
UNIVERSITY OF INNSBRUCK

IQOQI
AUSTRIAN ACADEMY OF SCIENCES

Phase Transitions and Pairing Mechanisms 
in Open Many-Body Systems 

with Cold Atoms

Theory Seminar
July 26 2011

APCTP Pohang, Korea

Sebastian Diehl
Institute for Theoretical Physics, Innsbruck University,

and IQOQI Innsbruck

Collaboration:
A. Tomadin (Innsbruck)     
W. Yi (USTC)                
A. J. Daley (Pittsburgh)
P. Zoller (Innsbruck)

AFOSR



Quantum optics control

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

Fermion superfluid
(2003)

Motivation



Quantum optics control

• closed system (isolated from 
environment)

• thermodynamic equilibrium

➡ Condensed matter analog systems

many-body 
system

Temperature T,
particle number N

Common theme:

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Fermion superfluid
(2003)

Mott Insulator
(2002)

Vortices
(1999)

Motivation



Quantum optics control

• closed system (isolated from 
environment)

• thermodynamic equilibrium

➡ Condensed matter analog systems

many-body 
system

Temperature T,
particle number N

Common theme:

dissipative environment

many-body 
system

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

Novel Situation: Cold atoms as open many-body systems

Fermion superfluid
(2003)

Motivation



Quantum optics control

• closed system (isolated from 
environment)

• thermodynamic equilibrium

➡ Condensed matter analog systems

many-body 
system

Temperature T,
particle number N

Common theme:

dissipative environment

• natural occurrences of 
dissipation

➡ no condensed matter analog

many-body 
system

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

Novel Situation: Cold atoms as open many-body systems

Fermion superfluid
(2003)

Motivation



Motivation

Many-body physics 
with cold atoms

Quantum optics control

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

➡ Condensed matter analog systems

many-body 
system

Temperature T,
particle number N

Vortices
(1999)

Common theme:

dissipative environment

drive
(e.g. laser)

Novel Situation: Cold atoms as open many-body systems

• natural occurrences of 
dissipation

➡ no condensed matter analog ➡ drive/dissipation as dominant 
resource of many-body dynamics!

many-body 
system

• engineered driven/dissipative 
dynamics 

• closed system (isolated from 
environment)

• thermodynamic equilibrium

Fermion superfluid
(2003)

➡ Think quantum optics in many-body systems!



Targeting interesting many-
body states

Driven Dissipative 
Many-Body Dynamics

Competition of Unitary and 
Dissipative Dynamics

Outline

New class of interacting 
nonequilibrium systems

Dissipative pairing 
mechanism for fermions

• Nonequilibrium phase transitions
• engineered dissipative 
dynamics for fermions 

• Driven dissipative BEC 
Proof of principle

Cold atomic 
fermions

Cold atomic 
bosons



Driven Dissipative BEC

SD, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nature Physics 4, 878 (2008); 
B. Kraus, SD, A. Micheli, A. Kantian, H.P. Büchler, P. Zoller,  Phys. Rev. A 78, 042307 (2008);



• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

An Analogy



• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

• 1 atom on 2 sites: external (spatial) degrees of freedom

1 2 (a†1 + a†2) |vac� (a†1 − a†2) |vac�
symmetric anti-symmetric
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• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

• 1 atom on 2 sites: external (spatial) degrees of freedom

1 2 (a†1 + a†2) |vac� (a†1 − a†2) |vac�
symmetric anti-symmetric

An Analogy

➡ “phase locking” for many external (spatial) degrees of freedom: BEC

• N atoms on M sites

|BEC� = 1

N !

��

�

a†�

�N
|vac�



dissipative evolution

• More precisely: Master Equation evolution of density operator 
Lindblad operators

• Goal: choose the Lindblad / jump operators such that

ρ(t) −→ |BEC��BEC| for t → ∞

• Job is done by

coherent evolution

 -- Liouvillian operator

Driven Dissipative lattice BEC 

|BEC� = 1

N !

��

�

a†�

�N
|vac�

Ji = (a†i + a†i+1)(ai − ai+1)

∂tρ = −i[H, ρ] + κ

�

i

JiρJ
†
i − 1

2{J
†
i Ji, ρ}

• Interpretation: 
• any antisymmetric component of a particleʼs superpositon on i, i+1 mapped onto the symmetric one
• i.e. on each pair of sites, only the symmetric superposition persists: 

|BEC� = 1

N !

��

�

a†�

�N
|vac�

➡ Long range phase coherence builds up from quasilocal dissipative operations

bathsystem



Uniqueness of the Steady State

(2) |BEC> is the only stationary state (sufficient condition)

{cα}

(3) Compatibility of unitary and dissipative dynamics

      be an eigenstate of H, 

If there exists no subspace of the full Hilbert space 
which is left invariant under the set         , then the  
only stationary state are the dark states

pictorially: more precisely:

(1) BEC state is the only dark state:

•                  has no eigenvalues (on fixed number (N-1) Hilbert space)(a†
i +a†

j)

•                  has unique zero eigenvalue(ai−a j)

➡ BEC is the unique dissipative zero mode of the jump operators

➡ Uniqueness: Final state independent of initial density matrix 
➡ Therefore: pure (zero entropy) final state

(ai − aj) ∀i −→
�

λ

(1− eiqeλ)aq ∀q



Driven Dissipative lattice BEC: Physical Realization

• Implementation idea for cold atoms: Immersion of driven system into superfluid 
reservoir

1 2

a1 a2

b • Λ-type level structure: optical superlattice

Ji|BEC� = 0 ∀iJi = (a†i + a†i+1)(ai − ai+1)

auxiliary system

system of interest



➡ The coherence of the driving laser is mapped on the matter system

   Rabi frequency
• drive: coherent coupling to auxiliary system 

with double wavelength Raman laser

1 2

a1 a2

b

λlaser = 2λlattice

Ji|BEC� = 0 ∀iJi = (a†i + a†i+1)(ai − ai+1)

auxiliary system

system of interest

• Implementation idea for cold atoms: Immersion of driven system into superfluid 
reservoir

Driven Dissipative lattice BEC: Physical Realization



• dissipation: phonon emission 
into superfluid reservoir

1 2

a1 a2

b
reservoir 

driving laser superfluid 
reservoir 

Ji|BEC� = 0 ∀iJi = (a†i + a†i+1)(ai − ai+1)

auxiliary system

system of interest

• Implementation idea for cold atoms: Immersion of driven system into superfluid 
reservoir

➡ The coherence of the driving laser is mapped on the matter system

Driven Dissipative lattice BEC: Physical Realization



Competition of Unitary vs. Dissipative 
Dynamics

Many-Body Physics with Driven-Dissipative Systems

SD, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, arxiv:1003.2071, Phys. Rev. Lett. 105, 015702 (2010);
A. Tomadin, SD, P. Zoller, Phys. Rev. A 108, 013611 (2011).



Physical Picture: Nonequilibrium Phase Transition

dρ

dt
= −i [H, ρ] + Lρ

• Nonequilibrium master equation evolution:

H = −J

�

<i,j>

a
†
iaj + U

�

i

a
†2
i a

2
i

drives into BEC with rate 

Competition

•  Compare to superfluid / Mott insulator quantum phase transition

U/J
kinetically dominated: 

superfluid
interaction dominated: 

Mott insulator

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

Mott lobes, 
quantized particle 

number

superfluid, 
fixed phase

n=1
M. Greiner, I. Bloch, T. Hänsch et al., 

Nature Jan 3 2002

Interference pattern

superfluid: 
Matter wave

Mott back to superfluid



Physical Picture: Nonequilibrium Phase Transition

dρ

dt
= −i [H, ρ] + Lρ

• Nonequilibrium master equation evolution:

H = −J

�

<i,j>

a
†
iaj + U

�

i

a
†2
i a

2
i

drives into BEC with rate 

Competition

➡ Question: What are the true analogies and differences to equilibrium 
(quantum) phase transitions?

•  Compare to superfluid / Mott insulator quantum phase transition

➡ Expect phase transition as function of 

• enhancement of superfluidity:           kinetic energy J        driven dissipation 

• suppression of superfluidity:              interaction U             interaction U  

U/J

•  Analogy:



Mixed State Gutzwiller Approach

➡  Nonlinear Mean Field Master Equation for reduced density operator 

• Strategy: approximation scheme interpolating between limiting cases

• onsite (quantum) fluctuations treated exactly

• (connected) spatial correlations neglected

• allows to describe mixed states (unlike zero temperature Gutzwiller)

• Nonlinearity emerging in approximation to linear qm equation: similar GP equation

• Argumentation must be based on equation of motion

ρ(t) =
�

i

ρi(t)

κ � U

• We will additionally account for a finite hopping 

κ � U

J

• Implementation: Gutzwiller product ansatz for the density operator

dissipative condensate see below!



From Weak to Strong Coupling

• Strong interaction destroys the phase coherence:
transformation to  rotating frame

annihilation operator in rotating frame

• Master equation reduces to 

➡ suppression of off-diagonal order

• Thermal equation with thermal (mixed) state solution

➡ the system acts as its own reservoir

• Weak interactions: dissipative Gross-Pitaevskii equation (coherent states)

dephasing & average out

∼ ψ
at dark state
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Nonequilibrium phase transition between pure and mixed state, 
driven by a competition between unitary and dissipative dynamics

• Development in time of the non-analyticity at the critical point

• Shares features of:
• Quantum phase transition: interaction driven

• Classical phase transition: ordered phase terminates in a thermal state

• No signature of commensurability effects (Mott) due to strong mixing of U

time

• no superfluid:

• purity at T=0:



Analytical Approach in the Limit of Low Density

• Study the equations of motion of the correlation functions

in principle: infinite and nonlocal hierarchy

➡ Infinite hierarchy exhibits a closed nonlinear subset for low order correlation functions

• Introduce a power counting: 
and keep only the leading order for 

b� ∼
√
n, b†� ∼

√
n

n → 0

• Many-body problem: relevant information in the low order correlation functions

{�(b†�)
nbm� �}

• Can be solved exactly in special cases. E.g. hom. steady state condensate fraction

|ψ|2

n
= 1−

�
T

Tc

�3/2|ψ|2

n
= 1−

�
U

Uc

�2

Uc = 4
√
2κ

cf. BEC:
J = 0

|ψ|2

n
= 1−

2u2
�
1 + (j + u)2

�

1 + u2 + j(8u+ 6j (1 + 2u2) + 24j2u+ 8j3)
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Critical Exponent of the Phase Transition

• Expect form of the order parameter evolution

• Critical exponents can be extracted from approaching the 
phase transition in time 

m2 < 0 m2 > 0

|ψ(t)| ∼ e−m2t

tα
real part of lowest 
eigenvalue: “mass”

• At criticality: zero eigenvalue and thus dominant polynomial decay



0 1 2 3

0

0.2

0.4

0.6

0.8

1

|〈
a
〉|

2
/n̄

U/zK

n̄ = 1, J = 0, zKt = 0, 10−1, . . ., 102

Critical Exponent of the Phase Transition

• Expect form of the order parameter evolution

• Critical exponents can be extracted from approaching the 
phase transition in time 

m2 < 0 m2 > 0

|ψ(t)| ∼ e−m2t

tα
real part of lowest 
eigenvalue: “mass”

• At criticality: zero eigenvalue and thus dominant polynomial decay

scaling 

exponential 
runaway

initial 
transient

• Numerical Result (high density):

α ≈ 1/2

• Analytical Result (n → 0) :

|ψ(t)| ∼ t−1/2, α = 1/2

at criticality, Landau-Ginzburg type 
cubic but dissipative nonlinearity

➡ Critical behavior could be studied experimentally from following the time evolution of 
condensate fraction

Mean field value as expected. 
But governs the time evolution.



Dynamical Instability
• Numerical experiment to probe the stability: subject the inhomogeneous system 

to a “kick” (instantaneous perturbation of the density matrix)

• Very slow effect: linearization of the master equation around the initial state, 
computation of the rate of the instability.

initial preparation in the homogeneous steady state

kick exponential increase of the fluctuation on all sites with uniform rate

long-wavelength density wave 

• This is a computation on 22 sites, linearization makes larger systems accessible



Linear Response around Homogeneous State
• Imaginary part of the Liouvillian as function of quasimomentum, 

Imaginary part of the spectrum of the linearized equation

many stable branches, fluctuation decay

one branch with unstable low momentum modes

with the hypothesis on the spatial dependence 
of the perturbation

100 sites, high densities, full mean 
field system

O(κ)

O(κn)

Infinite system, low densities, 7x7 
linear system of EoMs

J � κ

➡ Existence of dissipatively unstable modes is a universal feature of the regime 
➡ low density limit: the unstable modes belong to single particle sector

J � κ



Reduction to the Low-Lying Modes
• Adiabatic elimination of the fast-decaying modes (two times)

solve for the fast modes      and obtain slow modes equation only

• Low momentum equation of motion for of the condensate fluctuations only 

➡ renormalization of the off-diagonal terms 
➡ absent in the dissipative GPE

bare dissipative rate bare hopping at low momentum

�
∂tΨ1

0 ≡ ∂tΨ2

�
=

�
M11 M12

M21 M22

��
Ψ1

Ψ2

�
collection of low 
density correlation 
functions



Origin of the Instability
• Complex spectrum of the low-lying single particle excitations:

• Interpretation: Below a critical value

J = 9Un/(2z)

the speed of sound becomes imaginary. 
This term always dominates at sufficiently small momenta. Its sign is opposite to 

➡ The dynamical instability is fluctuation induced, a weak coupling phenomenon, and an 
intrinsic many-body effect

renormalization correction

γq = κq + ic|q|, c =
�

2Un(J−9Un/(2z))

κq

• The fate of the system beyond linear response:

density profile signature: 
spontaneous breaking of 
translation symmetry

maximum instability 
momentum transmuted 
into CDW wavelength



numerical (linear instability)
analytical

The Steady State Phase Diagram

• Strong coupling second order phase transition to a thermal-like disordered state

• Homogeneous dissipative condensate is unstable against CDW order for 
infinitesimal interaction

• Condensed phase and homogeneous condensate can be stabilized by finite 
coherent hopping 

thermal

condensed, 
homogeneouscondensed, C

DW



Nonlinear Dynamics in Finite Systems

• Study the response of the nonlinear dynamical system to sudden 
parameter changes, here: phase quench in 1D periodic chain:

Ji = (a†i + a†i+1)(ai − ai+1) → (a†i + e−iφa†i+1)(ai − eiφai+1)

• New steady state: Bloch wave

• Study equilibration dynamics:
amplitude dynamics phase dynamics

time time

la
tti

ce
 s

ite

|BEC�(q) ∼ (
�

i

eiqxia†i |vac� q = φa �xi|BEC�(q) ∼ eiqxi

lattice spacing

Bloch 
wave



Role of Collective Variables
• Three stages in equilibration dynamics:

amplitude dynamics phase dynamics

time
time

la
tti

ce
 s

ite

• Phase dynamics governed by collective variables:

amplitude onlyamplitude only

phase only

lattice Laplacian

external phase

• Ansatz with kinks/instantons

• Picture: transitions between different kink configurations driven by quantum noise

θ�(t) = Q(t) �−1
L−1 + δθ�(t)

• Stable solutions:
Q = 2πn δθ� = 0 Lperiodic bc!

n = 1



Dissipative D-Wave States of Fermions

++-

-
...

...

SD, W. Yi, A. J. Daley, P. Zoller, Phys. Rev. Lett. 105, 227001 (2010);
W. Yi, SD,A. J. Daley, P. Zoller, in preparation.



Motivation: Fermi-Hubbard model Quantum Simulation

• Clean realization of fermion Hubbard model possible
• Detection of Fermi surface in 40K (M. Köhl et al. PRL 94, 080403 (2005))

• Fermionic Mott Insulators (R. Jördens et al. Nature 455, 204 (2008); U. 
Schneider et al., Science 322, 1520 (2008))

• Cooling problematic: small d-wave gap sets tough requirements 

Unitary continuum Fermi gas SF transition

Current lattice experimentsCritical temperature 
for d-wave SF

BCS superconductors

➡ Still need to be 10-100x cooler  



Motivation: Fermi-Hubbard model Quantum Simulation

• Clean realization of fermion Hubbard model possible
• Detection of Fermi surface in 40K (M. Köhl et al. PRL 94, 080403 (2005))

• Fermionic Mott Insulators (R. Jördens et al. Nature 455, 204 (2008); U. 
Schneider et al., Science 322, 1520 (2008))

• Cooling problematic: small d-wave gap sets tough requirements 

Unitary continuum Fermi gas SF transition

Current lattice experimentsCritical temperature 
for d-wave SF

BCS superconductors

➡ Still need to be 10-100x cooler  

•  Roadmap via dissipative quantum state engineering approach: 
(1) Dissipatively prepare pure (zero entropy) state close to the expected ground state: 

- energetically close
- symmetry-wise close

(2) Adapted adiabatic passage to the Hubbard ground state 
- gap protection via auxiliary Hamiltonian



The State to Be Prepared 

d-wave SC ++-

-
...

...

product state x

y

High-Tc cuprate phase 
diagramBelow we treat the example of a d-wave-paired BCS state

of two-component fermions in 2D, showing how the pairing
can be generated via purely dissipative processes. A BCS-
type state is the conceptually simplest many body wave
function describing a condensate of N paired spin-1/2 fermionic
particles,

|BCSN � ∼ (d†)N/2|vac�

d†=
�

q

ϕqc
†
q,↑c

†
−q,↓

=
�

i,j

ϕijc
†
i,↑c

†
j,↓

or d† =
�

i,j ϕijc
†
i,↑c

†
j,↓, where c†q,σ (c†i,σ) denotes the cre-

ation operator for fermions with quasimomentum q (on lat-
tice site i) and spin σ =↑, ↓, and ϕq (ϕij) the momentum
(position) wave function of the pairs. In the case of d-wave
pairing, the pair wave function obeys

ϕqx,qy = −ϕ−qy,qx = ϕ−qx,−qy

d† =
�

i

[c†i+ex,↑ + c†i−ex,↑ − (c†i+ey,↑ + c†i−ey,↑)]c
†
i,↓



The State to Be Prepared 

d-wave SC ++-

-
...

...

product state

- phase coherence: delocalization of singlet pairs

- pairing in the singlet channel
- transformation under spatial rotations: “d-wave”

•  Features shared with expected Hubbard ground state:
(1) Quantum numbers

➡ State shares the symmetries of (conjectured) Hubbard GS
➡ No phase transition crossed in preparation process: gap protection

(2) Energetically close? Not known, but: 
- off-site pairing avoids excessive double occupancy

➡ Given the state, we want to find the Lindblad operators: “parent Liouvillian”
➡ “cooling” into the d-wave 

x

y

High-Tc cuprate phase 
diagramBelow we treat the example of a d-wave-paired BCS state

of two-component fermions in 2D, showing how the pairing
can be generated via purely dissipative processes. A BCS-
type state is the conceptually simplest many body wave
function describing a condensate of N paired spin-1/2 fermionic
particles,

|BCSN � ∼ (d†)N/2|vac�

d†=
�

q

ϕqc
†
q,↑c

†
−q,↓

=
�

i,j

ϕijc
†
i,↑c

†
j,↓

or d† =
�

i,j ϕijc
†
i,↑c

†
j,↓, where c†q,σ (c†i,σ) denotes the cre-

ation operator for fermions with quasimomentum q (on lat-
tice site i) and spin σ =↑, ↓, and ϕq (ϕij) the momentum
(position) wave function of the pairs. In the case of d-wave
pairing, the pair wave function obeys

ϕqx,qy = −ϕ−qy,qx = ϕ−qx,−qy

d† =
�

i

[c†i+ex,↑ + c†i−ex,↑ − (c†i+ey,↑ + c†i−ey,↑)]c
†
i,↓



Pairing mechanism 

• Half filling: Neel state for antiferromagnetism

Antiferromagnet d-wave SC

• Lindblad operators (1D): e.g.
full set:

➡ Action of jump operators
• Pauli blocking
• spin transport0

flip!

flip!

• Consider 1D cut only



Pairing mechanism 

• Half filling: Neel state for antiferromagnetism

Antiferromagnet d-wave SC

• Lindblad operators (1D): e.g.
full set:

➡ Action of jump operators
• Pauli blocking
• spin transport0

flip!

flip!

• D-wave (analog) state: interpret the state as a symmetrically delocalized Neel order

|BCS1� = (d†)N |vac�, d† =
�

i

(c†i+1,↑ + c†i−1,↑)c
†
i,↓

• Lindblad operators (1D): e.g.

➡ Combine fermionic Pauli blocking with delocalization as for bosons
➡ Pauli blocking is the key for single particle nature of operators

phase locking

J+
i = j+i,+ + j+i,− = (c†i+1,↑ + c†i−1,↑)ci,↓

• Consider 1D cut only



Dissipative Pairing: The d-wave jump operators 
• The full set of Lindblad operators is

• Discussion: These operators

• form exhaustive set: d-wave steady state unique, reached for arbitrary initial state
(symmetry argument + verified in small scale simulations)

• describe the redistribution of the superposition of a single particle

• generate dissipatively bound pairs, which delocalize over the whole lattice

• generalized for larger class of off-site paired fermion states: different symmetries

J±,z
i = (c†i+1 + c†i−1)σ

(±,z)ci

➡ Novel dissipative pairing mechanism, does not rely on attractive conservative forces

flip & 
delocalize

J+
i

J+
i = (c†i+1,↑ + c†i−1,↑)ci,↓

e.g. 1D



• “near” final BCS state: Bogoliubov-type analysis:  (U=0)

with effective fermionic late time Lindblad operators

with a “dissipative gap”

Late Time Dynamics

➡ Interpretation: approach to the steady state is universal and exponentially fast

{γq,σ, γ†
q�,σ�} = δq,q�δσ,σ�γq,σ|d-BCSθ� = 0

L[ρ] =
�

q,σ

κq[γq,σργ
†
q,σ − 1

2{γ
†
q,σγq,σ, ρ}]

and effective damping rate

κq = κñ(1 + |ϕq|2) ≥ κñ

�3 �2 �1 0 1 2 3
0.0

0.5

1.0
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2.0

damping rates
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κq



• numerical illustration: Uniqueness and exponential approach

• “near” final BCS state: Bogoliubov-type analysis:  (U=0)

with effective fermionic late time Lindblad operators

with a “dissipative gap”

Late Time Dynamics

➡ Interpretation: approach to the steady state is universal and exponentially fast

{γq,σ, γ†
q�,σ�} = δq,q�δσ,σ�γq,σ|d-BCSθ� = 0

L[ρ] =
�

q,σ

κq[γq,σργ
†
q,σ − 1

2{γ
†
q,σγq,σ, ρ}]

and effective damping rate

κq = κñ(1 + |ϕq|2) ≥ κñ
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• numerical illustration: Uniqueness and exponential approach

• “near” final BCS state: Bogoliubov-type analysis:  (U=0)

with effective fermionic late time Lindblad operators

with a “dissipative gap”

Late Time Dynamics

➡ Interpretation: approach to the steady state is universal and exponentially fast

{γq,σ, γ†
q�,σ�} = δq,q�δσ,σ� 3

Note that these operators can be obtained from Ŝa
i,ν by

a particle-hole transformation c†i,σ → ci,σ on the central
site i. For the action of the operators jai,ν the assump-
tion of fermionic statistics is essential, as illustrated in
Fig. 1b: they generate spin flipping transport according
to e.g. j+i,ν = c†i+eν ,↑ci,↓, which is not possible when the
antiferromagnetic order is already present. The proof of
uniqueness of the Néel steady state up to double degen-
eracy is then trivial: The steady state must fulfill the
quasilocal condition that for any site occupied by a cer-
tain spin, its neighboring sites must be filled by opposite
spins. For half filling, the only states with this property
are |N±�. This residual twofold degeneracy can be lifted
by adding a single operator ji = c†i+eν

(1 + σz)ci on an
arbitrary site i.

To find the Lindblad operators for the d-wave BCS
state, we apply a similar strategy. We first rewrite the
d-wave generator using the operators Ŝa

i ,

d† = i
2

�

i

(c†i+ex
− c†i+ey

)σyc†i =
a
2

�

i

D̂a
i , (4)

D̂a
i =

�

ν

ρν Ŝ
a
i,ν ,

where ρ±x = 1, ρ±y = −1, and the quasilocal d-wave

pair D̂a
i may be seen as the ”d-wave unit cell operators”.

Note the freedom of choosing a = ± in writing the state.
This form makes the physical picture of a d-wave super-
fluid as delocalized antiferromagnetic order away from
half filling [3, 14] particularly apparent. The condition
[Jα

i ,
�

j D̂
b
j ] = 0 (α = (a, z)) is fulfilled by

Ja
i =

�

ν

ρνj
a
i,ν , Jz

i =
�

ν

ρνj
z
i,ν ,

with jzi,ν = c†i+eν
σzci, establishing Eq. (1). Similar to

above, each Ja
i is obtained from D̂a

i by a particle-hole
transformation on the central site i. In fact, for these
operators the stronger quasi-local commutation proper-
ties with the molecular d-wave pairs holds due to Eq.
(3): [Ja

i , D̂
a
j ] = 0 for all i, j, [Ja

i , D̂
b
j ] = 0 for all i, j in the

same sublattice, which relies again on fermionic statis-
tics. In contrast, the operators Jz

i only commute with the
symmetric superposition of all d-wave pairs D̂a

j . These
operators establish coherence via phase locking between
adjacent cloverleaves of sites.

The question of uniqueness of the Lindblad opera-
tors (1) is equivalent to the uniqueness of the ground
state of the associated hermitian Hamiltonian H =
U
�

i,α=±,z J
α†
i Jα

i for U > 0. We note that our BCS
state shares the symmetries of the Hamiltonian of global
phase and spin rotations, and translation invariance. As-
suming that no other symmetries exist, we expect the
ground state to be unique. Note, however, the necessity
of the full set {Jα

i }: Omitting e.g. {Jz
i } gives rise to an

additional discrete symmetry in H resulting in ground
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4×3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.

state degeneracy. These results are confirmed with nu-
merical diagonalizations for small system sizes and pe-
riodic boundary conditions, and from master equation
simulations where |BCSN � is established as the unique
pure steady state for arbitray mixed state initial condi-
tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N� = O†N
k,n,µ|vac�,

where O†
k,n,µ =

�
i exp ikxi c

†
i+nτ

µc†i and τµ = (1,σα)
and the quantum numbers are spin combination µ =
0, ..., 3, the ”pairing distance” n = (1, ...,M −1), and the
pairing momentum k = (−(M−1)/2, ..., (M−1)/2)2π/M
(the one dimensional analog of the d-wave state is homo-
geneous nearest neighbour singlet pairing O†

0,1,2). Note
that the construction is not applicable for the seemingly
simplest onsite pairing states O†

k,0,2; the analogs of Eq.
(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form

of Jα
i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree
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tics. In contrast, the operators Jz

i only commute with the
symmetric superposition of all d-wave pairs D̂a

j . These
operators establish coherence via phase locking between
adjacent cloverleaves of sites.

The question of uniqueness of the Lindblad opera-
tors (1) is equivalent to the uniqueness of the ground
state of the associated hermitian Hamiltonian H =
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i for U > 0. We note that our BCS
state shares the symmetries of the Hamiltonian of global
phase and spin rotations, and translation invariance. As-
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4×3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.

state degeneracy. These results are confirmed with nu-
merical diagonalizations for small system sizes and pe-
riodic boundary conditions, and from master equation
simulations where |BCSN � is established as the unique
pure steady state for arbitray mixed state initial condi-
tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N� = O†N
k,n,µ|vac�,

where O†
k,n,µ =

�
i exp ikxi c

†
i+nτ

µc†i and τµ = (1,σα)
and the quantum numbers are spin combination µ =
0, ..., 3, the ”pairing distance” n = (1, ...,M −1), and the
pairing momentum k = (−(M−1)/2, ..., (M−1)/2)2π/M
(the one dimensional analog of the d-wave state is homo-
geneous nearest neighbour singlet pairing O†

0,1,2). Note
that the construction is not applicable for the seemingly
simplest onsite pairing states O†

k,0,2; the analogs of Eq.
(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form

of Jα
i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree

tr[ρ(t)|BCS��BCS|]

γq,σ|d-BCSθ� = 0

L[ρ] =
�

q,σ

κq[γq,σργ
†
q,σ − 1

2{γ
†
q,σγq,σ, ρ}]

and effective damping rate

κq = κñ(1 + |ϕq|2) ≥ κñ
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Schematic implementation of d-wave jump operators

We need:

Setting: 
• Earth Alkaline atoms in superlattices 
   placed in microcavity

• spin flip
• spatial redistribution of atom over neighboring sites
• dissipative process, but coherence over several lattice sites

J+
i

Earth alkaline features (Schreck, Grimm; Killian):
• metastable long-lived triplet states
• different, tunable lattice potentials 
   for ground and excited state

• Level scheme

171Yb

physical spins 

• one-dimensional analog:



• Level scheme

171Yb

physical spins 

spont. 
emission: 
cavity mode 

• Manipulation sequence

 spin flip
Schematic implementation of d-wave jump operators

auxiliary 
system

system of 
interest



• Level scheme

171Yb

physical spins 

∆

spin flip

spont. 
emission: 
cavity mode 

• Manipulation sequence

 spin flip

(i)

period-3 superlattice

coherent 
excitation with 
spin flip 

i-1 i i+1

Schematic implementation of d-wave jump operators

auxiliary 
system

system of 
interest



• Level scheme

171Yb

physical spins 

∆

spin flip

spont. 
emission: 
cavity mode 

repeat sequence stroboscopically for every 
subpartition of lattice into site triples

• Manipulation sequence

 spin flip

(ii)
adiabatic coherent 
splitting: period-2 
superlattice

(iii)

induced spont. 
emission. 
no which-path-info 
due to cavity

λcav � alatt

(i)

period-3 superlattice

coherent 
excitation with 
spin flip 

i-1 i i+1

 spatial redistribution
 coherence over several lattice sites

Schematic implementation of d-wave jump operators

auxiliary 
system

system of 
interest



Conclusions and Outlook

• Additional physical platforms for dissipation engineering: trapped ions, microcavity arrays
• Bosons: What is the nature / universality class of the dynamical phase transition?

• Close analogies to the problem of directed percolation

• Needs field theoretical framework: Keldysh path integral for quantum optical many-body systems

• Fermions: Cool quasi-locally into topologically ordered states (e.g. complex p-
   wave superconductors)? -> SD, E. Rico, M. Baranov, P. Zoller, arxiv:1105.5947

By merging techniques from quantum optics and many-body systems: 
Driven dissipation can be used as controllable tool in cold atom systems.

• Pure states with long range correlations from quasilocal dissipation

• Nonequilibrium phase transition driven via competition of unitary and dissipative dynamics

• Pairing mechanism for fermions with potential applications for quantum simulation

Questions for future research:





Cooling a Superfluid with a Superfluid? 

1 2

a1 a2

b
superfluid reservoir 

auxiliary system

system of interest

• There is a large energy scale in our system-bath setting: band separation ωbd

ωbd � (other scales) 

• In particular, under typical conditions
ωbd � TBEC

temperature of surrounding BEC

• More generally, the existence of such large scale exceeding all scales relevant for 
many-body physics ensures validity of many-body master equation

• Therefore, the reservoir acts as an effective zero temperature reservoir, i.e.

∂tρ = −i[H, ρ] + κ(n̄+ 1)
�

i

JiρJ
†
i − 1

2{J
†
i Ji, ρ}+ κn̄

�

i

J
†
i ρJi − 1

2{JiJ
†
i , ρ}

n̄ � 1

we see this as a strong 
point 
similar complexity to mb 
hamiltonian
compare to cm systems• dissipative dynamics temporally and spatially local

• allows for a microscopic modelling of dissipative dynamics with similar accuracy 
as for Hamiltonian



Validity of Inhomogeneous Gutzwiller Approximation

• The instability arises at weak coupling already, where the system is well 
described by the inhomogeneous Gutzwiller mean-field theory.

• The instability is due to a renormalization of the single particle (complex) excitation 
spectrum, and thus encoded in the evolution of 

• The exact equation of motion is a nonlinear equation, with nonlocal spatial 
correlations 

• The Gutzwiller approximation factorizes the correlations functions in real space, 
but treats onsite correlations exactly

• The factorization is real space is justified at weak coupling (large condensate): 
The dominant scattering processes are those for (-q, q) off the macroscopically 
occupied condensate

• In contrary, treating the onsite correlations properly is mandatory for the effect: 
Further (onsite) factorization of correlation functions (GP approximation) is 
insufficient

• Picture: Onsite (temporal, quantum) correlations prepare the ground for long 
wavelength spatial (classical) fluctuations becoming unstable 

(∆ψi(t),∆ψ∗
i (t))



• Understanding can be gained from symmetry considerations

• H is semi-positive 
• an exact GS is the above d-wave (E=0)
• unique iff no symmetry T such that 

• Symmetries: 
- Translations
- global phase rotations U(1)
- global spin rotations SU(2) for                     ,

- additional discrete symmetry on bipartite lattice for             spoils uniqueness 

• Uniqueness of dark state equivalent to uniqueness of ground state (GS) of 

Uniqueness

d-wave is an 
eigenstate to these

SU(2) symmetry; 
the jump operators 
are SU(2) vectors

➡ Avoid symmetries
➡ All three operators needed for uniqueness

bipartite (periodic BC) not bipartite (PBC)

A

A B

AB B

-> effective Hamiltonian

[ ]
×(−i2)



Comments on the effective Hamiltonian

• H is semi-positive 
• an exact unique GS is the above d-wave state(E=0)
• GS is GS for each      separately: projectors on GS

• Amusing parallel: Above Hamiltonian is a parent Hamiltonian for the d-wave state

➡ completely analogous to e.g. AKLT model
➡ there, ground state is valence bond solid with exponentially decaying correlations 
➡ different: state has long range order due to strong delocalization
➡ it has a physical role that will be important in the adiabatic passage to the Fermi-Hubbard model
➡ study excitation spectrum
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➡ Adapted adiabatic passage: use auxiliary “parent Hamiltonian”:

fidelity to Hubbard GS

Adapted Adiabatic Passage

ramp parameters

 
• Naive adiabatic passage: ramp up FH Hamiltonian, switch off dissipation
• Fails: competing unitary and dissipative dynamics

small scale numerical simulation 
(2x6 ladder, 4 atoms) 

➡ single fermion excitations gapped
➡ d-wave state has identical symmetry and similar 
energy to the (conjectured) GS of the Hubbard model
➡ gap protection throughout adiabatic passage path

• has the d-wave state as exact unique ground state 
• its single particle excitation spectrum is gapped:

Hp = h

�

�=i,{±,z}

J
†
� J�

jump operators

�q = h ñ (1 + ϕ2
q) ≥ h ñ, ñ ≈ 0.72



continuum bath of 
harmonic oscillatorsHB =

�
dω ωb

†
ωbω

Lindblad operators
polynomial in system operators

Open Quantum Systems

linear bath operator coupling to the system

system environment drive

system frequency

reservoir bandwidth

• The quantum optical case: scale separations

• The setting: 

weak coupling

Markovian bath



Open Quantum Systems

Three approximations:
(1) Born approximation: 

(2) Markov approximation:

(3) Rotating wave approximation:

system frequency

reservoir bandwidth

|g〉

|e〉

!

detuning

system environment / 
bath

drive

in this example:

system Hamiltonian jump operator

➡ These approximations give rise to well structured non-equilibrium 
evolution which can be implemented in cold atom systems 



Open Quantum Systems

bathsystem

➡ Eliminate bath degrees of freedom

Liouvillian operator in Lindblad form

Trbath

   effective system dynamics from Master Equation (zero temperature bath)

quantum jump operators

• temporally local evolution
• Structure: second order perturbation theory, mnemonic:
• but: 

➡ the separation of scales gives rise to a temporally local well 
structured 
➡ this gives rise to a microscopic modelling of many-body systems 
of similar accuracy as for the Hamiltonian



ρ(t) t→∞−−−→ |g+� �g+|

➡ Driven dissipative dynamics “purifies” the state

➡ is a “dark state” decoupled from light

Dark States in Quantum Optics

• Goal: pure BEC as steady state solution, independent of initial density matrix:

• Such situation is well-known quantum optics (three level system): optical pumping 
(Kastler,  Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

➡ Dark state is eigenstate of Lindblad operators with zero eigenvalue
➡ Time evolution stops when system is in DS: pure steady state

ρ(t) −→ |BEC��BEC| for t → ∞

|D�

Jα|D� = 0



• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

• 1 atom on 2 sites

1 2

J

(a†1 + a†2) |vac� (a†1 − a†2) |vac�
symmetric anti-symmetric

pumping into symmetric state

“in-phase” “out-of-phase”

➡“phase locking” for external (spatial) degrees of freedom: 
like a BEC

 ~ dissipative Josephson junction

An Analogy



Driven Dissipative lattice BEC 

• Consider Lindblad operator:

(1) BEC state is a dark state:

(2) BEC state is the only dark state:

•                  has no eigenvalues (on fixed number (N-1) Hilbert space)(a†
i +a†

j)

•                  has unique zero eigenvalue(ai−a j)

(ai − aj) ∀i −→ (1− eiqeλ)aq ∀q

➡ BEC is a dissipative zero mode of the jump operators

|BEC� = 1

N !

��

�

a†�

�N
|vac�

[(ai − aj),
�

�

a†�] =
�

�

δi� − δj� = 0Ji|BEC� = 0 ∀i

Ji = (a†i + a†j)(ai − aj)

nearest neighbours



(3) Uniqueness: |BEC> is the only stationary state (sufficient condition)

{cα}

(4) Compatibility of unitary and dissipative dynamics

      be an eigenstate of H, |D� H |D� = E |D�

Driven Dissipative lattice BEC 

(1) BEC state is a dark state  

(2) BEC state is the only dark state  

If there exists a stationary state which is not a dark 
state, then there must exist a subspace of the full 
Hilbert space which is left invariant under the set 

pictorially: more precisely:

ρ(t)
t→∞−−−→ |D� �D|


