

Faculty of Computer Science - Institute for Software- and Multimedia-Technology - Chair of Computer Graphics and Visualization

A Semi-Automatic Image Morphing Technique for Biological Images

Marcel Spehr, André Viergutz, Stefan Gumhold

IMAGE MORPHING

The process of transforming one image into another by generating a sequence of intermediate images to achieve a seamless transition.

Video Reconstruction of Drosophila Embryo Morphogenesis using our method

Image Morphing Steps in Detail

Non-Rigid Image Registration Methods Used to Define Flow Fields

1. Correspondence Detection and Computation of Flow Fields $\Phi: \Re^2 \to \Re^2$

Thin-Plate-Spline "User Driven"

User supplied sparse correspondences Interpolation of dense flow field

PRO:

> Very fast

> Can capture large scale differences, rotations, and translations

CONTRA:

Optical Flow Estimation "Data Driven"

Registration based on local image information and global flow field smoothness

PRO:

Results in dense data-supported flow field

CONTRA:

Unable to handle large image transformations in real time

2. Interpolation of Flow Fields

Exact mapping of points just for set correspondences, dense flow field is interpolated \rightarrow only indirect control

Morphing results using TPS Flow Field alone

Manual selection of at least 3 corresponding image points

Our Solution: A Combined Approach

Thin-Plate-Spline used for pre-registration and prewarping

Optical Flow computation between pre-warped images takes care of field fine-tuning

> Utilized Optical Flow estimator employs graphics hardware acceleration \rightarrow therefore close to real-time

performance

8 % @ @ % *&* ю ю @ *@ @* %

$I_t(\vec{x}) = (1-t) \cdot I_0(\Phi_t^{-1}(\vec{x})) + t \cdot I_1(\Phi_{1-t}(\vec{x}))$

3. Blending of Color Values

 $I_t(\vec{x}) = (1-t) \cdot I_0(\Phi_t^{-1}(\vec{x})) + t \cdot I_1(\Phi_{1-t}(\vec{x}))$

Results in blurred intermediate images Left: with blending Right: without blending, anaglyphic illustration

Application Areas

- Video reconstruction of
 - \rightarrow Continuous processes sampled at discrete time intervals
 - \rightarrow Zoom into cell tissue which was previously photographed at distinct, discrete scales
- Segmentation propagation through video footage

Results in sharp intermediate images Left: with blending Right: without blending, anaglyphic illustration

Results

> An application that is very easy and intuitive to use

- > Near real-time performance
- Produces visually pleasing results
- Robust to errors of manually set correspondences

References:

Bookstein, F. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. *IEEE Transactions on pattern analysis and* machine intelligence, 11(6), 567-585. Werlberger, M. a. (2009). Anisotropic Huber-L1 optical flow. *Proceedings of the British Machine Vision Conference*.

Wolberg, G. (1998). Image morphing: a survey. *The Visual Computer*, 14 (8), 360-372.

Drosophila images taken from: http://labs.fhcrc.org/parkhurst/embryo.html; Cell tissue images taken from: http://anatomy.iupui.edu/courses