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ABSTRACT

The bag-of-features model is often deployed in content-based
image retrieval to measure image similarity. In cases where
the visual appearance of semantically similar images differs
largely, feature histograms mismatch and the model fails.
We increase the robustness of feature histograms by auto-
matically augmenting them with features of related images.
We establish image relations by image web construction and
adapt a label propagation scheme from the domain of semi-
supervised learning for feature augmentation. While the
benefit of feature augmentation has been shown before, our
approach refrains from the use of semantic labels. Instead we
show how to increase the performance of the bag-of-features
model substantially on a completely unlabeled image cor-
pus.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.4.6 [Image Processing and Com-

puter Vision]: Segmentation

Keywords

content-based image retrieval; bag-of-features; image simi-
larity; image webs; co-segmentation

1. INTRODUCTION
Measuring similarity between images is an essential part

in many image processing applications. I.e. CBIR usually
aims for retrieving images semantically similar to a specific
query image. If no textual information is supplied one has
to compute a visual similarity based on global or local image
features.
This work focuses on the improvement of local image fea-

tures. They are created by finding characteristic local pat-
terns in images and describing them with (usually high-
dimensional) feature vectors. The popular bag-of-features
(BOF) [13] approach quantizes those vectors using a set of
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prototypical local patterns (also called visual words) and
counting them in histograms. Two images are compared by
measuring the intersection of their histograms. The more
similar features they have in common, the more similar they
are.

A common issue in feature based approaches for measur-
ing image similarity are changes in acquisition conditions.
The feature sets of images depicting identical objects vary
under viewpoint changes until they stop to overlap. As
the perspective shifts, features disappear and new features
emerge. The robustness of common interest point descrip-
tors can only partially compensate for this effect. The BOF
similarity decreases until the model eventually fails even
though the depicted object remains the same. Figure 1 il-
lustrates the effect schematically.

We propose to overcome this issue by propagating fea-
tures over a network of images. The method described in [4]
can be used to construct image graphs of large, unstruc-
tured image collections. The construction itself is solely
based on visual characteristics. No semantic knowledge is
involved. Edges between images are established using affine
co-segmentation. This web is used to propagate visual words
among connected images using an adapted version of the
method specified in [1].

Our results reveal that the transitive exchange of visual
characteristics reduces the visual gap, caused by changing
acquisition conditions. We benchmark our method on stan-
dard data sets, and show that through the additional ro-
bustness of BOF image signatures, retrieval performance in
image search applications is substantially increased.

2. RELATED WORK
Sivic and Zisserman [13] introduced the bag-of-features

image search in analogy to the bag-of-words search for text
documents. Dictionaries of visual words are found by clus-
tering feature descriptors of large, generic image collections.
Thereupon, feature descriptors of arbitrary images can be
assigned to the pre-calculated clusters which become visual
words. Each image is represented by a histogram of visual
words, a so called BOF. Feature locations and geometries are
completely discarded. Entries of a visual word histogram x

are weighted according to the tf-idf schema. Visual words
that appear often in an image but are rare throughout the
image collection receive a large weight. Similarity of two im-
ages is measured by the dot product x1 ·x2 of their weighted
visual word histograms. An inverted file structure facilitates
fast image retrieval in very large image collections.

Since its initial proposal, many extensions of BOF search
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Figure 1: Illustration of BOF failure. Three images of the same object are depicted along with their visual

word histograms. The viewpoint changes increasingly from left to right. The first and second histogram still

overlap to large extents, marked in gray. However, the appearance of the object has changed too much in

the third image. The overlap is minimal, and the similarity measure fails. Transitive feature exchange can

prevent the failure.

systems have been published. With the resulting perfor-
mance boost, BOF search systems still produce state of the
art results on many image retrieval data sets[5]. Query ex-
pansion [3] takes the top retrieval results for an image, and
re-runs the search by treating them as new queries. The ap-
proach is motivated by the observation that the top results
are often relevant to the search query. The expanded query
set is regarded as an enriched query representation. The
retrieval results of all queries are combined, and ranked by
similarity. By performing multiple searches for each query,
query expansion multiplies retrieval times.
Spatial re-ranking[12] adds a verification step to BOF re-

trieval. It checks whether locations of matching features
between the query and each top retrieval result are con-
sistent by searching affine transformations between feature
sets. Due to its computational cost, spatial re-ranking can
only be applied to a small set of top retrieval results. Even
so, it impairs the online response time of a retrieval system.
We use the same approach of spatial verification to establish
reliable image connections during image web construction.
But in our case, it is done in a pre-processing step, that does
not influence online query times.
Jegou et al.[5] present a complete state of the art BOF re-

trieval configuration. They augment BOF image signatures
with binary strings that prevent wrong visual word matches
even with coarse visual dictionaries. Instead of expensive
spatial re-ranking after retrieval, they exploit weak geomet-
ric consistency (WGC). Simplified geometric information is
embedded directly into the inverted file. It penalizes images
during retrieval where matching features are inconsistent in
terms of characteristic scale and dominant orientation com-
pared to the query. A multiple assignment strategy prevents
missing valid matches of similar features due to assignment
to different visual words. The modifications of Jegou et
al. require an adapted version of the inverted file structure
with increased memory demand. Although cheaper than
full spatial re-ranking, WGC constrains slow down retrieval.
We adopt WGC constraints but instead of penalizing incon-
sistent images during retrieval, we use WGC checks during
image web construction to further increase correctness prob-
ability when establishing image relations. The result of our
approach is a set of enriched image signatures that may be
used in any classical BOF retrieval system. The structure

of the inverted file itself is not altered. In our experiments,
we show that the size of the inverted file can be reduced by
feature propagation. If desired, all above-mentioned mod-
ifications to BOF searches can be deployed along with our
proposal.

Our approach is inspired by recent findings in [6]. The
authors create visual and textual clusters of an image col-
lection. The visual clustering is based on BOF similarity.
The textual clustering is based on text labels. The text
clusters thus represent (noisy) semantic information. The
authors form extended visual clusters by combining the vi-
sual clusters with the textual clusters. Then, they distribute
visual words in this extended visual cluster. This way, visual
characteristics are exchanged between images that are se-
mantically related. This benefits the retrieval performance.

We adopt the idea of [6], but go without any text labels
or other semantic information. We deploy highly structured
image relations in the form of image webs. In the follow-
ing, we first describe our approach, state our experimental
setup, and finally report the results we obtained after feature
propagation.

3. IMAGE WEBS
Before we propagate features within an image collection,

we discover its inherent image relations. A relation exists
when two images display a common object. We largely fol-
low the approach of Heath et al.[4] to construct highly inter-
connected image graphs that they coined image webs. Edge
additions proceed in an order that leads to a fast rise in alge-
braic connectivity. This measure corresponds to the ability
of a graph to distribute information. Hence, image webs are
well suited for our purpose. Below, we summarize the image
web construction briefly.

Heath et al. use affine co-segmentation to decide whether
an edge exists between two images. Affine-invariant fea-
ture detectors locate salient image regions. Features are
matched via their SIFT descriptors and reliable matches are
selected using Lowe’s ratio criterion[7]. A RANSAC-based,
iterative process extracts subsets of matches that are related
by an affine transformation between images. The union of
feature subsets per image serves as a segmentation of the
co-occurring image area. Heath et al. used these areas for
visualization. We, however, are only interested in the fact
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whether at least one co-occurring area was found or not, and
insert edges accordingly.
We extended the affine co-segmentation process in two as-

pects. Heath et al. used Harris affine[9], Hessian affine[9]
and MSER[8] detectors to locate salient regions. We addi-
tionally included the ASIFT[14] detector for its robustness
to viewpoint change. More affine co-segmentations succeed
when it is included. ASIFTs large computation time and
space requirements may pose a problem. We dealt with this
issue by reducing image resolution for this detector.
Our second modification is an additional verification step

for sets of co-segmented features. During our experiments,
we observed a significant amount of wrong image associ-
ations, especially when the images showed repetitive pat-
terns like nets, fences or texts. With such images, descrip-
tor matches become arbitrary and chances are that some
random subset adheres to an affine transformation. We ac-
commodated for this by adapting the concept of weak geo-
metric consistency (WGC)[5] constrains. For each matching
feature pair found by affine co-segmentation we calculate
the difference in characteristic scale and dominant orienta-
tion, respectively. Because these feature characteristics are
computed in normalized local image frames the differences
should be similar for corresponding sets of feature pairs, and
diverse otherwise. WGC constraints were used by Jegou et
al.[5] to re-rank retrieval results in BOF image searches. We
deploy WGC to verify the validity of co-segmented feature
pairs. We compute the variances of scale and orientation
differences, σ2

∆s and σ2
∆α, of each co-segmented region. If

the variances are larger than pre-determined thresholds, we
deem the region inconsistent, and discard it.
This validation approach does not work with ASIFT fea-

tures. Instead of affine normalization, it deploys affine sim-
ulations and calculates features in transformed image space.
When sets of feature matches bridge different affine simula-
tions, scale and orientation differences are inconsistent, even
if the match is correct. Instead of excluding ASIFT from the
WGC checks we calculate σ2

∆s and σ2
∆α over the union of all

detectors. Although ASIFT adds some distortion to these
values, we are still able to define reliable thresholds to tell
consistent and inconsistent feature match sets apart.
With these adaptions to the affine co-segmentation pro-

cess we proceed with image web construction in two phases
as Heath et al.[4] suggest: sparse web construction and den-
sification. In the first phase, clusters of connected images
are determined. A truncated BOF similarity ranking of im-
age pairs of the corpus is formed. Affine co-segmentations
are attempted in that order and edges are inserted where
they succeed. No affine co-segmentation is performed for
image pairs that already belong to the same connected com-
ponent. This leads to a fast growth of sparsely connected
image clusters. The first phase ends when the rate of suc-
cessful co-segmentations drops below a threshold.
In the second phase, each cluster is augmented with edges

that lead to a large increase in algebraic connectivity. There-
fore, all remaining edges are ranked according to the abso-
lute difference in the entries of the Fiedler vector associated
with those images the edge would connect. The Fiedler vec-
tor is the Eigenvector corresponding to the second smallest
Eigenvalue of a graphs Laplacian matrix. This Eigenvalue
equals the algebraic connectivity. Affine co-segmentations
proceed in the order of the new ranking until the algebraic

connectivity of the current cluster converges. The image web
construction is complete when all clusters were densified.

4. FEATURE PROPAGATION
We base our approach on label propagation on similarity

graphs as presented in [1]. The authors discuss typical sce-
narios of semi-supervised learning where one has labeled and
unlabeled data points. The goal is to spread known labels
within a graph that covers the complete data set. This way,
unlabeled samples receive existing labels from other samples.

The problem is broken down to one of class assignment.
There are two classes: 1 and -1. The class affiliation is known
for some samples, and unknown for others. In the latter case,
the samples receive a class value of 0. This information is
subsumed in a label vector Ŷ , that contains the initial class
value for every node in the similarity graph. The similarity
graph itself is represented by an affinity matrix W . The
entries Wij ≥ 0 state whether the nodes i and j are related.
The simplest variant is to set Wij = 1 between connected
nodes, and Wij = 0 otherwise.

Once Ŷ and W have been constructed, an iterative al-
gorithm starts. In essence, the positive and negative class
values of labeled samples influence the class values of unla-
beled samples dependent on the local neighbourhood in the
similarity graph. The procedure stops when the label vec-
tor Ŷ converges. Finally, all samples whose entries in the
label vector are negative receive class -1, and all samples
whose entries are positive receive class 1. The authors of
[1] describe two different algorithms: One where the classes
of the labeled samples are fixed (they are reset after each
iteration), and one where the classes of labeled samples may
change during the procedure.

We regard every image cluster of an image web separately.
In the following, we refer to these image clusters as image
graphs. Every node in the graph is an image, the edges
were established by affine co-segmentation. We construct
the affinity matrix W dependent on a parameter k. The
entry Wij is 1 if the nodes i and j are connected by a path
of length k + 1 in the image graph, i.e. for k = 0, only
direct neighbours are related in the affinity matrix W . I.e.
k regulates the size of the local neighbourhood of an image.
The diagonal entries Wii = 0.

We regard each visual word as a separate label. The as-
signment of class values ∈ {−1, 0, 1} is problematic. We only
have the information whether a visual word appears in an
image, or not. We cannot distinguish between labeled and
unlabeled samples. If a visual word does not appear, we do
not know whether it must not appear (class -1), or whether
its appearance is unknown (class 0).

However, it is unreasonable to assign class values of 1
for visual word appearance, and class values of 0 for visual
word absence. In that case, features would be distributed
throughout the image graph until they reach all nodes. Neg-
ative class values are essential. Therefore, we set the class
value to the appearance count c ≥ 1 if a visual word appears
in an image, and -1 otherwise. This way, we construct the
label vector Ŷ for all images of the image graph. We use the
appearance count c instead of the class value 1 to increase
the weight of visual words that appear multiple times in an
image. Note that this variant does not involve unlabeled
samples (class 0). Because of that, we cannot deploy the
algorithm of [1] where the class assignments of labeled sam-
ples (classes -1 and 1) are fixed. Nothing would happen in
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our case. We use the variant, that allows initial classes to
change.
Input for feature propagation are the affinity matrix W ,

the initial label vector Ŷ (0) depending on the current visual
word, and a parameter α ∈ (0, 1) that determines tendency
of an image to keep its original signature. The smaller α

the more difficult it is for the original signatures to change.
Following [1], we construct a diagonal degree matrix D with

Dii =
∑

j

Wij , (1)

the sum of the rows of W . We also construct a diagonal
matrix A,

A =
α

1− α
(D + ǫI) + I, (2)

where I is the identity matrix and ǫ is a small term for
numerical stability. Note that our equation for A is slightly
simplified compared to the definition in [1] because all our
samples are labeled. We proceed with the propagation as
follows:

Ŷ
(t+1) = A

−1(
α

1− α
WŶ

(t) + Ŷ
(0)). (3)

After the iteration converged, we assign the current visual
word to all images i, where Ŷi > 0 with the appearance
count c = ⌈Ŷi⌉.
We repeat the whole process for every visual word in the

dictionary. The set of new features for an image arises from
all features with appearance counts c > 0 after propaga-
tion. Note, that originally existing features might disappear
from an image if negative weights prevail in its local graph
neighbourhood. As a result, it is possible that images end
up without any features after propagation. We treat them
like singular images outside the image web, and use their
original signatures during retrieval.
We tested two different variants of incorporating the prop-

agation results:

1. In the default variant, we substitute the original fea-
ture set of an image with the feature set after propa-
gation.

2. In the augmented variant, we use the original feature
set per image, and augment it with those features that
were added during the propagation. I.e. the new sig-
nature is formed by the union of the original feature
set with the feature set after propagation.

In an additional variant, we collected all visual words that
disappeared from the image web during propagation. We
speculated that these visual words, due to their irregular ap-
pearance, might be associated with clutter, and, therefore,
harm retrieval. We erased them from the visual word dictio-
nary and performed image search with the resulting filtered
dictionary. The retrieval performance was clearly inferior
to the baseline. Rigid exclusion of these visual words was
harmful. We will not consider this approach any further.

5. EVALUATION

5.1 Datasets
We tested our approach on two data sets: INRIA holi-

days[5] and Oxford buildings[12].
Oxford buildings contains 5063 photos of several promi-

nent buildings of Oxford along with some clutter images.
Since certain objects are covered by many photos and some
photos depict multiple objects, this data set is especially
suited for image web construction. Because of its size, it
represents a realistic application scenario. For each image,
the authors provide pre-calculated features and pre-assigned
visual words. Groundtruth consists of 55 queries with asso-
ciated relevant images. The relevant images are divided into
two groups, “good” and “ok”, depending on how much of the
query object is visible. We do not differentiate between these
two groups. An additional group “junk” consists of images
that we ignore during evaluation as suggested in [12]. The
data set refines queries with regions of interest which we do
not use.

INRIA holidays contains 1491 personal holiday photos
covering diverse natural scenes and man made environments.
The structure of this data set differs considerably from Ox-
ford buildings. It includes much more diverse, discontiguous
scenes. Since only very few images belong together, it is
much less suited for image web construction. Groundtruth
is given in the form of 500 disjoint groups of related im-
ages. Each group contains only a small number of im-
ages, 3 on average. The first image of each group serves
as query, and the remaining images are relevant retrieval re-
sults. Similar to the Oxford data set, the authors provide
pre-calculated features for each image, but no pre-assigned
visual words. Instead, they provide generic visual dictionar-
ies ranging from 100 to 200k visual words. We assign visual
words using FLANN[11] and the 200k dictionary. Further-
more, pre-calculated features of 1M random Flickr images
are available on the INRIA holidays website. We use them
to assemble distractor image signatures to test the robust-
ness of our BOF implementation.

5.2 BOF Baseline
We implemented a basic BOF image search following the

description of Sivic and Zisserman[13]. As has been sug-
gested before[5], we deploy an adjusted tf-idf weighting. The
original term frequency (tf ) weight corresponds to a L1 nor-
malization of feature histograms. In our experiments, we
achieved slightly better results with the L2 norm. Similar
to many retrieval scenarios we assess performance in terms
of mean average precision (mAP). For computation of mAP,
we adapted code published together with Oxford buildings.
We use our implementation of the basic BOF image search
to calculate baseline performance values on both data sets.

5.3 Web Construction
We used affine co-segmentation with the following pa-

rameters: We deploy the software of Mikolajczyk[10] to ex-
tract Hessian-Affine, Harris-Affine and MSER features. The
ASIFT demo code[14] adds ASIFT features. In the case
of ASIFT, we rescaled images by a factor of 0.4 to de-
crease the computational load. We perform feature match-
ing with FLANN[11] and use Lowe’s ratio criterion[7] with
r = 0.7 for match filtering. The RANSAC implementation
of OpenCV[2] determines feature sets related by affine trans-
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Figure 2: Part of the dense Oxford buildings image web. The largest cluster is clearly visible at the center.

Smaller clusters are located towards the left and right margins.

formations with a reprojection error of 5 pixels. We accept
feature sets if they consist of at least 20 features in both
images.
For WGC checks after affine co-segmentation we allowed a

maximal variance σ2
∆α of 1.0 for orientation differences, and

a maximal variance σ2
∆s of 0.1 for scale differences. We de-

fined these thresholds after manually examining cases where
affine co-segmentation yielded wrong results. We found that
the variance of orientation differences is much more expres-
sive than the variance of scale differences.
We tested our configuration of affine co-segmentation by

manually validating its outcome on approximately 1300 im-
age pairs of Oxford buildings. Only 13 of them were flawed.
Based on affine co-segmentation we constructed dense im-

age webs of Oxford buildings and INRIA holidays. We
stopped the initial sparse web construction when less than
20 co-segmentations were successful per 1000 image pairs
processed. We stopped densification when the algebraic con-
nectivity improved less than 5% of its initial rise. We found
that a reasonable stopping criterion for densification is im-
perative. If all possible image connections are established,
local image neighbourhoods become too big and generic for
feature propagation. This results in decreased retrieval per-
formance.
The Oxford buildings web consists of 363 distinct image

clusters dominated by one large cluster with 547 images.
The second largest cluster counts 100 images, and most of
the cluster consist of 5 images or less. Altogether, ca 40%
of the images appear in the image web. For all other images
co-segmentation found no reliable partner. Reasons include
the depiction of singular object, large changes in acquisition
conditions, or image clutter. Figure 2 shows a part of the
Oxford buildings web. The INRIA holidays web consists
of 328 clusters with ca 50% of all images. All clusters are
small with 2 to 10 images. Figure 3 shows one cluster of the
INRIA holidays web in detail.

5.4 Propagation
Based on the image webs, we propagate features accord-

ing to Section 4. Propagation depends on two parameters:

Figure 3: One image cluster of the INRIA holidays

image web.

α that determines the weight of the initial image signature.
With a large α images tend to attract more features from
their neighbourhood. The parameter k determines the size
of the local image neighbourhood. During our preliminary
experiments, we observed a value of k = 1 to be advanta-
geous and fixed it for the experiments reported below. I.e.,
the local neighbourhood of an image consists of all images
connected with a path of length 2. For α, we used values of
0.1, 0.5 and 0.9 to test strong, moderate and weak influence
of the initial image signature.

For images that do not appear in the image web, we keep
the original signature. This also applies to images that end
up without any features after default propagation. We com-
pare mAP after propagation with the baseline values of the
basic BOF search implementation. For the queries, we al-
ways use the original, unaltered image signatures when cal-
culating the mAP.

We do not use distractor images during image web con-
struction and feature propagation. We add distractor signa-
tures afterwards to test the robustness of the feature prop-
agation impact on retrieval performance.
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5.5 Results
Table 1 subsumes our evaluation results on INRIA hol-

idays used in conjunction with a dictionary of 200k visual
words. With a basic BOF implementation we achieve a base-
line mAP of 0.554 without distractor images. This is com-
parable to the baseline value reported in [5]. The results
clearly show the benefit of feature propagation. Default fea-
ture propagation with α = 0.5 results in a mAP of 0.594, i.e.
an improvement of 7.1% over the baseline value. No prop-
agation variant harms retrieval. We observe the benefit of
a large α although there is no further improvement beyond
α = 0.5.
The impact of distractor images is straight forward. With

more distractors added to the image collection, chances in-
crease that they are confused with relevant images. MAPs
are dropping for the baseline BOF search as well as for all
propagation variants. However, the performance decrease is
much smaller after feature propagation, see Figure 4. With
100,000 distractors the relative improvement over the basic
BOF search rises to 30%. Image signatures clearly became
more robust. Note that we used unaltered query signatures.
Hence, mutual adaptions of queries and database images
through feature propagation are ruled out.
For the most part, we can reproduce our observations for

Oxford buildings. The baseline mAP is much smaller with
0.320. The data set contains more images of homogeneous
objects, so there is more room for confusion. Furthermore,
the homogeneous images exploit the expressiveness of the
generic INRIA 200k dictionary only to some extent. Al-
though performance is lower for Oxford buildings on abso-
lute terms, the relative improvement through feature prop-
agation is higher than for INRIA holidays. The best results
are again achieved with default propagation and α = 0.5.
Without distactors, we boost the mAP to 0.409, an im-
provement of 27.7%. The improvment is stable in regard
to distractors, see Figure 5. With 100,000 distractor images
our best result is a mAP of 0.360 compared to the baseline
of 0.223, a significant improvement of 60%.
We also performed feature propagation on the pre-assigned

visual words of Oxford buildings. They are based on a
much larger dictionary of 1M words that was furthermore
learned on Oxford buildings itself. Naturally, it is much
more expressive for this data set. We observe a high base-
line mAP of 0.545. Here, we noticed dropping retrieval per-
formance through feature propagation, see Table 3. With
default propagation mAP drops by 9.3% for α = 0.5, and
by 3.3% for α = 0.9. We attribute this to the sparseness of
visual words with the 1M dictionary. Sparse visual words
are more likely to vanish through default propagation. This
can happen to an extent where the expressiveness of image
signatures suffers. Augmented propagation prevents such ef-
fects. Indeed, with α = 0.5 we achieve a mAP of 0.571, an
improvement of 4.8%. We were not able to test the robust-
ness with distractor signatures here, because the 1M word
dictionary was not published.

5.6 Performance
The construction time of the web is dominated by the

feature matching during affine co-segmentation. It took a
few seconds each time on a single core (2.20 GHz). The
sparse web construction has a complexity of O(n) where
n is the number of image pairs considered. We stopped
after the rate of successful co-segmentations dropped below

a threshold. Densification time depends on cluster size. In
the worst case, all possible edges considered between images
of an cluster are valid edges. Then, one potential edge is
removed per iteration and all remaining potential edges have
to be re-ranked. This results in a complexity of O(p2) for
one cluster, where the number of potential edges p = n× k

with n being the number of images in the cluster, and k

being the number of most similar images considered to form
image pairings. We used k = 25. For the larger Oxford
buildings data set, image web construction took about a
day on a single workstation.

The complexity of one propagation iteration is O(n2) in
the number of images within the graph. The number of
iterations depends on the convergence behavior of the label
vectors, i.e. on the structure of the data set. The size of the
dictionary determines the number of propagations that need
to be performed. In our experiments, propagation times
ranged from several minutes for INRIA holidays to several
hours for Oxford buildings, again on a single workstation.

Our implementation does not exploit the various possibil-
ities for parallelization at the later stages of feature prop-
agation on image webs. Densification is independent for
each cluster. Same goes for propagation for each visual
word. Both processes can run in parallel, respectively. This
does not apply for sparse web construction, and densifica-
tion within one cluster because each co-segmentation does
affect the list of subsequent co-segmentations.

Feature propagation has an effect on the amount of data
a CBIR system has to manage. With default propagation,
features from neighbouring images may be added to signa-
tures, other features may vanish. In our experiments, the
latter was the case far more often, and inverted files tended
to become smaller. This is not possible in the augmented
variant, where features can only be added to the initial im-
age signatures. Thus, inverted files enlarge. In both vari-
ants, parameter α regulates the severity of the effect. A
large α leads to a high decrease or increase of an inverted
file, respectively. Default propagation decreases the inverted
file size by 8% to 17% for INRIA holidays, and by 17% to
29% for Oxford buildings. Augmentation increases the in-
verted file size by up to 8% for INRIA holidays but only up
to 3% for Oxford buildings.

Feature propagation is a one-time pre-processing step. It
does not involve post-processing of retrieval results with ad-
ditional operations, nor does it change the nature of image
signatures. Thus, it does not influence query response times
of CBIR systems compared to basic BOF retrieval. In the-
ory, changing signature sizes could alter the accumulation
time of similarity scores in the inverted file structure. How-
ever, we did not observe such an effect. Query times were
stable.

6. CONCLUSION
Using affine co-segmentation, we constructed image webs

of two data sets with several thousand images. We incor-
porated weak geometric consistency constraints in a novel
way to estimate the reliability of a set of feature matches.
This way, we detect and prevent wrong association between
image pairs. As a result, we increase the correctness of the
emerging image web considerably.

We used the image web to propagate visual words along
image connections. To our knowledge, visual word propaga-
tion on completely unlabeled data is a new approach. We
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Table 1: Evaluation of feature propagation on INRIA holidays in conjunction with a generic 200k word

dictionary. The best performance per row is marked in bold face.

mAP mAP mAP
distractors baseline propagation default propagation augmented

α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

0 0.554 0.566 0.594 0.592 0.570 0.576 0.575
1,000 0.530 0.546 0.576 0.574 0.548 0.562 0.563

10,000 0.463 0.487 0.533 0.532 0.486 0.526 0.529
100,000 0.382 0.423 0.498 0.498 0.422 0.489 0.495
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Figure 4: Impact of the number of distractor images on retrieval performance for INRIA holidays.

Table 2: Evaluation of feature propagation on Oxford buildings in conjunction with a generic 200k word

dictionary. The best performance per row is marked in bold face.

mAP mAP mAP
distractors baseline propagation default propagation augmented

α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

0 0.320 0.370 0.409 0.338 0.334 0.365 0.368
1,000 0.315 0.366 0.407 0.338 0.327 0.359 0.363

10,000 0.294 0.345 0.400 0.333 0.306 0.340 0.344
100,000 0.223 0.284 0.360 0.309 0.235 0.271 0.284
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Figure 5: Impact of the number of distractor images on retrieval performance for Oxford buildings.
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Table 3: Evaluation of feature propagation on Oxford buildings in conjunction with a data-set-specific 1M

word dictionary. The best performance is marked in bold face.

mAP mAP mAP
baseline propagation default propagation augmented

α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9
0.545 0.553 0.494 0.527 0.553 0.571 0.564

showed, how techniques of semi-supervised learning can be
adapted and deployed in this setup. We observed an increase
in retrieval performance by up to 28%. This benefit is even
more distinctive when distractor images are involved. Im-
age signatures become considerably more robust. We also
demonstrated that feature propagation is suited to reduce
the amount of data necessary to describe an image collection.
This is because sparsely distributed features are filtered out
through propagation. This effect can cause problems for
very large dictionaries that naturally entail sparsity. If too
many features disappear retrieval performance suffers. This
can be prevented when the original signatures stay fixed,
and are only augmented through propagation.
The results of feature propagation can be easily incor-

porated into existing BOF search infrastructures. Feature
propagation optimizes an inverted file without changing its
composition. This separates it from approaches like Ham-
ming embedding[5] or WGC constraints[5] that require a
modified inverted file structure. Also, the propagation pro-
cess runs in an offline stage, and does not impair the online
query times of a system. The approach is complementary to
other optimization strategies, like re-ranking based on spa-
tial consistency[12], or query expansion[3]. It can thus boost
the performance of state of the art BOF image searches even
further.
Our feature propagation framework leaves many possibil-

ities for variations. Image web connections can be weighted
according to path length, image similarity or co-segmented
area size. Feature exchange can be limited to features within
co-segmented areas. This way, only sub-signatures of co-
occurring objects would be enriched. Other methods than
affine co-segmentation can be deployed, e.g. co-segmentation
based on fitting homographies or fundamental matrices. Im-
age relations could even be established based on full stereo
reconstructions which yield further possibilities of verifica-
tion. Fast web densification and feature propagation can
be enforced by restricting the maximal cluster size during
sparse web construction. A dissimilarity ranking could en-
sure sufficient heterogeneity for these small clusters. We
leave these possibilities as future work.
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