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Introduction 
The dynamics of boiling water reactors (BWR) can be described by a system of nonlinear 
partial differential equations coupled. From the nonlinear dynamics, it is well known that 
such systems can have unusual and strange behavior which is reflected by the solution 
manifold of the corresponding equation system [1-5]. Consequently, to understand the 
nonlinear stability behavior of a BWR, the solution manifold of the differential equation 
systems must be examined. In particular, with regard to the existence of operational 
points where stable and unstable power oscillations are observed, stable or unstable fixed 
points and stable or unstable oscillatory solutions (or turning points/saddle node 
bifurcations) are of paramount importance [2]. 
These investigations have reactor safety relevance because power oscillations could 
induce undesirable hot spots in a BWR [2]. If the amplitudes become large enough, 
technical limit values (as critical power ratio) could be exceeded and fuel element failure 
could be expected. In addition to that there exist BWR states where (for example) 
unstable limit cycles occur (in the neighborhood of subcritical bifurcations where unstable 
periodic orbits occur) [5]. In this case, small perturbations imposed to the system, lead to 
a stable behavior. But if critical perturbation amplitude is exceeded, the system behaves 
unstable. Accordingly, this behavior hides the danger that instabilities can be undetected. 
Therefore the operational safety could be violated. Hence the methodology of the 
nonlinear stability analysis of BWR, applied in the current work, will uncover such 
phenomena. 
In the framework of this, integrated BWR (system) codes and simplified BWR models 
(reduced order models, ROM) are used parallel to reveal the stability characteristic of 
fixed points and periodic solutions of the nonlinear differential equations describing the 
stability behavior of a BWR loop [2,3]. This work is a continuation of the previous work at 
the Paul Scherrer Institute (PSI, Switzerland) and University of Illinois (USA) on this field. 
The ROM developed at PSI was extended by an external loop and a model which takes 
into account the effect of subcooled boiling. Furthermore, a new calculation methodology 
for the feedback reactivity was implemented. Afterwards the modified ROM was coupled 
with the bifurcation code BIFDD [3,4] which performs so-called semi-analytical bifurcation 
analysis.  
This article presents the motivation and the basic principles of this methodology. In 
addition to that the influence of the external loop on the stability boundary and the 
Poincarè-Andronov-Hopf bifurcation will be demonstrated. 
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Methodology of nonlinear stability analysis 
Under variation of one or more selected system parameters (control parameters) a fixed 
point (stationary point) can bifurcate to an isolated stable or unstable periodic solution 
(also termed stable or unstable limit cycle) of the system equations. The investigation of 
such nonlinear system behavior is the principal objective of nonlinear stability analysis [1-
5]. In the following, a briefly characterization of system codes and reduced order models 
is given.  
Complex or integrated system codes are computer programs which include detailed 
physical models of all nuclear power plant components which are significant for a 
particular transient analysis [2]. Therefore, such detailed BWR models represent the 
stability characteristics of a BWR close to the physical reality. In face of this, nonlinear 
BWR stability analysis with the aid of complex system codes is currently common practice 
in many laboratories [3]. A particular demand is the integration of a 3D neutron kinetic 
model for the core, thereby permitting analysis of regional or higher mode stability 
behavior (as so-called out-of-phase oscillations) [1-3]. 
A detailed investigation of the complete solution manifold of the nonlinear equations 
describing BWR stability behaviour by employing system codes needs comprehensive 
parameter variation studies which require large computational effort, hence system codes 
are inappropriate to reveal the complete stability characteristics of a BWR. Therefore, 
reduced order analytical models become necessary [2,3]. The ROM is characterized by a 
minimum number of system equations which is mainly realized by reducing the 
geometrical complexity. One demand on the ROM is that the corresponding equation 
system should present the real stability behaviour of a BWR loop. The main advantage of 
employing ROM is the coupling with methods of semi-analytical bifurcation analysis. In 
such a methodology the stability properties of fixed points and periodic solutions are 
investigated analytically without the need for solving the system of nonlinear differential 
equations [2-4].  
The main objective of the current work is to combine system code analysis and ROM 
analysis. The intention is first to identify the stability properties of certain operational 
points by performing ROM analysis and then to use the system code for a detailed 
stability investigation in the neighbourhood of these operational points [2]. To this end, 
plant model data and data characterizing the operational point of a specified BWR plant 
will be extracted from the system code RAMONA. These data, respectively recalculated in 
an appropriate manner, are ROM inputs. In the first step of the ROM investigation, semi-
analytical bifurcation analysis will be performed. As a result, the stability boundary (SB) 
and the nature of the Poincarè-Andronov-Hopf bifurcation (PAH-B) are determined. In the 
second step, for independent confirmation of the results, numerical integrations of the 
ROM differential equations will be carried out for specified parameter values [2-4].  
 
Influence of the external loop model on the stability behavior 
The current reduced order model based on the PSI ROM consists of tree sub-models [3]. 
These are a neutron kinetic model, a fuel heat conduction model and a thermal-hydraulic 
two channel model. In the original PSI-ROM, the recirculation loop was replaced by the 
boundary condition of a constant external pressure drop [1,2]. This is a reasonable 
assumption in an out-of-phase oscillation mode but not in an in-phase oscillation state [3]. 
Hence a recirculation loop model was developed and implemented in the ROM. 

 



 

First investigations of the recirculation loop impact on the stability properties are 
concentrated on a thermal-hydraulic one-heated-channel model in the homogeneous 
equilibrium limit. To this end (or to understand this) the ratio ol , which appears in the 
momentum balance of the ROM after the recirculation loop is implemented, was varied in 
small steps. This ratio is defined as 

A

/ol inlet docA A A=  in which inlet  is the inlet flow cross 
section of the heated channel and doc  is the flow cross section of the downcomer. From 
the physical point of view, if the downcomer cross section will be increased ( ol  
decreases), inertial effects of the downcomer mass flow are decreasing which lead to a 
constant external pressure drop. Consequently, if the ratio ol  is zero ( ) inertial 
effects of the downcomer will vanish. In the opposite, if the ratio ol  will be increased, 
inertial effects of the downcomer will increase too. Because of practical relevance the 
ratio  will be varied in the interval 
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Figure 1: Stability boundaries in the sub - pch -parameter space and the 
corresponding bifurcation characteristic for different ratios  with 
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Figure 1 shows stability boundaries in the sub - pch -parameter space and the 
corresponding bifurcation characteristics for different ol  values calculated by employing 
semi-analytical bifurcation analysis. The stability boundary

N N
A

1 separates stable fixed points 
from the unstable one. The parameter 2β  results from the Floquet theory [2-4] and 
determines the bifurcation characteristic. If 2 0β <  the bifurcation is called supercritical 
(the periodic solution is stable which corresponds to stable limit cycles) and if 2 0β >  the 
bifurcation is called subcritical (the periodic solution is unstable which corresponds to 
unstable limit cycles). The stability boundaries in figure 1 shift to the right hand site and 
the number of subcritical fixed points decreases for increasing  values. From the olA
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stability point of view, the number of stable fixed points increases. According to this, the 
system becomes more stable.  
After the semi-analytical bifurcation analysis was performed the results were verified by 
using the numerical integration of the system of equations for chosen points in the sub -

pch -parameter space. The results (not presented in the current paper) confirm the 
predictions of the semi-analytical bifurcation analysis.  

N
N

A similar study was performed to analyze the influence of the downcomer friction on the 
stability behavior. The investigation shows that the system is not very sensitive to the 
downcomer friction variation. The numerical integration confirms this prediction.  
 
Comment: The subcooling number sub  represents the core inlet subcooling and 
appears as a boundary condition in the single phase energy equation. The phase change 
number (also called Zuber number) scales the phase change due to the heat addition into 
the coolant of the heated channel. These dimensionless numbers are defined as 
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where *
sath  is the saturation enthalpy,  *

inleth inlet enthalpy, * * *
f gρ ρ ρ∆ = −  liquid-vapor 

density,  * *
fg g fh h h∆ = − * liquid-vapor enthalpy,  *

0v reference velocity (steady state channel 
inlet velocity),  *l length of the channel, ''q  wall heat flux and *

hξ  is the heated perimeter. 
The sub - -space shows the thermodynamic state within the heated channel.N pchN  In face 
of this the subN - -parameter space is often used in the literature as stability map [2-4].  pchN
 
Conclusions 
The analyzed results confirm that the recirculation loop model is an essential element in 
the BWR-ROM. The dominant term in the momentum balance is the inertial term. On the 
other hand, the downcomer friction has a very small impact on the stability behavior. 
Consequently, it can be neglected in further investigations. Notice, the numerical 
integration confirms the results of the semi-analytical bifurcation analysis.  
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