Grundzüge der Elektrizitätswirtschaft

PD Dr. Christian von Hirschhausen (Lehrstuhlvertretung) cvh@mailbox.tu-dresden.de

EΕ

Technische Universität Dresden DREWAG-Stiftungslehrstuhl EnErgiewirtschaft / EnergyEconomics

Energiewirtschaft 1 Vorlesung 3.1 Elektrizitätswirtschaft

Fachkern "Energiewirtschaft" Gliederung WS 2003/04

Organisation / Termine

- 1. Grundlagen
- 2. Ressourcen- und Regulierungs- Management
- 3. Märkte, Unternehmensstrategien, Energiepolitik

Gliederung

3.1 Elektrizitätswirtschaft

- 3.2 Gaswirtschaft
- 3.3 Kohlewirtschaft
- 3.4 Mineralölwirtschaft
- 3.5 Erneuerbare Energieträger
- 3.6 Emissions-Handel

VL Elektrizitätswirtschaft: Agenda

3.1.1 Marktstruktur

3.1.2 Energiepolitik

Wirtschaftsfaktor Stromversorgung in der EU 2000

Land	Beschäftigte	Jahresumsatz Mrd. €	Jahresinvestitionen Mrd. €
Deutschland	137.000	34,2	3,4
Frankreich	113.990	28,2	5,4
Großbritannien	62.000	25,9	4,1
Italien	96.200	31,4	3,6
Schweden	20.000	5,1	0,9
Spanien	29.111	13,1	2,0
EU 15	594.455	175,1	23,6

Stand 2000

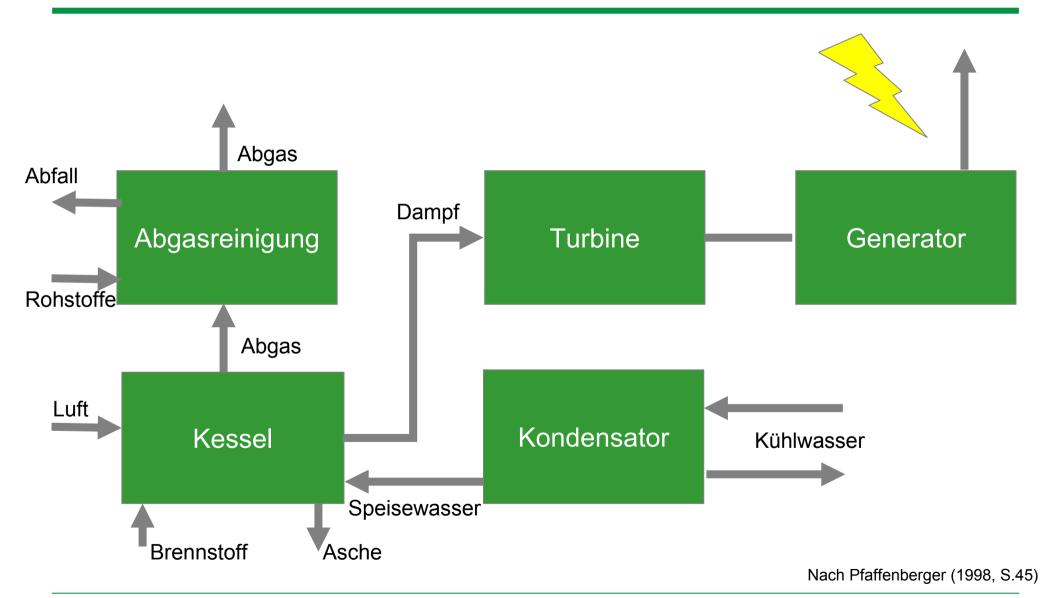
Quellen: Eurelectric, Brüssel; VDEW

Besonderheiten des Gutes Elektrizität

- Fehlende Speicherbarkeit "Echtzeittransport"
- Leitungsgebundenheit
- Hoher Fixkostenanteil bei Erzeugung und Transport
- Größenvorteile im Erzeugungs- und Netzbereich
- Tageszeitliche und saisonale Nachfrageschwankungen
- Flüsse im vermaschten Netz nach den Kirchhoff'schen Regeln
 - Zuflüsse entsprechen Abflüssen
 - Stromfluss umgekehrt proportional zum Widerstand (Länge)

Quelle: Prof. Dr. Winje, VL Energiewirtschaft TU Berin

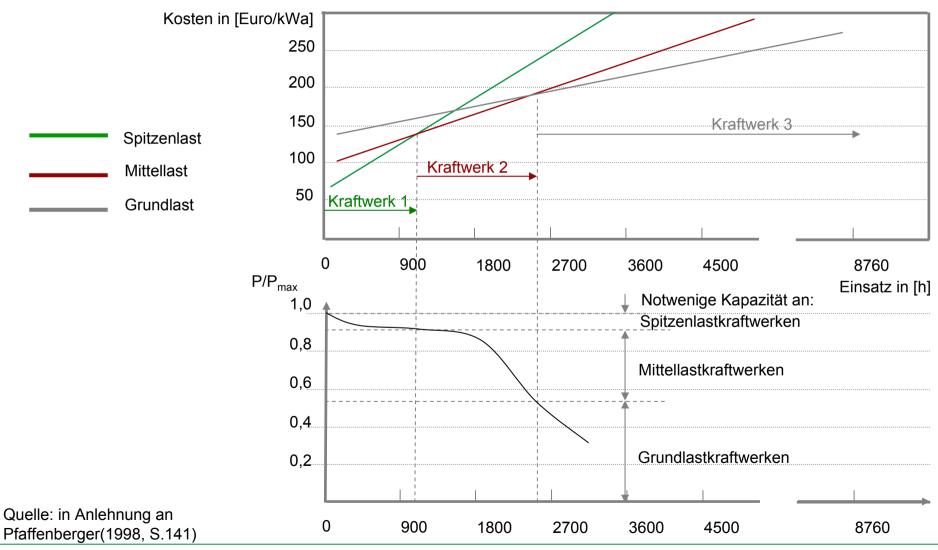
Begriffe der elektrischen Arbeit


Bruttostromerzeugung	Im Kraftwerk erzeugte elektrische Arbeit, gemessen an den Generatorklemmen.
- Kraftwerkseigenverbrauch	Elektrische Arbeit, die in den Neben- und Hilfsanlagen verbraucht wird. Der Verbrauch von nicht-elektrischen Neben- und Hilfsanlagen (z.B. Bürobeleuchtung im EVU) ist nicht Eigenverbrauch.
= Nettostromerzeugung	Erzeugung – Eigenverbrauch
+ Bezug	Elektrische Arbeit, die von Dritten bezogen wird (z.B. Bezug von anderen EVU oder aus industrieller Erzeugung.
= Netzeinspeisung	Elektrische Arbeit, die vom EVU in das Netz eingespeist wird.
- Pumpstromverbrauch	Elektrische Arbeit zum Fördern des Speicherwassers bei Pumpspeicheranlagen. Gilt analog für andere Speicheranlagen.
= Abgabe	Die Menge von Arbeit, die das EVU an das Netz zur Verfügung der Verbraucher abgibt. Arbeitsverluste im Netz sind hierin noch enthalten.
- Arbeitsverluste im Netz	Verluste, die durch Transport und Umspannung bedingt sind.
= Nutzbare Abgabe	Gesamte Abgabe an Verbraucher, einschl. der Abgabe an das EVU selbst.
- Betriebsverbrauch	Verbrauch des EVU in den betriebseigenen Einrichtungen
= Abnahme	Von den Abnehmern (Kunden des EVU) an den Übergabestellen dem Netz entnommene elektrische Arbeit

Nach Pfaffenberger (1998)

Schema eines Dampfkraftwerks

Anhaltswerte für Investitionskosten und variable Betriebskosten von Kraftwerken


Kraftwerks- technologie	spez. ca. Investitionskosten [€/kWel]	Brennstoffkosten [Ursprungseinheit] Basisjahr 2000	Netto-Wirkungs- grad ca.	variable Betriebskosten [€/MWhel]
Kernkraft	1.500,- bis 3.000,-	1,1 €/GJ	33% - 36%	0,6
Braukohle	1.200,- bis 2.000,-	1,6 €/GJ	40% - 49%	1,5 bis 2,5
Steinkohle	1.300,- bis 2.000,-	1,8 € /GJ	38% - 50%	1,5 bis 2,5
mit Kohlevergasung:	bis 2.500,-		bis 52%	
Erdgas-GUD	500,- bis 1.000,-	2,8 €/GJ	55% - 60%	1,-
Gasturbinen	250,- bis 500,-	2,8 €/GJ	35% - 38%	1,-
Wasser (Neubau:)	4.000,- bis 7.500,-	0	99%	
(Modernisierung:)	1.000,- bis 2.000,-			
Wind	800,- bis 1.300,-	0	99%	

Quelle: Schneider, Stromgestehungskosten von Großkraftwerken, 1998; Hirschl, Markt- und Kostenentwicklung ern. Energien, 2002

Kostenoptimale Zusammensetzung des Kraftwerksparks

Kostenfunktion der Kraftwerke

Einsatzbereiche von Kraftwerken

Art	zeitlich auftretender elektrischer Energiebedarf	spezifische Investitions- kosten	spezifische Brennstoff- kosten	Energieträger
Grundlast	T _B > 6000 VBh/a	hoch	niedrig	Kernenergie Braunkohle Laufwasser
Mittellast	1500 VBh/a < TB< 6000 VBh/a	mittel	mittel	Steinkohle
Spitzenlast	T ^B < 1500 VBh/a	niedrig	hoch	Speicherwasser Erdgas Heizöl

T_B= jährliche Betriebsdauer in Volllastbetriebsstunden (VBh/a)

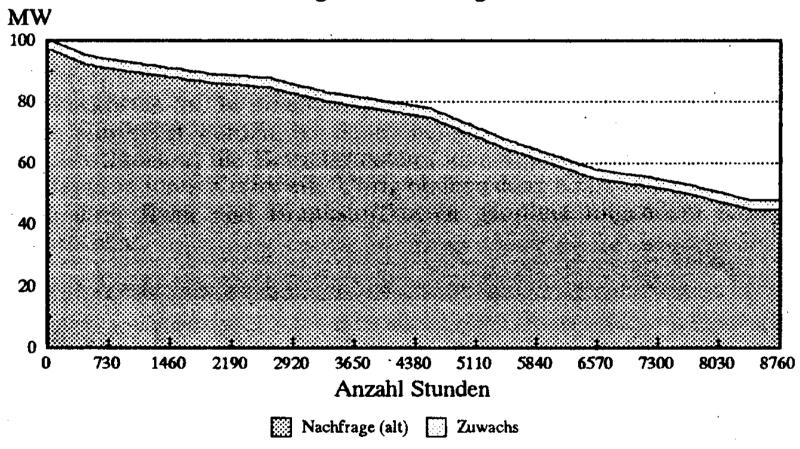
$$T_B = \frac{Jahresarbeit}{Nennleistung} = \frac{A_a}{P_N}$$

weitere Einflussgrößen: . Alter der Anlage

Standort

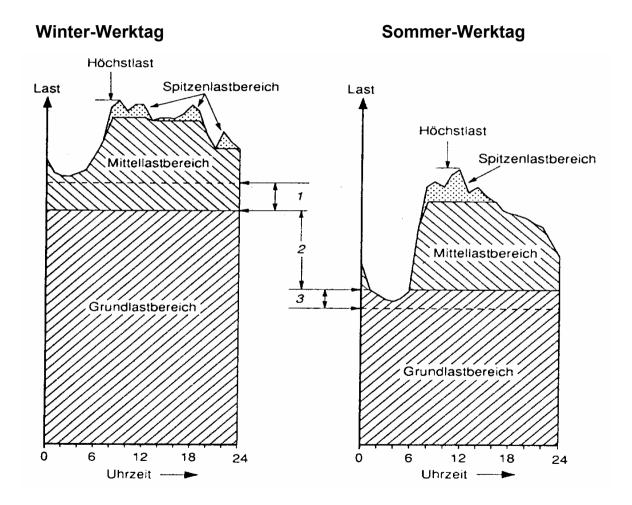
. Wirkungsgrad

. Wärmeauskopplung


· Änderung der Brennstoffpreise

Quelle: nach Prof. Dr. Winje, VL Energiewirtschaft TU Berin

Jahresdauerlinie


Jahresdauerlinie Verschiebung durch Nachfragewachstum

Quelle: Pfaffenberger (1998, S. 140)

Tageslastganglinien eines EVU an einem typischen Werktag im Sommer und Winter

Quelle: Begriffsbestimmungen in der Energiewirtschaft, Teil 1: Elektrizitätswirtschaftliche Grundbegriffe, VDEW (Frankfurt)

Deutsche Merit Order

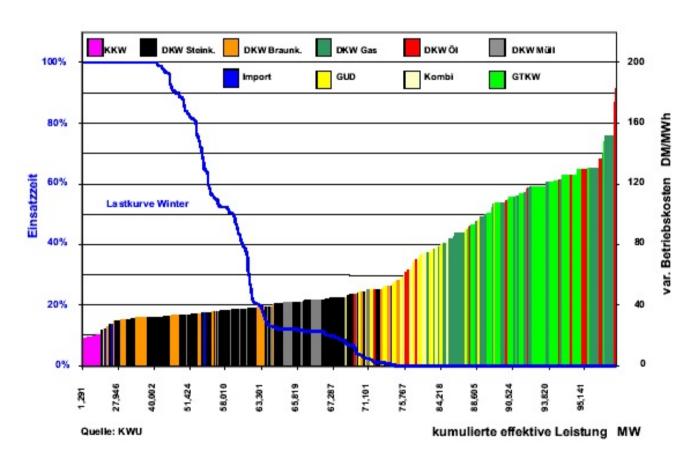
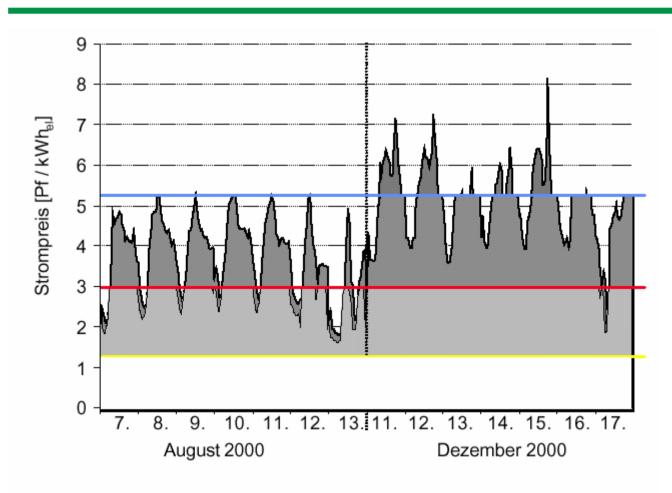



Abbildung 3: "Merit Order" der Kraftwerke und Winterlastkurve (Deutschland)

Quelle: Prof. Dr.-Ing. A. Voß, Universität Stuttgart, (2000; 4)

Fixkostendeckung von Börsenpreisen

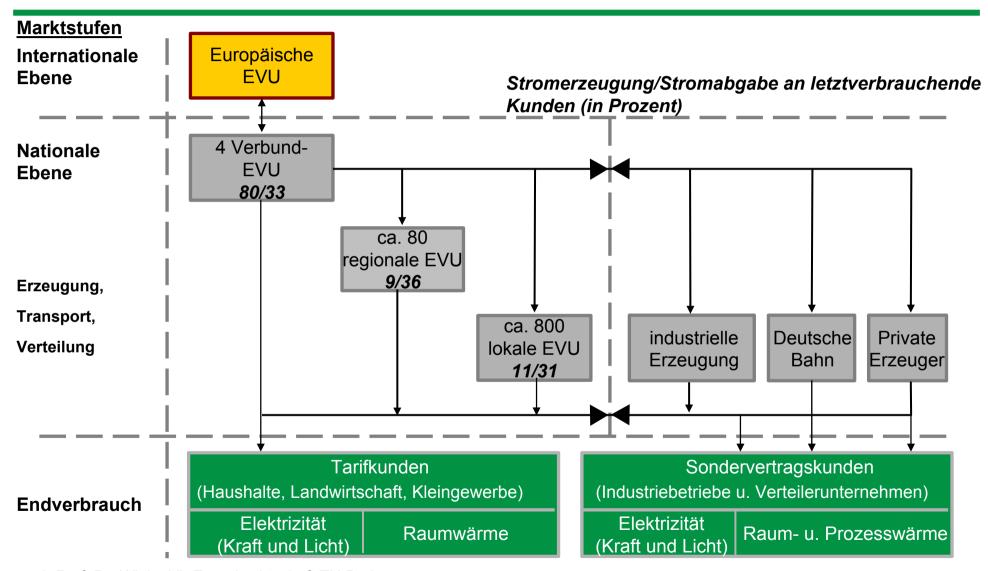
=> Betriebszeit (Ausnutzungsdauer) und Deckungsbeitrag sind abhängig vom Strompreis und den variablen Kosten

____ Spotmarktpreis LPX

variable Betriebskosten Erdgas-GuD-Kraftwerk

variable Betriebskosten Steinkohlekraftwerk

variable Betriebskosten Kernkraftwerk

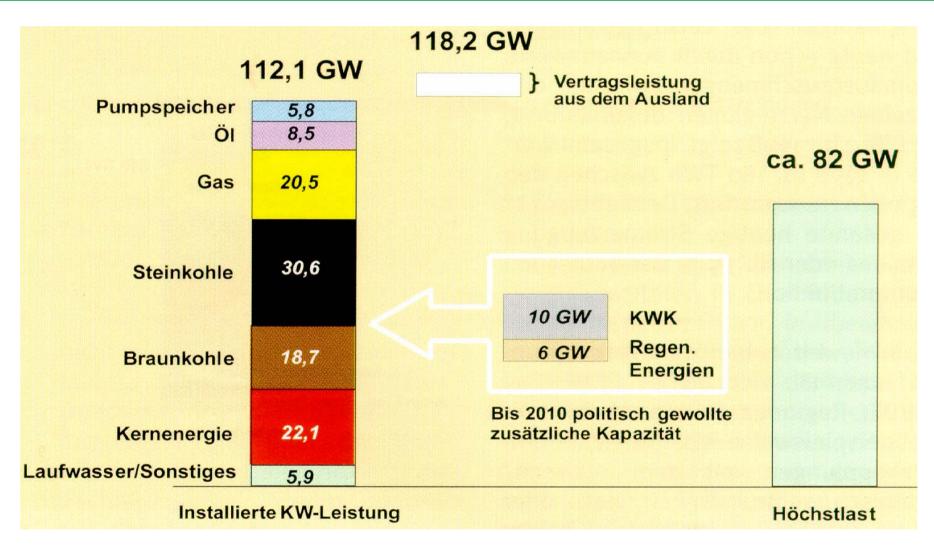


Deckungsbeitrag Kernkraftwerk

Quelle: LPX

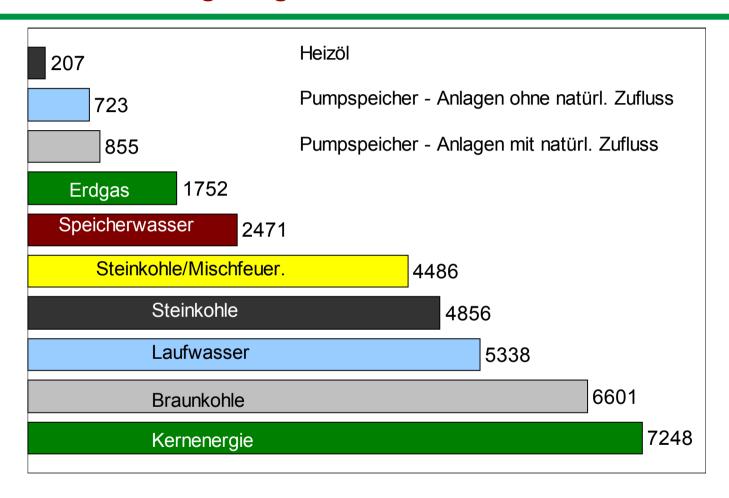

Marktstufen und Teilmärkte des Energieträgers Elektrizität in Deutschland

nach Prof. Dr. Winje, VL Energiewirtschaft TU Berin


Regelzonen bzw. Systembetreiber in Deutschland

Kraftwerkskapazität und Höchstlast in Deutschland 1999

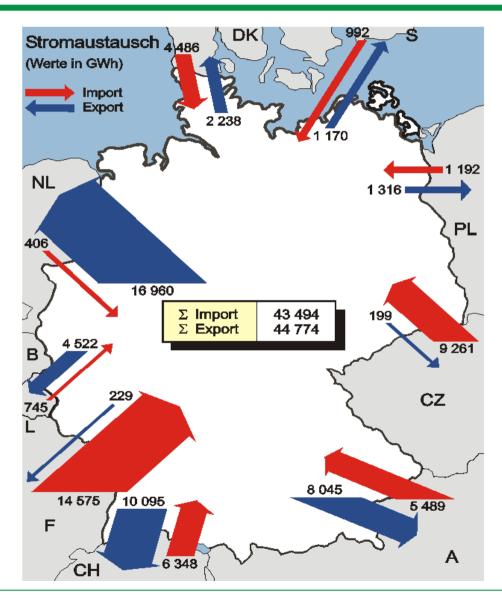
Quelle: Energiewirtschaftliche Tagesfragen, 50. Jg. (2000), Heft 10


Leistungsbilanz der allgemeinen Stromversorgung in Deutschland

Leistungsdaten	3. Mittwoch des Monats 11.00 Uhr											
(Nettowerte in GW)	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
1 Wasserkraftwerke	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3
2 Kernkraftwerke	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7
3 Konventionelle Wärmekraftwerke	66,9	66,8	66,7	66,5	66,5	66,0	65,7	65,4	65,4	65,3	65,0	65,0
4 Regenerative Energiequellen ohne Wasser	8,5	8,5	8,6	8,9	9,0	9,3	9,5	9,6	9,8	10,2	10,7	10,9
Nicht eindeutig identifizierbare Energiequellen	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6 Inländische Kraftwerksleistung (6 = 1+2+3+4+5)	105,4	105,3	105,3	105,4	105,5	105,3	105,2	105,0	105,2	105,5	105,7	105,9
7 Nicht einsetzbare Leistung	10,9	11,3	10,7	9,9	10,1	10,2	10,6	10,6	10,5	11,4	11,7	11,8
8 Revisionen (Wärmekraftwerke)	1,2	2,4	5,4	7,7	8,9	11,5	8,9	11,4	7,4	4,1	3,0	2,0
9 Ausfälle (Wärmekraftwerke)	2,6	2,1	1,8	2,2	2,7	3,9	2,5	2,1	5,9	3,7	4,0	4,7
10 Reserve für Systemdienstleistungen der ÜNB	8,3	8,1	8,2	8,0	7,9	8,0	7,8	7,8	8,1	8,0	8,1	8,2
Stundengesicherte Nettoleistung zur Bedarfsdeckung (11 = 6 - (7+8+9+10))	82,4	81,4	79,2	77,6	75,9	71,7	75,4	73,1	73,3	78,3	78,9	79,2
12 Last	73,4	69,5	69,4	69,5	66,5	68,8	68,1	68,2	70,8	69,7	71,6	75,1
13 Marge zur Monats-Höchstlast	4,7	4,4	3,5	2,9	4,0	2,8	3,6	3,6	5,1	6,3	6,0	4,6
14 Verbleibende Leistung ohne Austausche (14 = 11-12)	9,0	11,9	9,8	8,1	9,4	2,9	7,3	4,9	2,5	8,6	7,3	4,1
15 Physikalische Importe	9,1	8,6	9,8	10,6	11,0	10,6	9,7	11,3	10,0	7,4	11,2	11,4
16 Physikalische Exporte	6,0	5,2	4,1	4,2	4,6	4,2	4,1	4,5	4,1	4,3	4,8	5,9
17 Physikalischer Austauschsaldo (17 = 15-16)	3,1	3,4	5,7	6,4	6,4	6,4	5,6	6,8	5,9	3,1	6,4	5,5
18 Verbleibende Leistung mit Austauschen (18 = 14+17)	12,1	15,3	15,5	14,5	15,8	9,3	12,9	11,7	8,4	11,7	13,7	9,6

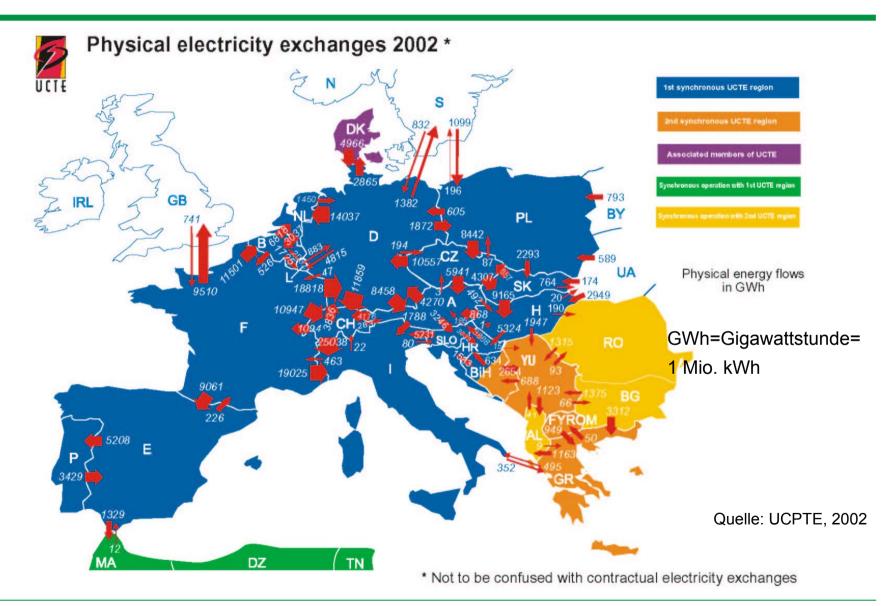
Quelle: VDN Leistungsbilanz Rückschau 2002

Ausnutzungsdauer der Kraftwerke der öffentlichen Versorgung nach Energieträgern 1998 in Stunden/Jahr



Mit Berücksichtigung des Kernkraftwerkes Mühlheim-Kärlich, das aus juristischen Gründen nicht in Betrieb ist, betrüge die Ausnutzungsdauer 6839 h

Quelle: VDEW, Strommarkt Deutschland 1998



Stromaustausch mit den Nachbarländern

Quelle: Deutsche Verbundgesellschaft (DVG), Heidelberg, 2002

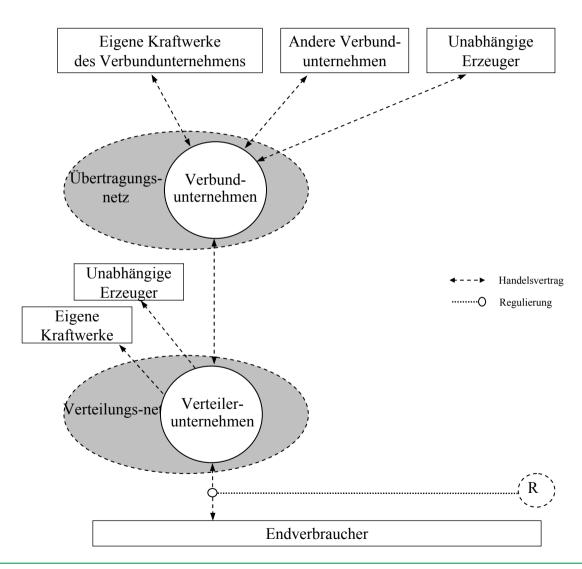
Physikalischer Energieaustausch in Europa

Grundfrage: Wie werden die Koordinationsprobleme innerhalb verschiedener Marktgestaltungen gelöst?

Können Märkte die Koordinierungsaufgaben der Stromwirtschaft lösen? Wenn ja, welche Bereiche können

Marktgestaltung bedeutet

- Definition bzw. Eingrenzung von Monopolbereichen
- Ausgestaltung der Regulierungsregeln
- Evtl. Schaffung von neuen Koordinationsinstitutionen
- Evtl. Definition von Durchführungsregeln

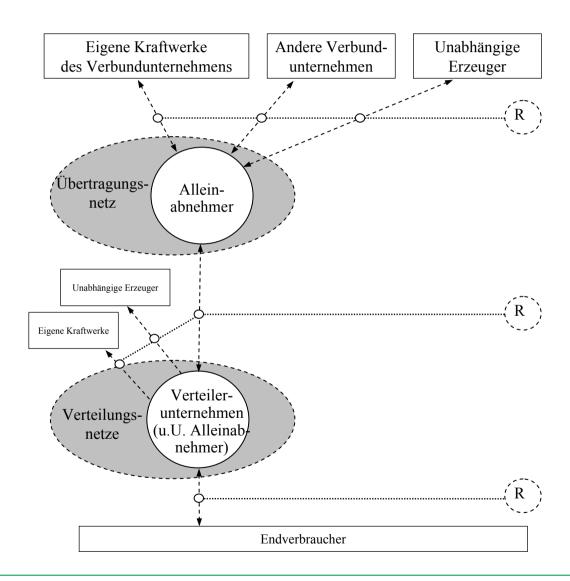

Unterschiede ergeben sich in der Stärke des Eingriffs (ex-post vs. ex-ante Regulierung)

VL Elektrizitätswirtschaft: Agenda

3.1.1 Marktstruktur

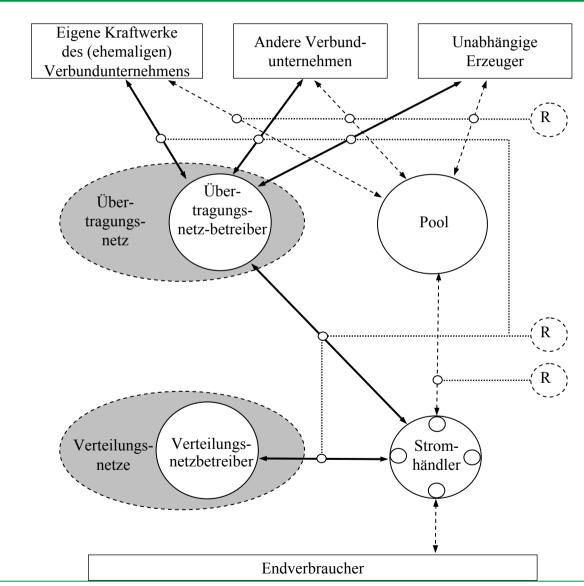
3.1.2 Energiepolitik

Strom, altes integriertes Modell



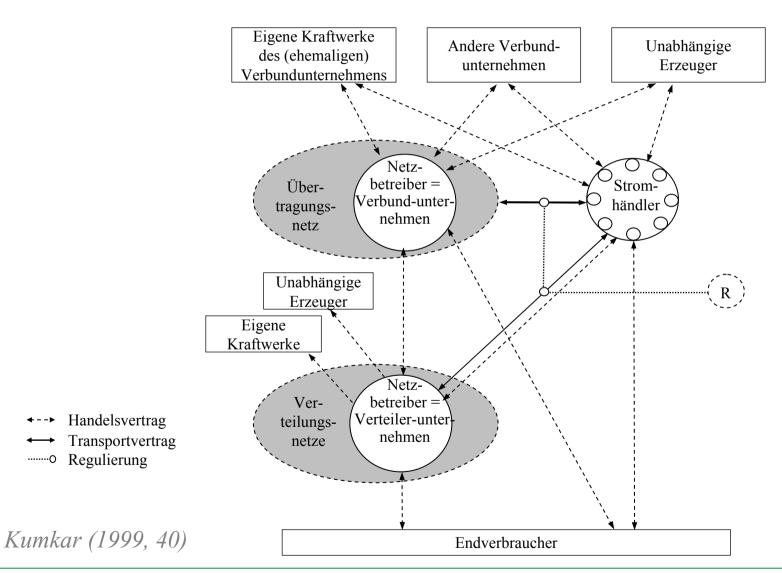
Kumkar (1999, 7)

Alleinabnehmermodell



Kumkar (1999, 17)

Strompool


Handelsvertrag

.....o Regulierung

Kumkar (1999, 24)

Transportvertrag

Allgemein zugängliches Netz (common carrier)

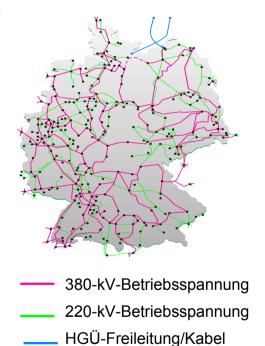
Handelsvertrag

.....o Regulierung

Transportvertrag

Vergleich von Marktmodellen

	Integriertes Modell (Umfassende Regulierung)	Alleinabnehmer- modell (Single Buyer)	Poolmodell	Common Carrier Modell (Third Party Access, bilaterales, dezentrales Modell)
Wettbewerbsform	Gebietsmonopole für Erzeugung + Netz	Gebietsmonopole für Erzeugung + Netz, Ankaufspflicht des Monopolisten von IPP	Monopolisierter Großhandelsmarkt (Zwangspool), Netzzugang für bestimmten Kundenkreis	Freie Strommärkte, Börsen etc., Netznutzungsrechte
Langfristige Koordination	Durch Monopolisten	Durch Monopolisten + IPP	Erzeugung: durch Marktteilnehmer	Erzeugung: Marktteilnehmer
(Netz + Erzeugung)			Netz: Durch Netzbetreiber	Netz: Ausbaupflicht der Netzbetreiber
Kurzfristige Koordination (Netz + Erzeugung)	Unternehmensintern	Durch Monopolisten + IPP, Systemführung durch Monopolisten	Durch Poolbetreiber aufgrund von Geboten der Marktteilnehmer	Über freie Strommärkte, nur Regelmarkt monopolisiert
Regulierung	Endpreisregulierung, Renditeregulierung	Beschaffungspraxis des Single Buyer	Großhandelsmarkt, u.U. Strukturregulierung der Netzbetreiber	Netznutzung, Systembetrieb
Beispiele	Status quo vor Deregulierung in allen Elektrizitätswirtschaft	Frankreich, einzelne Deutsche Stadtwerke	Alter Englischer Pool (1990 bis 2001), USA: New York, PJM	Deutschland, Skandinavien, Neuseeland


Nach Kumkar (1999)

Vier Spannungsebenen der Stromnetze in Deutschland

Die deutschen Stromversorger unterhalten Stromnetze mit insgesamt 1,6 Millionen Kilometer Leitungen und über 500 000 Transformatoren.

Verteilungsnetz- ebene	Spannungs- bereich	Reichweite	Abnehmer	
Höchstspannung	220 380 kV	überregional	regionale Stromversorger, sehr große Industriebetriebe, Abwicklung des Stromhandels mit dem Ausland	
Hochspannung	ochspannung 36 110 kV		lokale Stromversorger und Industriebetriebe	
Mittelspannung	6 36 kV	regional	Industrie und größere Gewerbebetriebe	
Niederspannung	0,4 6 kV	lokal	Haushalte, Gewerbe, und Landwirtschaft	

Quelle: Verband der Netzbetreiber - VDN - beim VDEW, Berlin

Umspannwerke

Kostenermittlung

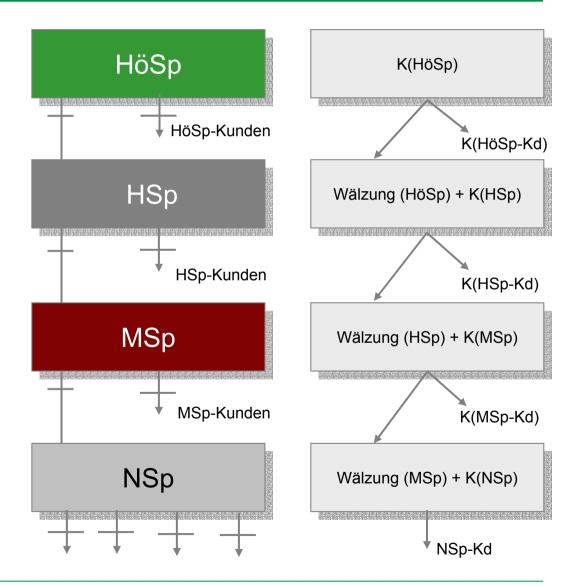
Die Kostenermittlung erfolgt jährlich nach dem Grundsatz der Nettosubstanzerhaltung

Die Kosten werden getrennt für Umspannungen und Netzebenen auf Grundlage von einer auf das Netz beschränkten Gewinn- und Verlustrechnung sowie Kostenträgerrechnung ermittelt.

Datengrundlage bilden die Jahreskosten der einzelnen Netzteildienste (Netz, Umspannungen, Systemdienstleistungen, Verluste)

	Kosten- und Erlöspositionen	Datenbasis
	Material und Fremdleistungen	
+ +	Personalkosten Fremdkapitalzinsen	Gewinn- und
+	Sonstige Kosten	Verlustrechnung
+	Steuern	
-	Kostenmindernde Erlöspositionen	
+	Kalkulatorische Abschreibungen	
+	Steuern auf Scheingewinn	Kostenträgerrechnung
+	Kalkulatorische Eigenkapitalverzinsung	
=	Netznutzungskosten je Netzteildienst	

Quelle: VDN, Kommentarband zur VV II plus



Kostenwälzung

Bei der Kalkulation der Netznutzungsentgelte werden die anteiligen Kosten der vorgelagerten Netzebenen, beginnend bei der Höchstspannung, von Netzebene zu Netzebene gewälzt

In jeder Netzebene werden die Gesamtkosten (gewälzte Kosten und Kosten der Netzebene) jeweils kostenverursachungsorientiert aufgeteilt in die Kostenanteile, die auf die Entnahme aus der Netzebene und die nachgeschaltete Ebene entfallen.

Diese Kostenwälzung wird bis zur Niederspannung fortgesetzt. Sie erfolgt somit stets von der höheren zu der niedrigeren Spannungsebene.

Nach VDN, Kommentarbuch zur VV II Plus

Vergleichsmarktkonzept nach VV II plus

Ziel:

Vergleichbarkeit der Netznutzungsentgelte durch Einführung von drei Strukturkriterien

Veröffentlichung eines Preisvergleichs

Möglichkeit eines Schiedsverfahrens

1. Strukturmerkmal

niedrig mittel hoch

2. Strukturmerkmal

Nerkabelungsgrad (%)

niedrig mittel hoch

<50 ... >75

3. Strukturmerkmal

Ost / West³⁾

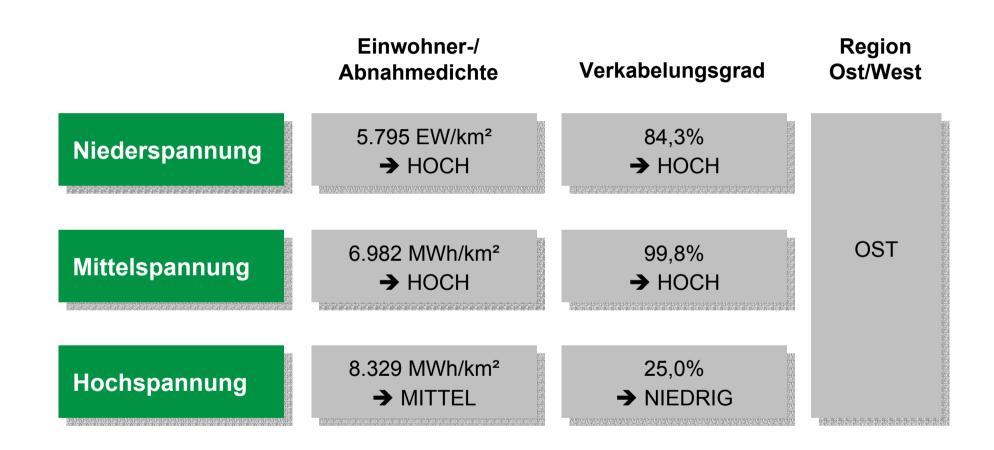
Mittelspannung

Niederspannung

Hochspannung

niedrig mittel hoch
<500 ... >1700

Abnahmedichte¹) [MWh/km²]


niedrig mittel hoch
<5500 ... >15000

Für Höchstspannungsebene wird wegen der geringen Zahl von 6 Netzbetreibern auf die Festlegung von Strukturmerkmalen verzichtet.

- 1) bezogen auf Gesamtfläche
- 2) bezogen auf besiedelte Fläche (Wohn- und Gewerbegebiete gem. Infas)
- 3) Das Land Berlin wird's insgesamt der Strukturklasse "Ost" zugeordnet

Quelle: VDEW, Verbändevereinbarung 2001, Anlage 3, S. 9

Beispiel: Strukturdaten der DREWAG

- 34 -

Quelle: DREWAG

Netznutzungentgelte nach dem Vergleichsmarktkonzept

Die erstmalige Umsetzung des Vergleichsmarktkonzepts der Verbändevereinbarung vom Dezember 2002 (VV II plus) führte zu folgenden Ergebnissen*:

	Niederpannung Ct/ kWh	Mittelspannung Ct/ kWh	Hochspannung Ct/ kWh
Maximalwert**	8,15	5,11	1,70
Mittelwert**	5,55	2,80	1,23
Minimalwert**	2,87	1,54	0,88
Standardabweichung	0,643	0,458	0,176

^{*} Datenbasis: 10. Oktober 2002

Quelle: Verband der Netzbetreiber VDN beim VDEW, Berlin

^{**} Über alle Netzbetreiber, die an VDN gemeldet haben, sowie über alle charakteristischen Abnahmefälle

Netznutzungsentgelte der DREWAG

Auf Grundlage einheitlich typischer Abnahmefälle ist ein Vergleich der Netznutzungsentgelte pro Spannungsebene möglich. In der Niederspannung sind parallel zu den Abnahmefällen mit Lastgangzählung auch 3 Abnahmefälle ohne Lastgangzählung dargestellt.

NS ohne Lastgangzählung	1.700 kWh/a	3.500 kWh/a	30.000 kWh/a	Durchschnitt NS
NS offic Lastgangzaniung	6,89	6,38	5,59	
NS mit Lastaanazähluna	1.600 h/a	2.500 h/a	4.000 h/a	5,88
NS mit Lastgangzählung	6,16	5,51	4,36	
MS mit Lastgangzählung	1.600 h/a	2.500 h/a	5.000 h/a	Durchschnitt MS
Wis mit Lastgangzamung	3,58	3,29	2,02	2,96
HS mit Lastgangzählung	2.500 h/a	4.000 h/a	6.000 h/a	Durchschnitt HS
115 mit Lastgangzamung	1,87	1,33	1,03	1,41

Alle Angaben in Ct/kWh zuzüglich Steuern, Konzessionsabgabe, Verrechnungskosten und Belastungsausgleich KWK nach Gesetz

Quelle: DREWAG

Systemdienstleistungen

Als Systemdienstleistungen werden die für die Funktionstüchtigkeit des System unvermeidlichen Dienstleistungen bezeichnet.

Diese sind zur Übertragung und Verteilung elektrischer Energie notwendig.

Sie bestimmen die Qualität der Stromversorgung.

Es handelt sich dabei um:

- Frequenzhaltung
- Spannungshaltung
- Versorgungswiederaufbau
- Betriebsführung (einschl. Messung und Verrechnung)

Die Entgeltanteil für die einzelenen Systemdienstleistungen werden beim jeweiligen Netzbetreiber separat ausgewiesen

Quelle: VDN, VDEW

Berücksichtigung von Verlusten

Dem Netzbetreiber fällt die Aufgabe zu, die Verlustmengen entsprechend der augenblicklichen Höhe zu beschaffen.

Durch diese Beschaffung entstehen dem Netzbetreiber Kosten, die nach VV II plus in den Netznutzungsentgelten zu berücksichtigen sind

Bei Netzverlusten werden berücksichtigt:

- Arbeitsverluste und Leistungsverluste
- pro Spannungsebene und Umspannung
- durchschnittliche Werte, da zeitliche Verteilung nicht genau bekannt
- Höhe der Durchschnittsverluste je Spannungsebene wird vom Netzbetreiber bekannt gegeben

Quelle: Kommentarband zur Verbändevereinbarung II plus, Verband der Netzbetreiber VDN beim VDEW, Berlin

Bilanzausgleich

Zielsetzung: Saldierung von Abweichungen zwischen Einspeisung und Entnahmen für mehrere Entnahmestellen

Verbleibende Ungleichgewichte werden vom Regelzonenbetreiber ausgeglichen: Bilanzausgleich

Hierzu werden Bilanzkreise eingeführt:

- virtuelle Gebilde
- Ausgleich zwischen Einspeisung und Entnahme gegenüber Netzbetreiber

Bilanzkreisstruktur:

- Maßgeblich bleiben die Regelzonen der acht Verbundnetzbetreiber
- Bildung von Bilanzkreisen innerhalb der Regelzonen

Quelle: VV II plus und Kommentarband zur Verbändevereinbarung II plus, Verband der Netzbetreiber VDN beim VDEW, Berlin

Koordinationsleistungen im Strommarkt durch Marktpreise

Horizontale Koordination (optimaler Kraftwerksmix)

- Marktpreise > variable Brennstoffpreise dienen zur Fixkostendeckung der Kraftwerke bei und ergeben idealer Weise den optimalen Kraftwerksmix

Zeitliche Koordination:

- Ex ante: Forward Märkte, Day-ahead Märkte, Intraday-Märkte, Echtzeitmärkte
- Ex post: Echtzeitmärkte: Abrechnung nach realer Lieferung

Strompreise sind zeitliche variabel

Vertikale bzw. räumliche Koordination: Bei Berücksichtigung von Transportverlusten und/oder Netzengpässen ergeben sich räumlich differenzierte Preise (Nodalpreise oder Zonenpreise)

In bilateralen Modellen schwierige Festlegung von räumlichen Preisen aufgrund der gegenseitigen Beeinflussung der Handelsgeschäfte und Netzengpässe

Quelle: Prof. Dr. Winje, VL Energiewirtschaft, TU Berlin

