Theory Seminar July 26 2011 APCTP Pohang, Korea

Phase Transitions and Pairing Mechanisms in Open Many-Body Systems with Cold Atoms

UNIVERSITY OF INNSBRUCK

Sebastian Diehl

Institute for Theoretical Physics, Innsbruck University, and IQOQI Innsbruck

Collaboration: A. Tomadin (Innsbruck) W. Yi (USTC) A. J. Daley (Pittsburgh) P. Zoller (Innsbruck) IQOQI AUSTRIAN ACADEMY OF SCIENCES

Nanodesigning of atomic and molecular quantum matter

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

- closed system (isolated from environment)
- thermodynamic equilibrium
- Condensed matter analog systems

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

- closed system (isolated from environment)
- thermodynamic equilibrium
- Condensed matter analog systems

Novel Situation: Cold atoms as open many-body systems

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

- closed system (isolated from environment)
- thermodynamic equilibrium
- Condensed matter analog systems

Novel Situation: Cold atoms as open many-body systems

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

- closed system (isolated from environment)
- thermodynamic equilibrium
- Condensed matter analog systems

Novel Situation: Cold atoms as open many-body systems

Think quantum optics in many-body systems!

Driven Dissipative BEC

SD, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nature Physics 4, 878 (2008); B. Kraus, SD, A. Micheli, A. Kantian, H.P. Büchler, P. Zoller, Phys. Rev. A 78, 042307 (2008);

• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

"phase locking" for many external (spatial) degrees of freedom: BEC

Driven Dissipative lattice BEC

• More precisely: Master Equation evolution of density operator

• Goal: choose the Lindblad / jump operators such that

$$\rho(t) \longrightarrow |BEC\rangle \langle BEC| \text{ for } t \to \infty \quad |BEC\rangle = \frac{1}{N!} \left(\sum_{\ell} a_{\ell}^{\dagger}\right)^{N} |vac\rangle$$

• Job is done by

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1})$$

- Interpretation:
 - any antisymmetric component of a particle's superpositon on i, i+1 mapped onto the symmetric one
 - i.e. on each pair of sites, only the symmetric superposition persists:

$$|BEC\rangle = \frac{1}{N!} \left(\sum_{\ell} a_{\ell}^{\dagger}\right)^{N} |vac\rangle$$

Long range phase coherence builds up from quasilocal dissipative operations

Uniqueness of the Steady State

(1) BEC state is the only dark state:

- $(a_i^{\dagger} + a_j^{\dagger})$ has no eigenvalues (on fixed number (N-1) Hilbert space)
- $(a_i a_j)$ has unique zero eigenvalue

$$(a_i - a_j) \ \forall i \longrightarrow \sum_{\lambda} (1 - e^{i\mathbf{q}\mathbf{e}_{\lambda}}) a_{\mathbf{q}} \ \forall \mathbf{q}$$

 \Rightarrow BEC is the unique dissipative zero mode of the jump operators

(2) IBEC> is the only stationary state (sufficient condition)

pictorially:

more precisely:

If there exists no subspace of the full Hilbert space which is left invariant under the set $\{c_{\alpha}\}$, then the only stationary state are the dark states

- ➡ Uniqueness: Final state independent of initial density matrix
- ➡ Therefore: pure (zero entropy) final state

Driven Dissipative lattice BEC: Physical Realization

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1}) \qquad J_i |BEC\rangle = 0 \ \forall i \qquad \checkmark$$

Implementation idea for cold atoms: Immersion of driven system into superfluid reservoir

A-type level structure: optical superlattice

Driven Dissipative lattice BEC: Physical Realization

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1})$$

$$J_i |BEC\rangle = 0 \ \forall i$$

Implementation idea for cold atoms: Immersion of driven system into superfluid reservoir

• drive: coherent coupling to auxiliary system with double wavelength Raman laser

$$\lambda_{\text{laser}} = 2\lambda_{\text{lattice}}$$

➡ The coherence of the driving laser is mapped on the matter system

Driven Dissipative lattice BEC: Physical Realization

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1})$$

$$J_i |BEC\rangle = 0 \ \forall i$$

Implementation idea for cold atoms: Immersion of driven system into superfluid reservoir

The coherence of the driving laser is mapped on the matter system

Competition of Unitary vs. Dissipative Dynamics

Many-Body Physics with Driven-Dissipative Systems

SD, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, arxiv:1003.2071, Phys. Rev. Lett. **105**, 015702 (2010); A. Tomadin, SD, P. Zoller, Phys. Rev. A **108**, 013611 (2011).

Physical Picture: Nonequilibrium Phase Transition

Physical Picture: Nonequilibrium Phase Transition

Compare to superfluid / Mott insulator quantum phase transition

- Analogy:
 - enhancement of superfluidity: kinetic energy J driven dissipation \mathcal{K}
 - suppression of superfluidity:

```
interaction U
```

driven dissipation K interaction U

Expect phase transition as function of

J/U

- κ/U
- Question: What are the true analogies and differences to equilibrium (quantum) phase transitions?

Mixed State Gutzwiller Approach

- Argumentation must be based on equation of motion
- Strategy: approximation scheme interpolating between limiting cases

 $\kappa \gg U$ $\kappa \ll U$ see below!

Implementation: Gutzwiller product ansatz for the density operator

$$\rho(t) = \prod_{i} \rho_i(t)$$

- onsite (quantum) fluctuations treated exactly
- (connected) spatial correlations neglected
- allows to describe mixed states (unlike zero temperature Gutzwiller)
- Nonlinear Mean Field Master Equation for reduced density operator
- We will additionally account for a finite hopping J

From Weak to Strong Coupling

Weak interactions: dissipative Gross-Pitaevskii equation (coherent states)

$$\partial_t \psi_{\ell} = -i(-J \sum_{\langle \ell' | \ell \rangle} \psi_{\ell'} + U |\psi_{\ell}|^2 \psi_{\ell}) - 2\kappa \sum_{\langle \ell' | \ell \rangle} (\psi_{\ell} - \psi_{\ell'} + \psi_{\ell'}^* \psi_{\ell}^2 - |\psi_{\ell'}|^2 \psi_{\ell'})$$

- Strong interaction destroys the phase coherence: transformation to rotating frame $V \equiv e^{iU\hat{n}(\hat{n}-1)t}$ annihilation operator in rotating frame $V\hat{b}V^{-1} = e^{-iU\hat{n}t}\hat{b} = \sum_{n} e^{inUt} |n\rangle\langle n|\hat{b}$ \Rightarrow suppression of off-diagonal order $\sim \psi$ at dark state
- Master equation reduces to

$$\partial_t \rho_\ell = \kappa [(\bar{n}+1)(2b_\ell \rho b_\ell^\dagger - \{b_\ell^\dagger b_\ell, \rho_\ell\}) + \bar{n}(2b_\ell^\dagger \rho_\ell b_\ell - \{b_\ell b_\ell^\dagger, \rho_\ell\})]$$

- Thermal equation with thermal (mixed) state solution
 - the system acts as its own reservoir

Dependence of the Steady State on the Interaction

Nonequilibrium phase transition between pure and mixed state, driven by a competition between unitary and dissipative dynamics

- Development in time of the non-analyticity at the critical point
- Shares features of:
 - Quantum phase transition: interaction driven
 - Classical phase transition: ordered phase terminates in a thermal state
- No signature of commensurability effects (Mott) due to strong mixing of U

Analytical Approach in the Limit of Low Density

- Many-body problem: relevant information in the low order correlation functions
- Study the equations of motion of the correlation functions $\{\langle (b_{\ell}^{\dagger})^n b_{\ell}^m \rangle\}$ in principle: infinite and nonlocal hierarchy
- Introduce a power counting: $b_\ell \sim \sqrt{n}, b_\ell^\dagger \sim \sqrt{n}$ and keep only the leading order for $n \to 0$
- Infinite hierarchy exhibits a closed nonlinear subset for low order correlation functions
 - Can be solved exactly in special cases. E.g. hom. steady state condensate fraction

$$\frac{|\psi|^2}{n} = 1 - \frac{2u^2 \left(1 + (j+u)^2\right)}{1 + u^2 + j(8u + 6j \left(1 + 2u^2\right) + 24j^2u + 8j^3\right)} \qquad [j = J/(4\kappa), \quad u = U/(4\kappa z)]$$

$$\frac{|\psi|^2}{n} = 1 - \left(\frac{U}{U_c}\right)^2 \qquad J = 0 \\ U_c = 4\sqrt{2}\kappa \qquad \text{cf. BEC:} \quad \frac{|\psi|^2}{n} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$

Critical Exponent of the Phase Transition

- Critical exponents can be extracted from approaching the phase transition in time
- Expect form of the order parameter evolution

At criticality: zero eigenvalue and thus dominant polynomial decay

Critical Exponent of the Phase Transition

- Critical exponents can be extracted from approaching the phase transition in time
- Expect form of the order parameter evolution

 $|\psi(t)| \sim \frac{e^{-m^2 t}}{t^{\alpha}} \qquad \mbox{real part of lowest} \\ \mbox{eigenvalue: "mass"}$

• Numerical Result (high density):

Analytical Result (n
ightarrow 0) :

 $m^{2} < 0 m^{2} > 0$

at criticality, Landau-Ginzburg type cubic but dissipative nonlinearity

$$|\psi(t)| \sim t^{-1/2}, \quad \alpha = 1/2$$

Mean field value as expected. But governs the time evolution.

 Critical behavior could be studied experimentally from following the time evolution of condensate fraction

Dynamical Instability

 Numerical experiment to probe the stability: subject the inhomogeneous system to a "kick" (instantaneous perturbation of the density matrix)

- This is a computation on 22 sites, linearization makes larger systems accessible
- Very slow effect: linearization of the master equation around the initial state, computation of the rate of the instability.

Linear Response around Homogeneous State

- Imaginary part of the Liouvillian as function of quasimomentum, $\,J\ll\kappa$

100 sites, high densities, full mean field system

Infinite system, low densities, 7x7 linear system of EoMs

- Existence of dissipatively unstable modes is a universal feature of the regime $\,J\ll\kappa$
- Iow density limit: the unstable modes belong to single particle sector

Reduction to the Low-Lying Modes

• Adiabatic elimination of the fast-decaying modes (two times)

$$\begin{pmatrix} \partial_t \Psi_1 \\ 0 \equiv \partial_t \Psi_2 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$$
 collection of low density correlation functions

solve for the fast modes Ψ_2 and obtain slow modes equation only

• Low momentum equation of motion for of the condensate fluctuations only

$$\partial_t \begin{pmatrix} \Delta \psi_q \\ \Delta \psi_{-q}^* \end{pmatrix} = \begin{pmatrix} Un + \epsilon_{\mathbf{q}} - i\kappa_{\mathbf{q}} & Un + 9un\kappa_{\mathbf{q}} \\ -Un - 9un\kappa_{\mathbf{q}} & -Un - \epsilon_{\mathbf{q}} - i\kappa_{\mathbf{q}} \end{pmatrix} \begin{pmatrix} \Delta \psi_q \\ \Delta \psi_{-q}^* \end{pmatrix}$$

$$\epsilon_q \equiv Jq^2, \quad \kappa_q = 2(2n+1)\kappa q^2$$

$$\text{bare hopping at low momentum}$$

$$\text{bare dissipative rate}$$

renormalization of the off-diagonal terms
 absent in the dissipative GPE

Origin of the Instability

• Complex spectrum of the low-lying single particle excitations:

$$\gamma_{\mathbf{q}} = \kappa_{\mathbf{q}} + ic|\mathbf{q}|, \quad c = \sqrt{2Un(J - 9Un/(2z))}$$

• Interpretation: Below a critical value

$$J = 9Un/(2z)$$

renormalization correction

the speed of sound becomes imaginary.

This term always dominates at sufficiently small momenta. Its sign is opposite to $\kappa_{\mathbf{q}}$

• The fate of the system beyond linear response:

2.0800 1.8700 1.6600 1.45001.24001.00.8300 0.6200ACDW] 0.4100 0.20.02.03.04.05.01.0 $t\kappa$ [×10³]

density profile signature: spontaneous breaking of translation symmetry

maximum instability momentum transmuted into CDW wavelength

The dynamical instability is fluctuation induced, a weak coupling phenomenon, and an intrinsic many-body effect

The Steady State Phase Diagram

- Strong coupling second order phase transition to a thermal-like disordered state
- Homogeneous dissipative condensate is unstable against CDW order for infinitesimal interaction
- Condensed phase and homogeneous condensate can be stabilized by finite coherent hopping

Nonlinear Dynamics in Finite Systems

 Study the response of the nonlinear dynamical system to sudden parameter changes, here: phase quench in 1D periodic chain:

$$V_{i} = (a_{i}^{\dagger} + a_{i+1}^{\dagger})(a_{i} - a_{i+1}) \to (a_{i}^{\dagger} + e^{-i\phi}a_{i+1}^{\dagger})(a_{i} - e^{i\phi}a_{i+1})$$

New steady state: Bloch wave

Ĵ

$$|BEC\rangle(q) \sim (\sum_{i} e^{iqx_{i}} a_{i}^{\dagger} | vac\rangle \quad q = \phi a \qquad \langle x_{i} | BEC\rangle(q) \sim e^{iqx_{i}}$$

• Study equilibration dynamics:

lattice spacing

amplitude dynamics

Bloch wave

Role of Collective Variables

• Three stages in equilibration dynamics:

Ansatz with kinks/instantons

$$\theta_{\ell}(t) = Q(t)\frac{\ell-1}{L-1} + \delta\theta_{\ell}(t)$$

n = 1

periodic bc

• Stable solutions:

$$Q = 2\pi n \qquad \qquad \delta\theta_\ell = 0 \qquad \qquad \checkmark$$

• Picture: transitions between different kink configurations driven by quantum noise

Dissipative D-Wave States of Fermions

SD, W. Yi, A. J. Daley, P. Zoller, Phys. Rev. Lett. **105**, 227001 (2010); W. Yi, SD,A. J. Daley, P. Zoller, in preparation.

Motivation: Fermi-Hubbard model Quantum Simulation

- Clean realization of fermion Hubbard model possible
 - Detection of Fermi surface in 40K (M. Köhl et al. PRL 94, 080403 (2005))
 - Fermionic Mott Insulators (R. Jördens et al. Nature 455, 204 (2008); U. Schneider et al., Science 322, 1520 (2008))
- Cooling problematic: small d-wave gap sets tough requirements

Motivation: Fermi-Hubbard model Quantum Simulation

- Clean realization of fermion Hubbard model possible
 - Detection of Fermi surface in 40K (M. Köhl et al. PRL 94, 080403 (2005))
 - Fermionic Mott Insulators (R. Jördens et al. Nature 455, 204 (2008); U. Schneider et al., Science 322, 1520 (2008))
- Cooling problematic: small d-wave gap sets tough requirements

Roadmap via dissipative quantum state engineering approach:

(1) Dissipatively prepare pure (zero entropy) state close to the expected ground state:

- energetically close
- symmetry-wise close
- (2) Adapted adiabatic passage to the Hubbard ground state
 - gap protection via auxiliary Hamiltonian

The State to Be Prepared

The State to Be Prepared

• Features shared with expected Hubbard ground state:

(1) Quantum numbers

- pairing in the singlet channel
- transformation under spatial rotations: "d-wave"
- phase coherence: delocalization of singlet pairs
- State shares the symmetries of (conjectured) Hubbard GS
- No phase transition crossed in preparation process: gap protection
- (2) Energetically close? Not known, but:
 - off-site pairing avoids excessive double occupancy
- Given the state, we want to find the Lindblad operators: "parent Liouvillian"
- "cooling" into the d-wave

Pairing mechanism

- Consider 1D cut only
- Half filling: Neel state for antiferromagnetism

• Lindblad operators (1D): e.g. $j^+_{i-1,\uparrow} = c^\dagger_{i-1,\uparrow} c_{i,\downarrow}$

$$\begin{array}{c} & \text{flip!} \\ & & & \\ & & \\ & \text{flip!} \end{array} \begin{array}{c} & & & \\$$

full set: $j_{\ell} = \{j_{i+}^{\pm}, \ j_{i+}^{z}\}$

- ➡ Action of jump operators
 - Pauli blocking
 - spin transport

Pairing mechanism

- Consider 1D cut only
- Half filling: Neel state for antiferromagnetism

• Lindblad operators (1D): e.g. $j_{i-}^+ = c_{i-1,\uparrow}^\dagger c_{i,\downarrow}$

 $\bigvee \longrightarrow \bigvee \bigvee$

flip!

flip! \bigwedge $j_{i-}^+ = c_{i-1,\uparrow}^\dagger c_{i,\downarrow}$

- Action of jump operators
 - Pauli blocking
 - spin transport
- D-wave (analog) state: interpret the state as a symmetrically delocalized Neel order

• Lindblad operators (1D): e.g. $J_i^+ = j_{i,+}^+ + j_{i,-}^+ = (c_{i+1,\uparrow}^\dagger + c_{i-1,\uparrow}^\dagger)c_{i,\downarrow}$

phase locking

- Combine fermionic Pauli blocking with delocalization as for bosons
- Pauli blocking is the key for single particle nature of operators

Dissipative Pairing: The d-wave jump operators

The full set of Lindblad operators is

$$J_i^{\pm,z} = (c_{i+1}^{\dagger} + c_{i-1}^{\dagger})\sigma^{(\pm,z)}c_i$$

- Discussion: These operators
 - form exhaustive set: d-wave steady state unique, reached for arbitrary initial state (symmetry argument + verified in small scale simulations)
 - describe the redistribution of the superposition of a single particle
 - generate dissipatively bound pairs, which delocalize over the whole lattice
 - generalized for larger class of off-site paired fermion states: different symmetries
- Novel dissipative pairing mechanism, does not rely on attractive conservative forces

Late Time Dynamics

• "near" final BCS state: Bogoliubov-type analysis: (U=0)

$$\mathcal{L}[\rho] = \sum_{\mathbf{q},\sigma} \kappa_{\mathbf{q}} [\gamma_{\mathbf{q},\sigma} \rho \gamma_{\mathbf{q},\sigma}^{\dagger} - \frac{1}{2} \{\gamma_{\mathbf{q},\sigma}^{\dagger} \gamma_{\mathbf{q},\sigma}, \rho\}]$$

with effective fermionic late time Lindblad operators

$$\gamma_{\mathbf{q},\sigma} | \mathrm{d-BCS}_{\theta} \rangle = 0 \qquad \{ \gamma_{\mathbf{q},\sigma}, \gamma^{\dagger}_{\mathbf{q}',\sigma'} \} = \delta_{\mathbf{q},\mathbf{q}'} \delta_{\sigma,\sigma'}$$

and effective damping rate

$$\kappa_{\mathbf{q}} = \kappa \tilde{n}(1 + |\varphi_{\mathbf{q}}|^2) \ge \kappa \tilde{n}$$
 with a "dissipative gap"

Interpretation: approach to the steady state is universal and exponentially fast

Late Time Dynamics

"near" final BCS state: Bogoliubov-type analysis: (U=0)

$$\mathcal{L}[\rho] = \sum_{\mathbf{q},\sigma} \kappa_{\mathbf{q}} [\gamma_{\mathbf{q},\sigma} \rho \gamma_{\mathbf{q},\sigma}^{\dagger} - \frac{1}{2} \{\gamma_{\mathbf{q},\sigma}^{\dagger} \gamma_{\mathbf{q},\sigma}, \rho\}]$$

with effective fermionic late time Lindblad operators

$$\gamma_{\mathbf{q},\sigma} | \mathrm{d-BCS}_{\theta} \rangle = 0 \qquad \{\gamma_{\mathbf{q},\sigma}, \gamma_{\mathbf{q}',\sigma'}^{\dagger}\} = \delta_{\mathbf{q},\mathbf{q}'} \delta_{\sigma,\sigma'}$$

and effective damping rate

$$\kappa_{\mathbf{q}} = \kappa \tilde{n}(1 + |\varphi_{\mathbf{q}}|^2) \ge \kappa \tilde{n}$$
 with a "dissipative gap"

- Interpretation: approach to the steady state is universal and exponentially fast
- numerical illustration: Uniqueness and exponential approach

Late Time Dynamics

"near" final BCS state: Bogoliubov-type analysis: (U=0)

$$\mathcal{L}[\rho] = \sum_{\mathbf{q},\sigma} \kappa_{\mathbf{q}} [\gamma_{\mathbf{q},\sigma} \rho \gamma_{\mathbf{q},\sigma}^{\dagger} - \frac{1}{2} \{\gamma_{\mathbf{q},\sigma}^{\dagger} \gamma_{\mathbf{q},\sigma}, \rho\}]$$

with effective fermionic late time Lindblad operators

$$\gamma_{\mathbf{q},\sigma} | \mathrm{d-BCS}_{\theta} \rangle = 0 \qquad \{ \gamma_{\mathbf{q},\sigma}, \gamma_{\mathbf{q}',\sigma'}^{\dagger} \} = \delta_{\mathbf{q},\mathbf{q}'} \delta_{\sigma,\sigma'}$$

and effective damping rate

Entropy

0

 $S = \operatorname{tr}\rho(t)\log\rho(t)$

$$\kappa_{\mathbf{q}} = \kappa \tilde{n}(1 + |\varphi_{\mathbf{q}}|^2) \ge \kappa \tilde{n}$$
 with a "dissipative gap"

- Interpretation: approach to the steady state is universal and exponentially fast
- numerical illustration: Uniqueness and exponential approach

log(Entropy)

fidelity of d-wave BCS

15

1.0

0.5

-2

damping rates \mathcal{K}_q

fermions

bosons

q

one-dimensional analog:

$$J_i^+ = (c_{i-1,\uparrow}^\dagger + c_{i+1,\uparrow}^\dagger)c_{i,\downarrow}$$

We need:

 $\bigcup_{i} \bigoplus_{J_i^+} \bigoplus_{i} \bigoplus_{i}$

- spin flip
- spatial redistribution of atom over neighboring sites
- dissipative process, but coherence over several lattice sites

Setting: • Earth Alkaline atoms in superlattices placed in microcavity Earth alkaline features (Schreck, Grimm; Killian): • metastable long-lived triplet states • different, tunable lattice potentials for ground and excited state ${}^{1}P_{1}$ • Level scheme ${}^{1}P_{1}$ ${}^{1}P_{1}$

$$J_i^+ = (c_{i-1,\uparrow}^{\dagger} + c_{i+1,\uparrow}^{\dagger})c_{i,\downarrow}$$

🗹 spin flip

• Manipulation sequence

$$J_i^+ = (c_{i-1,\uparrow}^{\dagger} + c_{i+1,\uparrow}^{\dagger})c_{i,\downarrow}$$

🗹 spin flip

🗹 spin flip

spatial redistribution

Conclusions and Outlook

By merging techniques from quantum optics and many-body systems: Driven dissipation can be used as controllable tool in cold atom systems.

- Pure states with long range correlations from quasilocal dissipation
- Nonequilibrium phase transition driven via competition of unitary and dissipative dynamics
- Pairing mechanism for fermions with potential applications for quantum simulation

Questions for future research:

- Additional physical platforms for dissipation engineering: trapped ions, microcavity arrays
- Bosons: What is the nature / universality class of the dynamical phase transition?
 - Close analogies to the problem of directed percolation
 - Needs field theoretical framework: Keldysh path integral for quantum optical many-body systems
- Fermions: Cool quasi-locally into topologically ordered states (e.g. complex pwave superconductors)? -> SD, E. Rico, M. Baranov, P. Zoller, arxiv:1105.5947

Cooling a Superfluid with a Superfluid?

- There is a large energy scale in our system-bath setting: band separation $\omega_{
m bd}$

• Therefore, the reservoir acts as an effective zero temperature reservoir, i.e. $ar{n} \ll 1$

$$\partial_t \rho = -i[H,\rho] + \kappa(\bar{n}+1)\sum_i J_i \rho J_i^{\dagger} - \frac{1}{2} \{J_i^{\dagger} J_i,\rho\} + \kappa \bar{n} \sum_i J_i^{\dagger} \rho J_i - \frac{1}{2} \{J_i J_i^{\dagger},\rho\}$$

- More generally, the existence of such large scale exceeding all scales relevant for many-body physics ensures validity of many-body master equation
 - dissipative dynamics temporally and spatially local
 - allows for a microscopic modelling of dissipative dynamics with similar accuracy as for Hamiltonian

we see point similar hamilt compa

Validity of Inhomogeneous Gutzwiller Approximation

- The instability arises at weak coupling already, where the system is well described by the inhomogeneous Gutzwiller mean-field theory.
 - The instability is due to a renormalization of the single particle (complex) excitation spectrum, and thus encoded in the evolution of $(\Delta \psi_i(t), \Delta \psi_i^*(t))$
 - The exact equation of motion is a nonlinear equation, with nonlocal spatial correlations
 - The Gutzwiller approximation factorizes the correlations functions in real space, but treats onsite correlations exactly
 - The factorization is real space is justified at weak coupling (large condensate): The dominant scattering processes are those for (*-q, q*) off the macroscopically occupied condensate
 - In contrary, treating the onsite correlations properly is mandatory for the effect: Further (onsite) factorization of correlation functions (GP approximation) is insufficient
- Picture: Onsite (temporal, quantum) correlations prepare the ground for long wavelength spatial (classical) fluctuations becoming unstable

Uniqueness

- Understanding can be gained from symmetry considerations
 - Uniqueness of dark state equivalent to uniqueness of ground state (GS) of

$$\begin{split} H_{\Delta} &= \sum_{i,\alpha=\pm,z} \Delta_{\alpha} J_{i}^{\alpha \dagger} J_{i}^{\alpha} & \left[\mathcal{L}[\rho] = \sum_{\alpha,i} \kappa_{\alpha} J_{i}^{\alpha} \rho J_{i}^{\alpha \dagger} - \frac{1}{2} \{\kappa_{\alpha} J_{i}^{\alpha \dagger} J_{i}^{\alpha}, \rho\} \right] \\ & \text{ H is semi-positive } \\ & \text{ an exact GS is the above d-wave (E=0) } \\ & \text{ unique iff no symmetry T such that } \\ THT^{-1} &= H, \quad T|D\rangle \neq E|D\rangle \\ & \text{ Symmetries: } \\ & \text{ Translations } \\ & \text{ global phase rotations U(1) } \\ & \text{ global spin rotations SU(2) for } \Delta_{z} = \Delta_{\pm}/2, \\ & \text{ additional discrete symmetry on bipartite lattice for } \Delta_{z} = 0 \text{ spoils uniqueness } \\ & T_{d} : \quad c_{i,\uparrow} \rightarrow -c_{i,\uparrow}; \quad c_{i,\downarrow} \rightarrow c_{i,\downarrow} \text{ for } i \in A, \\ & c_{i,\uparrow} \rightarrow c_{i,\uparrow}; \quad c_{i,\downarrow} \rightarrow c_{i,\downarrow} \text{ for } i \in B \\ & \text{ bipartite (periodic BC) } \\ & \text{ add bipartite (periodic BC) } \\ & \text{ bipartite (periodic BC) } \\ &$$

- Avoid symmetries
- ➡ All three operators needed for uniqueness

Comments on the effective Hamiltonian

• Amusing parallel: Above Hamiltonian is a parent Hamiltonian for the d-wave state

$$H_{\Delta} = \sum_{i,\alpha} \Delta_{\alpha} J_i^{\alpha \dagger} J_i^{\alpha} = \sum_i h_i$$

- H is semi-positive
- an exact unique GS is the above d-wave state(E=0)
- GS is GS for each h_i separately: projectors on GS
- completely analogous to e.g. AKLT model
- there, ground state is valence bond solid with exponentially decaying correlations
- ➡ different: state has long range order due to strong delocalization
- → it has a physical role that will be important in the adiabatic passage to the Fermi-Hubbard model
- study excitation spectrum

Adapted Adiabatic Passage

- Naive adiabatic passage: ramp up FH Hamiltonian, switch off dissipation
- Fails: competing unitary and dissipative dynamics
- Adapted adiabatic passage: use auxiliary "parent Hamiltonian":

• its single particle excitation spectrum is gapped:

$$\epsilon_{\mathbf{q}} = h \, \tilde{n} \, (1 + \varphi_{\mathbf{q}}^2) \ge h \, \tilde{n}, \ \tilde{n} \approx 0.72$$

single fermion excitations gapped

d-wave state has identical symmetry and similar
 energy to the (conjectured) GS of the Hubbard model
 gap protection throughout adiabatic passage path

Open Quantum Systems

These approximations give rise to well structured non-equilibrium evolution which can be implemented in cold atom systems

Open Quantum Systems

• temporally local evolution

 $\partial_t
ho_{
m tot} = -i [H_S + H_B + H_{
m int},
ho_{
m Structure:}$ second order perturba

• but:

$$\label{eq:relation} \begin{split} & \mathsf{Tr}_{\mathsf{bath}} \\ & \mathsf{fr}_{\mathsf{bath}} \\ & \mathsf{from Master Equation} \\ & \mathsf{effective system dynamics from Master Equation (zero temperature bath)} \\ & \partial_t \rho = -i[H_S,\rho] + \kappa \sum_\alpha J_\alpha \rho J_\alpha^\dagger - \frac{1}{2} \{J_\alpha^\dagger J_\alpha,\rho\} \\ & \mathcal{L}[\rho] \\ & \mathsf{Liouvillian operator in Lindblad form} \end{split}$$

the separation of scales gives rise to a temporally local well structured

this gives rise to a microscopic modelling of many-body systems of similar accuracy as for the Hamiltonian

Dark States in Quantum Optics

• Goal: pure BEC as steady state solution, independent of initial density matrix:

$$\rho(t) \longrightarrow |BEC\rangle \langle BEC| \text{ for } t \to \infty$$

 Such situation is well-known quantum optics (three level system): optical pumping (Kastler, Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

- Driven dissipative dynamics "purifies" the state
- \Rightarrow $|D\rangle$ is a "dark state" decoupled from light

$$J_{\alpha}|D\rangle = 0$$

Dark state is eigenstate of Lindblad operators with zero eigenvalue

Time evolution stops when system is in DS: pure steady state

• Λ-system: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

Driven Dissipative lattice BEC

(2) BEC state is the only dark state:

- $(a_i^{\dagger} + a_j^{\dagger})$ has no eigenvalues (on fixed number (N-1) Hilbert space)
- $(a_i a_j)$ has unique zero eigenvalue

$$(a_i - a_j) \ \forall i \longrightarrow (1 - e^{\mathbf{i}\mathbf{q}\mathbf{e}_\lambda})a_\mathbf{q} \ \forall \mathbf{q}$$

BEC is a dissipative zero mode of the jump operators

Driven Dissipative lattice BEC

(1) BEC state is a dark state

(2) BEC state is the only dark state

(3) Uniqueness: IBEC> is the only stationary state (sufficient condition)

pictorially:

more precisely:

If there exists a stationary state which is not a dark state, then there must exist a subspace of the full Hilbert space which is left invariant under the set $\{c_{\alpha}\}$

(4) Compatibility of unitary and dissipative dynamics

 \ket{D} be an eigenstate of H, $\ket{H}\ket{D}=E\ket{D}$

$$\rho(t) \xrightarrow{t \to \infty} |D\rangle \langle D|$$