The resulting flip criterion
simply checks, whether the edge incident normals
point in the same or opposite directions:

fHoppe(i, j) =
〈⃗
ni, n⃗ j

〉
< 0,

i.e. the normal n⃗ j is flipped if the dot product with
n⃗i is negative. The corresponding unreliability mea-
sure used as edge cost for MST extraction is

uHoppe(i, j) = 1−
∣∣〈⃗ni, n⃗ j

〉∣∣ .
It is zero for parallel or anti-parallel normals and
equal one (maximal) for orthogonal normals. For
point clouds sampling a surface with sharp features
the simple assumption of small curvature does not
hold independent of how densely we sample the sur-
face. Hoppe’s approach is not able to propagate nor-
mal orientation over an acute crease and therefore
fails for example in case of a point cloud that sam-
ples a tetrahedron as illustrated in the results sec-
tion.

3.2 Constant Curvature Assumption

a)

inr in′rjnr

ijeipr jpr

sphere

bisector b)

jnrjpr

in′r
ije

ipr

inr

Figure 1: a) in the approach of Xie et al. the normal
n⃗i is reflected at the bisector of ei j before compared
with n⃗ j. b) along acute crease edges the approach
can fail.

To overcome the problems of Hoppe’s approach
at sharp features, Xie et al. propose a secondary
flip criterion that is used exclusively in areas of high
curvature, where the reference normal n⃗i is first re-
flected to n⃗′i at the bisector plane orthogonal to edge



ei j before the comparison with n⃗ j is performed.
This approach is illustrated in Figure 1 a). The re-
sulting flip criterion and unreliability cost compute
to

fXie(i, j) =
〈⃗
n′i , n⃗ j

〉
< 0 with

n⃗′i = n⃗i−2
〈
êi j, n⃗i

〉
êi j where

êi j = (p⃗i− p⃗ j)/
∥∥p⃗i− p⃗ j

∥∥ .
uXie(i, j) = 1−

∣∣〈⃗n′i , n⃗ j
〉∣∣ .

While in the paper of Xie [13] this criterion is
only motivated empirically, we can argument as fol-
lows that it is actually motivated by assuming that
the surface is locally of constant curvature: From
the constraints that the surface S is passing through
p⃗i and p⃗ j and that its normal direction at p⃗i is n⃗i, a
unique sphere of constant curvature is defined. As
shown in Figure 1 a), the sphere center is on the in-
tersection of the bisector plane and the line through
p⃗i with direction n⃗i. Reflecting this line at the bi-
sector results in the sphere normal n⃗′i at the point
p⃗ j, which can then be compared to the actual nor-
mal n⃗ j. By symmetry does the same construction
starting at p⃗ j result in the same flip criterion and
unreliability cost.

We want to mention here that the approach of
Xie works as well for the planar case and can com-
pletely replace the approach by Hoppe without the
need for a two stage approach with an initial seg-
mentation of the surface in flat and curved areas.
Finally, the approach of Xie also works quite well
for point samples of surfaces with close sheets.

3.3 Low Curvature Variation

In this section we propose our new flip criterion and
unreliability cost. We extend the approach of Xie in
two ways: firstly we allow variations of the curva-
ture and secondly we define a reference plane that
allows to avoid problems with the acute crease il-
lustrated in Figure 1 b).

Our major idea is to propagate the normal orien-
tation from p⃗i to p⃗ j along the most plausible path
along the local surface. A plausible path should
respect the tangent space information at p⃗i and p⃗ j
given by n⃗i and n⃗ j. Further we assume that a sim-
ple curve with low curvature is more plausible than
a complicated curve. Because finding a curve with
minimal curvature respecting the normal constraints
at the start and end point is too costly to compute

we propose to use a total of four possible Hermite
curves instead as illustrated in figure 2 for the ma-
jor constellations that have to be considered: pla-
nar, sharp crease, closeby sheets and a twist of the
normals along the edge ei j. We define the Hermite
curves in a reference plane which equals the draw-
ing plane in figure a-c) and is illustrated in light gray
in figure d). In Figures 2 b)-d) one can see two red
and two blue Hermite curves, a dark and a bright
one for each color. The red Hermite curves interpo-
late the green normals n⃗i and n⃗ j, whereas the blue
curves interpolate n⃗i and −⃗n j. In the planar case in
a) all four curves degenerate to lines, where one of
the red curves includes no turning points and both
of the blue curves one.

To decide whether we have to flip the normal
or not, we compare the complexity of the Hermite
curves. For each orientation of n⃗ j we first select
the Hermite curve with lower complexity, i.e. one
red and one blue Hermite curve. The two selected
curves are finally compared with respect to their
complexities. We flip the normal n⃗ j if the blue curve
has lower complexity. Three questions remain to
discuss in the next three paragraphs: how to define
the reference plane, how to measure the complexity
of a Hermite curve and how to define the unreliabil-
ity cost.

Reference Plane For the definition of the Hermite
curves we actually only need the normal direction
of the reference plane, which we call the reference
normal. To define the reference normal we have to
consider three directions: n⃗i, n⃗ j and the direction êi j
along the edge ei j. There are basically three cases:

1. all three directions are collinear (compare Fig-
ure 2 c). In this case we can choose any direc-
tion as reference normal that is orthogonal to
common direction of normals and edge.

2. the three directions span a plane (compare Fig-
ure 2 a). Then we use the normal to this plane
as reference normal.

3. the three directions span a volume (compare
Figure 2 b and d).

In the last case we have to deal with sharp features
and twists. The best way to deal with the twist case
in Figure 2 d) is to define the reference normal as
the cross product of n⃗i and n⃗ j. This simple approach
has a problem though when the twist angle becomes
very small, i.e. if normal n⃗ j rotates around êi j until
it becomes nearly parallel to n⃗i. Then the reference
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Figure 2: Illustration of our approach for the major cases a) planar, b) crease, c) closeby sheets, d) twisting
surface. In case a-c) the reference plane equals the drawing plane in d) it is depicted in light gray. In each
case we compare all four possible Hermite curves interpolating the projections of points p⃗i ,⃗p j and normals
n⃗i, n⃗ j onto the reference plane. The light and dark red curves interpolate the constraints, whereas the light
and dark blue curves interpolate the constraints with n⃗ j flipped. In case a) the shapes of the four curves
were marginally modified for better illustration. The correct curves would all lie on top of each other.

normal should rather point orthogonal to the plane
spanned by êi j and one or both of the to be inter-
polated normals. We therefore compute a second
potential reference normal from the cross product
between the average of the normals and êi j and in-
terpolate with the help of the dot product of n⃗i and
n⃗ j between the two potential reference normals:

n⃗ref = n⃗i× n⃗ j +
〈⃗
ni, n⃗ j

〉2
(

n⃗i± n⃗ j∣∣⃗ni± n⃗ j
∣∣ × êi j

)
.

The sign of n⃗ j in the normal average is chosen from
the sign of the dot product between the normals,
such that n⃗ j is flipped if necessary. We took the
scalar product of the normals to the power of two
as this yielded the best results in the experiments.
Finally, we only used the second term in the sum, if
the normal average did not vanish.

Curve Complexity To construct the four Hermite
curves in the reference plane we need to define their
tangents. Each of the normals n⃗i and n⃗ j projected
to the reference plane defines two oppositely ori-
ented tangents ±⃗ti and ±⃗t j. We choose t⃗i and t⃗ j
by rotating the normals n⃗i, n⃗ j by 90 degree counter-
clockwise for t⃗i ,⃗ t j and clockwise for −⃗ti,−tang j.
The two red Hermite curves in Figure 2 are defined
with the tangent combinations (⃗ti ,⃗ t j) and (−⃗ti,−⃗t j),
whereas the blue curves are defined by (⃗ti,−⃗t j) and
(−⃗ti ,⃗ t j).

In order to make the construction scale indepen-
dent we set the length of the tangents to twice the
length of the edge ei j. The factor of 2 was again
determined by experimenting with the four major
cases of Figure 2. Other choices for the factor like
1 or 4 failed in one of the cases completely.

For each of the four 2D Hermite curves
c⃗k=1...4(t) we define the complexity C(⃗ck) as the in-
tegral of the absolute value of the curvature along
the curve, i.e.

Ck =C(⃗ck) =
∫
∣κk(s)∣ds,

where κk denotes the curvature at parameter value t
and ds the infinitesimal length element. As the cur-
vature can also be written as the infinitesimal angle
change dφk per length element ds, the complexity
measure simplifies to

Ck =C(⃗ck) =
∫
∣dφk∣.

This means that we have to compute the total angle
change that the tangent of the curve performs when
traversing the Hermite curve. In case the Hermite
curve does not have a turning point, the complexity
is simply the angle between the tangents at p⃗i and
p⃗ j. If the signed curvature at p⃗i or p⃗ j is negative
the angle must be computed clockwise otherwise
counterclockwise. In case there are turning points,
the curve can be split into monotonous parts at the
turning points and the complexity is the sum of the



complexity of the parts. A neccessary condition for
a turning point of a Hermite curve c⃗k(t) is that the
first derivative c⃗ ′

k(t) with respect to t is parallel to
the second derivative c⃗ ′′

k (t). Let q⃗1, q⃗2 be the start
and end points and m⃗1, m⃗2 the corresponding tan-
gents defining the 2D hermite curve c⃗k then c⃗ ′

k(t)
and c⃗ ′′

k (t) are given by

c⃗ ′
k(t) =(6t2−6t )⃗q1 +(−6t2 +6t)m⃗1+

(3t2−4t +1)⃗q2 +(3t2−2t)m⃗2

c⃗ ′′
k (t) =(12t−6)⃗q1 +(−12t +6)m⃗1+

(6t−4)⃗q2 +(6t−2)m⃗2.

Arranging the two vectors c⃗ ′
k(t) and c⃗ ′′

k (t) into a
2x2 matrix, the determinant of this matrix must be
zero for the two vectors being parallel:

det
(⃗
c ′

k(t) c⃗ ′′
k (t)

)
= 0

Expanding and simplifying the determinant expres-
sion results in a quadratic polynomial p(t) = a2t2+
a1t +a0 with coefficients

a0 = det
(
m⃗1 v⃗

)
a1 = 2 ⋅det

(
m⃗1 w⃗

)
a2 = det

(⃗
v w⃗
)

where v⃗ and w⃗ are given by

v⃗ = 6(⃗q1− q⃗2)−4m⃗1−2m⃗2

w⃗ = 3(m⃗1 + m⃗2)−6(⃗q1− q⃗2).

All cubic terms vanish during the simplifications.
The roots of polynomial p lying in the interval [0,1]
are the split positions of interest. We don’t have to
care about saddle points because splitting the curve
at a saddle point would not cause any problems.

Unreliability Measure Let Ckeep be the smaller
complexity of the two complexities of the red Her-
mite curves and Cflip the smaller complexity of the
blue Hermite curves. Then we simply define the
flip criterion and the unreliability measure as

fours(i, j) = Cflip <Ckeep

uours(i, j) =
min{Cflip,Ckeep}
max{Cflip,Ckeep}

.

By definition our unreliability criterion is in the
range of [0,1]. In Figure 2 the unreliabilities of our
method are shown. Especially important is that the
twist case in d) results in the largest unreliability
value, delaying this edge in the MST computation
to the very end.

name num. of vertices num. of edges
tetraeder 9967 138012
triceratops 9540 131174
gearplate 12244 165968

Table 1: Sizes of the Riemannian Graphs. The num-
ber of vertices equals the number of points and nor-
mals as well as the edges in the MST plus one.

name Hoppe Xie Our
tetraeder 10198 6856 1876
triceratops 2894 1366 879
gearplate 24330 15494 14309

Table 2: Numbers of edges in the Riemannian
Graph for which the flip criterion failed.

4 Results

For the evaluation we use the three ground truth
data sets depicted in Figure 3. The tetrahedron is
used to validate the behavior at acute surface edges
and corners. The triceratops model contains some
sharp edges, low and high curvatures and a moder-
ate number of nearby sheets e.g. at the three horns
and the frill. The gear plate is the most compli-
cated one. It contains a lot of sharp edges and many
different configurations of nearby sheets. The data
sets are created by sampling the surface of the cor-
responding polygonal meshes. Normals are taken
from the triangle faces of these meshes to provide
ground truth orientations. The number of vertices
and edges of the corresponding Riemannian graphs
G are given in Table 1. In all cases we used the 13
nearest neighbors to construct the graphs.

To evaluate the different criteria we performed
several measurements. First we counted the number
of edges within the Riemannian graph G for which
the flip criterion failed with respect to the ground
truth normals, see Table 2.

Next we counted the number of bad edges re-
maining within the MST in Table 3.

name Hoppe Xie Our
tetrahedron 6 6 0
triceratops 24 4 0
gearplate 1598 46 46

Table 3: Number of edges in the MST for which the
flip criterion failed.



Figure 3: Tetraeder, triceratops and gearplate point cloud data used for evaluation purposes.

To analyze the unreliability costs proposed in the
different approaches we have computed histograms
comparing the relation between the number of good
and bad edges for the different unreliabilities. The
good edges are the ones where the flip criterion suc-
ceeds. A method suitable for the MST approach
assigns low costs to good edges and high costs for
bad edges. We only show the histograms of the bad
edges in Figure 4 as the histograms for the good
edges look very similar.
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Figure 4: Histograms of the number of bad edges in
the Riemannian Graph where the flip criterion fails
plotted over the unreliability cost for the three mod-
els.

name Hoppe Xie Our
tetraeder 2822 2822 0
triceratops 63 5 0
gearplate 2064 2139 2025

Table 4: Number of incorrectly flipped normals dur-
ing the orientation propagation along the MST

Hoppe Xie Our
time per edge 0.023 ms 0.026 ms 0.21 ms
tetraeder 3.17 s 3.59 s 30.0 s
triceratops 3.02 s 3.40 s 27.9 s
gearplate 3.82 s 4.32 s 34.7 s

Table 5: Timings for the computation of the unre-
liability measures for each edge in the Riemannian
graph.

Finally, we counted the number of incorrectly
flipped normals during the orientation propagation
along the minimal spanning tree (see Table 4).

The computation time (see Table 5) for the un-
reliability measures of Hoppe and Xie are nearly
equal between 0.02-0.03 ms per edge. Due to the
more complex arithmetics involved in our criterion
it is a linear factor of about 10 times slower. The
time for constructing the Riemannian graph, com-
puting the minimal spanning tree and for propagat-
ing the normal orientations is the same for all three
methods and is less than a second for all models. All
measurements are done with an Intel Core 2 CPU
2.33 GHz with 2 GB RAM. Our implementation is
done in software and is not parallelized.

5 Discussion

All the models used in the results section were with-
out noise. We believe that the analysis is still rele-
vant also for 3D scans because all denoising proce-



dures that we are aware of can be formulated in a
way such that they do not rely on a consistent nor-
mal orientation and can therefore be performed be-
fore the normal orientation process.

We only selected models with sharp features or
closeby sheets because smooth models work fine
with all three methods. The gearplate model is es-
pecially difficult as its closeby sheets are undersam-
pled. We chose this model to find the limitations of
our method. The two other models worked perfectly
with our new method. This is reflected in the fact
that for all edges in the MST the flip criterion suc-
ceeded (compare Table 3) and therefore all normals
could be oriented correctly. Both other approaches
did not succeed on any of the models.

Table 4 shows that the failures of the other ap-
proaches on the triceratops model were not so se-
vere as only very few normals received the wrong
normal in the end. This good behavior always hap-
pens when one subtree of a wrongly flipped edge
is very small. In case of the gearplate all methods
failed and oriented a significant amount of normals
wrongly.

The histograms in Figure 4 reveal again that our
method is superior for the tetrahedron and tricer-
atops models where the flip criterion fails for much
less edges and these bad edges arise for higher unre-
liability costs only. The histogram for the bad edges
of the gearplate model is quite different. The ap-
proach of Hoppe fails a lot for zero unreliability.
This is due to the large number of edges connecting
in between the close surface sheets of the funnel.
Furthermore, does Hoppe’s approach fail much less
for unreliabilities of medium size compared to Xie’s
method and also to our method. In our method the
unreliability criterion is clearly superior to the other
reliability criteria as the edges where the criterion
fails arise for larger unreliability costs. The total
number of bad edges is only slightly less than in the
approach of Xie.

6 Conclusion and Future Work

In this paper we gave a careful analysis of existing
surficial orientation methods. We provided a better
understanding of the underlying model assumptions
and limitations of existing techniques especially in
case of the criterion suggest by Xie. Finally we pro-
posed an improved criterion to further reduce the
possibility of orientation failures and demonstrate

its effectiveness. In future work it would be use-
ful to have a closer look at more sophisticated op-
timization strategies and to evaluate how robust the
different methods are to noise.
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