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Abstract

Electric vehicles have a high potential to reduce the greenhouse gas emissions from trans-
portation, but their large-scale introduction would also have a significant impact on
power grids and the electricity demand. Reliable estimates of their future market share
are therefore of great interest to distribution network operators, electricity producers and
vehicle manufacturers alike.

The future market shares of electric vehicles are difficult to predict but purchase
prices and fuel costs are generally acknowledged as highly relevant factors. However, the
latter are heavily dependent on driving behaviour and the vehicle kilometres travelled
which required a detailed analysis. In this paper, we examine the total cost of ownership
(TCO) for a distribution of annual vehicle kilometres travelled based on a large data set
of driving profiles from Germany rather than the ’average driver’, which is a commonly
used but misleading entity. Such TCO estimates are an integral part of buying decisions
and we compare the TCO for conventional, plug-in hybrid, and battery electric vehicles.
We look at four different vehicle size classes to model customer purchase decisions and
to derive the future market shares of the three propulsion technologies.

The resulting projections represent an important baseline for models attempting to
estimate future market shares and we combine them with a vehicle fleet stock model to
obtain projections of the German electric vehicle fleet. The associated increased energy
demand is then computed for different fuel price scenarios. Implications for electricity
consumption and time-resolved power demand are then derived and discussed.

Keywords: electric vehicle, plug-in-hybrid electric vehicle, total cost of ownership,
stock model
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1. Introduction

Electric vehicles have a high potential to reduce green house gas emissions in the
transport sector (Pasaoglu et al., 2012; Thomas, 2009, 2012). Their large-scale intro-
duction would also have a significant impact on power grids and the electricity demand.
Thus, reliable estimates of their future market share are of great interest to distribution
network operators, electricity producers and vehicle manufacturers alike and has received
substantial interest in the literature (see Wietschel and Dallinger (2008) and references
therein).

The expected market diffusion of new technologies in general has long been studied.
Different models and projections for the market diffusion of different future propulsion
technologies exist (McKinsey and Company, 2011; Mock, 2010; Mock et al., 2009; Kley,
2011). The future market shares of electric vehicles are difficult to predict but purchase
prices and fuel costs are generally acknowledged as highly relevant factors and modelled
as part of the adoption decision. However, the latter are heavily dependent on driving
behaviour and the vehicle kilometres travelled which required a detailed analysis. In
this paper, we examine the total cost of ownership (TCO) for a distribution of annual
vehicle kilometres travelled based on a large data set of driving profiles from Germany
rather than the ’average driver’, which is a commonly used but misleading entity. Such
TCO estimates are an integral part of buying decisions and we compare the TCO for
conventional, plug-in hybrid, and battery electric vehicles. We look at four different
vehicle size classes to model customer purchase decisions and to derive the future market
shares of the three propulsion technologies.

The majority of light-duty vehicles is privately owned and accordingly, the potential
for private costumers to adopt electric vehicles has been studied extensively (Biere et al.,
2009). Here, we study the time-evolution of market shares and stock for electric vehicles
as obtained from TCO projections. We will use a time frame until 2050. However,
let us emphasise again that the market shares obtained from TCO projections are no
predictions for actual sales but rather one important ingredient. The time frame has been
chosen rather long, in fact much longer than reliable estimates for prices or technological
evolution are available, since the evolution of stocks is rather slow. Thus, the values
beyond 2030 are rather meant as an outlook, what might be obtained when current
trends are extrapolated and its effect on the German vehicle fleet.

2. TCO Model and Battery Simulation

2.1. TCO Approach and Resulting Market Shares

In the present section, we explain our general approach to compute the total costs of
ownership for different vehicle types. The total costs of ownership (TCO) are given by
the sum of purchase and usage costs over the vehicle’s lifetime. We distinguish between
the vehicle, its battery and variable costs. The latter are given by the product between
the specific fuel consumption and the annual vehicle kilometres travelled (VKT). The
investment is discounted to make the different annual fuel costs and the different vehicle
purchase prices comparable. We are now going to develop a single mathematical de-
scription for various propulsion technologies. The formalism is general, but we will later
limit ourselves to four propulsion technologies (Chan, 2007): the internal combustion
engine (ICE), the hybrid electric vehicle (HEV) which has a small high-power battery
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for efficiency increase but cannot drive fully electrically, the plug-in hybrid electric ve-
hicle (PHEV) which here drives electrically but has an additional combustion engine as
an effective range extender, and finally the battery electric vehicle (BEV) which has a
rather large battery and a limited driving range.

Treating different VKTs of individual is straightforward when the vehicle is with only
one propulsion technology, i.e., either only electrically or only by internal combustion
engine. This is different for PHEVs. Here, we assume that the owner of a PHEV uses
the total electric driving range available to him or her first and uses the additional
combustion engine when the electric driving range is exceeded. As an illustration, we
will discuss the formalism for PHEVs first. The TCO for PHEVs are given by the sum
of discounted purchase and usage costs

TCO = (I + cBκ)an(p) + d · C(L, κ). (1)

Here, I denotes the purchase costs of the PHEV (excluding the battery), cB the specific

battery cost (in Euro/kWh), an(p) = p(1+p)n

(1+p)n−1 is an annuity factor for n years at an

interest rate p. We will use n = 4 years and p = 5% throughout this work. The second
term in eq. (1) will be explained in a moment and represents the variable costs of going
on a trip of length L with costs C(L, κ) on every day (out of d days per year). Since
the PHEV can drive electrically or by using its additional combustion engine, we assume
that the drivers uses his full electric driving range LE first, and turns on the combustion
engine only when the actual trip length is longer than the electric driving range. We
thus have to distinguish daily driving distances smaller or larger than the electric driving
range. The variable costs for a single trip of length r with a PHEV with a battery of
size κ and an electric driving range LE(κ) = κ/uE (uE is the specific electric energy
consumption in kWh/km) are accordingly given by

C(r, κ) =

{

cEr

cELE(κ) + cR(r − LE(κ))
for

r ≤ LE(κ)

r > LE(κ)
(2)

Here, cE (cR) denotes the specific electric (range extender) driving costs in Euro/km.
Using the Heaviside step function Θ(x − a) = 0 for x < a and Θ(x) = 1 for x > a, this
can be written in a single line as follows

C(r, κ) = cErΘ(LE − r) + [cELE + cR(r − LE)]Θ(r − LE) (3)

The idea just outlined can straightforwardly be generalised to several vehicle tech-
nologies or vehicle categories. Let us denote the (discounted) total cost of ownership per
year t for a vehicle of technology i driving L kilometres per day as

TCOi(L, t) = an(p)(Ii + cB(t)κi)+

d
[

cE,i(t)LΘ(LE,i − L) + [cE,i(t)LE,i + cR,i(t)(L − LE,i)]Θ(L− LE,i)
]

(4)

where we added an index i to all variables to allow individual consumption rates, battery
size, etcetera for each vehicle class i. A vehicle class might be a technology, a size class
or a combination of both. We will later discuss four vehicle technologies (ICE, HEV,
PHEV, BEV) and three vehicle sizes (small, medium, large), such that i runs effectively
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from 1 to 12. Furthermore, we will later use time-dependent prices and indicated this
by adding an explicit time-dependence in the consumption costs for technology i (given
by cX,i, with X = B,R, F ) and accordingly to the total costs of ownership. The special
case of in ICE which can only drive on fuel is also included in eq. (4) by using an electric
driving range of 0 kilometres, i.e., by setting LE = 0 in eq. (4).

Let us now turn to the calculation of market shares based on minimal TCO. We
assume that every potential adopter buys the vehicle that has minimal TCO for his
annual driving distance. As mentioned before, this is certainly not a realistic model of
purchase decisions, but it is an important aspect thereof and one actually observes that
the owners of efficient vehicle technologies such as diesel have larger annual VKT (at
least for the German market which we consider here). For our TCO comparison we need
to find those daily driving distances L ∈ (0,∞) for which technology i is the cheapest.
This means we are looking for the set {L|∀j = 1 . . .N, j 6= i : TCOi(L) < TCOj(L)}.
This can be implemented by using the Heaviside step function Θ(x − a) = 0 for x < a
and Θ(x) = 1 for x > a. Since a product is different from zero if and only if all factors
differ from zero, we can define the characteristic function for technology as

χi(L, t) =
∏

j 6=i

Θ(TCOj(L, t)− TCOi(L, t)) . (5)

This characteristic function has the desired property: it is one for all L where technology
i is cheaper than all other technologies and equal to zero when at least one of the other
technologies is cheaper for the given driving distance L. Since we allow the prices to
change in time, the characteristic functions are also time-dependent. The formalism
described so far might seem somewhat cumbersome, given that the same could have
been written as

χi(L, t) =

{

1

0
if

TCOi(L, t) = minj TCOj(L, t)

else
. (6)

The advantage of eq. (5) is that it can be used in numerical simulations without time-
consuming if-statements.

Having determined the cost-optimal vehicle option for given VKT L, we can now
compute market shares, i.e., which fraction of drivers would choose which option for
minimal TCO. This market share of technology i is given by the sum over all annual (or
daily) vehicle kilometres travelled for which technology i is cost-optimal weighted by the
probability of occurrence P (L) for the specific VKT L:

pi(t) =

∫ ∞

0

χi(L, t)P (L)dL. (7)

In this expression the characteristic function effectively reduces the sum (or integral) to
those VKT where the given technology is the cheapest. Please note, that the market
shares sum up to unity by when P (L) is normalised and no further normalisation is
required.

To summarise, for given cost and vehicle parameters, we developed a single mathe-
matical expression for the market shares of different technologies. We presented it for
TCOs of vehicle propulsion technologies, but the formalism is quite general and other
use-values than TCO could likewise be implemented.
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2.2. Stock Model

Let us use the market shares obtained so far as an input for the vehicle stock evolution.
If there are in total Nin(t) new cars per year, the number of new cars of technology i
is simply given by ni(t) = pi(t)Nin(t). However, the vehicles that were purchased in
a given year do not remain in stock forever. Instead vehicles will be scrapped with
an age-dependent probability Pscrapping(t). This can also be written with a probability

L(t) = 1 −
∫ t

0
Pscrapping(s)ds for a vehicle to survive until age t. With this distribution

at hand, one can write the stock of vehicles in year t as the sum of vehicles purchased in
earlier years that survived until year t:

Ni(t) =

t
∑

s=t0

ni(s)Li(t− s). (8)

This expression has been used for numerical results that will be shown below with a
survival probability obtained from the official German statistics (KBA, 2011).

2.3. Battery State of Charge Simulation

Similar to earlier works (Gnann et al., 2012) we study driving profiles of German
drivers to analyse whether their vehicles could be replaced by battery electric vehicles.
We use the German mobility panel (MoP, 2008) as data set for driving behaviour. It
consists of 12,812 households, who reported all their outdoor movements for one week.
Since these movements are person-specific and e. g. also contain movements by foot, train
or bicycle, we allocate movement profiles to cars if possible unambiguously (for further
details see Kley (2011)). This reduces the data set to a total of 6,629 car-specific driving
profiles. As the sample does not contain car size information, we assumed all vehicles to
be medium-sized, due to the fact that this is the largest car segment in Germany with
almost 55 % of all light duty vehicles (Gnann et al., 2012).

With these driving profiles we may calculate the battery state of charge (SOC) any
point in time of the week t as follows:

SOC(t+ 1) =

{

SOC(t)− d∆t · ue

min{SOC(t) + ∆t · Ploct , C}
for

d∆t > 0

d∆t = 0
(9)

where the initial value is given by SOC(0) = C. In this formula SOC(t) denotes the state
of charge at the point of time t. The distance driven between the two points of time t and
t+∆t is given in km in d∆t, while ∆t in hours is the time difference. The consumption
of electric power in kWh/km is denoted as ue. In addition, Ploct (in kW) describes
the power for charging at the location where the car was parked at t. Here we take
charging infrastructure to be available only at the final destination. C in kWh describes
the capacity of the battery analysed. Thus, the equation can be read as follows: if the
car is driven (case 1), the battery will be discharged by the energy needed for driving
distance d∆t. Otherwise (case 2), it will be charged with the power Ploct for the time ∆t
if necessary and charging infrastructure is available (Ploct > 0).

In the following we use time sections ∆t of 15 minutes for the profile generation and
record starting and stopping time, the stopping location and the distance travelled in
this time period. The consumption for all cars is set to ue = 0.194 kWh/km (Helms and
Hanusch, 2010).
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3. Parameters and German Driving Behaviour

3.1. Vehicle Parameters and Prices

As already mentioned, we will use four vehicle technologies and three vehicle classes.
The purchase prices and energy consumptions follow (Helms and Hanusch, 2010; Wi-
etschel et al., 2010; Fraunhofer ISI, 2010) where applicable, others are assumptions for
this work. Additionally, the HEV is assumed to be 10% more efficient than the ICE
and only slightly more expensive (excluding the battery price). The parameters are sum-
marised in table 1. Please note that the battery sizes are the actually used net capacities.
The effect of depth of discharge (DoD) smaller than unity is effectively captured by the
high battery prices we will assume, e.g. 75% DoD can be modelled as a 33% higher
battery price.

Parameter Units small medium large

Consumption per km

fuel consumption ICE [l/100km] 5.7 7.6 9.5

fuel consumption HEV [l/100km] 5.1 6.9 8.6

fuel consumption PHEV [l/100km] 3.8 4.75 7.6

elec. consumption PHEV [kWh/km] 0.151 0.193 0.242

elec. consumption BEV [kWh/km] 0.17 0.21 0.26

Battery size

Battery size HEV [kWh] 1 1.5 2.0

Battery size PHEV [kWh] 6 10 14

Battery size BEV [kWh] 15 20 40

Invest (without battery)

Invest ICE [Euro] 9,079 17,358 32,787

Invest HEV [Euro] 9,179 17,458 32,887

Invest PHEV [Euro] 10,721 19,114 34,587

Invest BEV [Euro] 9,597 17,804 32,000

Table 1: Assumed technical parameters for the total cost of ownership calculation for the four vehicle
classes (small, medium, large) under consideration and the four vehicle technologies (ICE, HEV, PHEV,
BEV).

To compute the variable costs for given VKT, we need assumptions for the time-
evolution of fuel, electricity and battery prices. The (annually averaged) fuel price
depends both on the oil price and taxes. Oil price and fuel price scenarios are often
influenced by short time fluctuations or important reference scenarios. Furthermore,
many assumptions for fuel prices are over optimistic and quickly overtaken by time. For
example, (Biere et al., 2009) used a fuel price of 1.53 Euro/litre for 2030 in Germany
which has been reached already in 2011.

Here, we take a different route to estimate future German fuel prices. We study the
inflation-adjusted German fuel prices of the last 40 years (data at an annual basis was
not available for years before 1970) and obtain average compound growth rates which
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Figure 1: Left panel : Inflation-adjusted German fuel price since 1970 (in Euro cent2010/litre). The
historical oil price shocks and the steady increase over the last decade are clearly visible. Right panel :
Evolution of compound annual growth rates with each year since 1970 as starting year according to
eq. (10).

are then used to compute future fuel prices. The advantage of this method is purely data
driven and directly includes both effects of oil price variations and changing taxes.

The left panel of figure 1 shows the inflation-adjusted fuel prices for Germany1 for
three fuel types: normal, super, and diesel fuel. The strong increase in prices in the
1970s and early 80s are clearly visible. Furthermore, the three prices have been growing
with some fluctuation since since 1990.

Compound annual growth rates are a useful to calculate average growth rates over
longer periods of time. However, taking into account the fluctuation of the fuel prices, it
is difficult to decide which year to take as starting year. We thus compute the compound
annual growth rate (CAGR) with each of the last forty years as starting year:

CAGR(t) =

(

pF (2011)

pF (2011− t)

)1/t

(10)

where pF (t) denotes the inflation-adjusted fuel price in year t. The resulting CAGRs are
since 1970 are shown in the right panel of figure 1.

The CAGRs with each of the last forty years as starting year shows a clear dependence
on the choice of the initial year. Taking a year between 1970 and 1985 as starting year,
the CAGR obtained would be roughly one percent. Taking later starting years between
1985 and 2005, the resulting CAGR is around 2 − 4 %. For years later than 2005, the
CAGR reflects recent price changes and fluctuates rather strongly. Facing these varying
CAGRs, we decide to compute the arithmetic averages and median over the different
starting years for CAGR. The results for the three different fuels (normal, super, and
diesel fuel) are summarised in table 2. We observe that all average CAGRs vary between
1.6 and 2.5% with a tendency to values larger than 2%. Based on the results, we will
thus assume an annual increase in fuel price of 2% for the future fuel prices. That is,
we take the fuel price to be 1.50 Euro/litre in 2011 and increase by 2% annually. For
the electricity price, 0.22 Euro/kWh in 2011 and 1% annual increase are assumed. This
results in an electricity price of 27 Eurocent in 2030. Furthermore, battery costs are

1Before 1990 West Germany only.
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statistic normal fuel super fuel diesel

Median 2.09% 1.61% 2.41%

Mean 2.50% 2.23% 2.51%

Table 2: Median and mean of annual compound growth rates for computation of CAGRs with different
starting years between 1970 and 2010.

Parameter unit value

fuel price pF [Euro/l] 1.50(1 + 0.02)t−2011

spec. elec. costs ci [Euro/kWh] 0.22(1 + 0.01)t−2011

battery cost cB [Euro/kWh] 150 + 850 9

√

350/850
t−2011

Table 3: Assumed time-evolution of fuel, electricity and battery prices.

rather conservatively assumed to drop from 1000 Euro/kWh in 2011 to 500 Euro/kWh
by 2020 but never in the future time-evolution below 150 Euro/kWh. These assumptions
on future prices are summarised in table 3.

3.2. Segments

As already mentioned, we will distinguish three vehicle classes small, medium, and
large that represent coarse-grained versions of the most important vehicle size segments
as listed by the German vehicle fleet statistics.2 Figure 2 shows the share of these
classes of the total annual vehicle sales in Germany since 2006. The shares of the three
coarse-grained vehicle size classes are more or less constant over time. 2009 forms an
exception when the German government offered for a short time financial support for the
replacement of existing vehicles.
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Figure 2: Share of vehicle size class in sales of new vehicles in Germany since 2006. The averages over
the last 5 years are shown as dashed lines.

2We use small: Mini, Kleinwagen; medium: Mittelklasse, Obere Mittelklasse, Mini-Vans, Kompakt;
large: Oberklasse, Grossraum-Vans, Geländewagen; the three remaining segments (Utility, Sportwagen,
Wohnmobile) only make up between 6 and 7% of the annual German sales and will be neglected.
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Figure 3: Distribution of daily vehicle kilometres travelled in Germany.

For the following, we will exclude the categories ’others’ and treat the average share
of each segment as constant in time. The shares, excluding ’others’, are given by 27,7%
for small, 57,2% for medium and 15,1% for large vehicles respectively.

3.3. German Driving Behaviour

When introducing the market shares in eq. (7) we mentioned the need for using a
distribution of VKT for the drivers. To this end, we analysed the daily VKT by for a
large set of German vehicle travel data. Figure 3 shows the complementary cumulative
distribution function Pc(x) =

∫∞

x P (s)ds (main figure) and cumulative distribution func-

tion CDF(x) =
∫ x

0
P (s)ds (inset) of the daily vehicle kilometres travelled for Germany

(over all segments). The data has been taken from MoP 1994–2008 MoP (2008). We
model the distribution of daily vehicle kilometres travelled by a log-normal distribution

P (r) =
1

r
√
2πσ

exp

[

(ln r − µ)2

2σ2

]

. (11)

A least square fit of the log-normal distribution (dashed line) is shown in figure 3, as well.
We observe excellent agreement between the data and the fitted log-normal distribution.
Only at very large travel distances, the curve slightly deviate showing a difference of the
order of 10−2. However, since the data refers to Germany and a single day only, this
might also be due to the finite day-length.

The inset of figure 3 shows the cumulative distribution function CDF(r) =
∫ r

0
P (s)ds,

where P (s) is the probability density function of driving s kilometers per vehicle and
day, of the daily driving distances. The cumulative distribution function has a simple
interpretation: CDF(r) is the share of vehicle driving up to r kilometres per day. Thus,
about 70% of the German vehicles drive less than 60 km per day.
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Figure 4: Distribution of annual vehicle kilometres travelled by privately owned vehicles for different
vehicle size classes (solid line – small, dashed-dotted – medium, dashed – large). Longer annual driving
distances are more likely for larger vehicles.

We will use the log-normal distributions for the VKTs within the different segments.
Unfortunately, the large MoP data set does not provide information on the segment of the
vehicles. We therefore resided to use a second data set of German travel behaviour (MiD,
2008) which provides this information. Under the assumption of segment-wise log-normal
distributions, we obtained the two parameters µ and σ for each segment. The results are
summarised in table 4 and the resulting annual VKT distributions are shown in figure 4.

small medium large

scale µ 3.08 3.30 3.46

shape σ 0.83 0.81 0.72

Table 4: Parameters for log-normal fit of VKT for different segments.

These parameters and distributions will be used for the following TCO computations.

3.4. Lifetimes for Vehicles

A lifetime distribution for the vehicles to remain in stock is needed for the stock
model introduced above. We use data for the complete German vehicle fleet and the age
dependent scrapping probability over the last ten years (KBA, 2011) . These probabilities
are calculated from the age structure of the German vehicle stock since 2001 by computing
the change between adjacent ages in subsequent years. This was performed for all years
available and then averaged over all years. We excluded the years 2010 and 2011 since
the one-time initiative of the federal government in 2009 (”Umweltprämie”) drastically
altered the scrapping. The resulting probability for leaving the stock at a certain age,
i.e. the scrapping probability, is shown in the left panel of figure 5 together with a fit by
Weibull function.
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Figure 5: Scrapping and survival probability of German vehicle fleet. Left panel : Scrapping probability
of German vehicle fleet obtained from changes in age-dependent stock since 2001, with 2010 and 2011
excluded, together with a least squares Weibull fit. Right panel : Survival probability of German vehicle
fleet obtained from changes in age-dependent stock since 2001, with 2010 and 2011 excluded, together
with a least squares Weibull fit.

The right panel of figure 5 shows the resulting survival probability or lifetime distri-
bution L(t) = 1−∑

s<t Pscrapping(s). The Weibull distribution of lifetimes is accordingly
given by

L(t) = e−(t/τ)β (12)

where the parameters τ = 21.25 for scale and β = 4.51 for shape have been obtained
from a least square fit. Please note that this is the situation in the German vehicle stock
for roughly the last ten years. We are well aware of the fact that vehicles are getting
older now than they used. The actual age distribution of the German vehicle fleet does
in fact not coincide with the survival probability shown in the right panel of figure 5
but falls off faster. However, the age distribution will naturally get closer to the current
survival probability and thus the the Weibull fit mentioned above is the better choice for
modelling future vehicle stocks. Thus for the stock model of the German vehicle fleet we
will use this Weibull distribution with the parameters given.

4. TCO Projections and Stock Evolution

In the present section we apply the formalism with the parameters introduced above
to compute and compare the TCOs of the four vehicle technologies.

Figure 6 shows the the TCO projections for the four vehicle technologies and three
size segments at different instances of time. The purchase price for an ICE has been
substracted and the TCO have been shown for a single day for easier reading. The
panels show how all daily costs are linear in the VKT driven since they enter the TCO
linearly via the respective consumption costs. The difference in consumption costs are
reflected by different slopes in all panels. Furthermore, we observe that particularly
PHEVs and BEVs have higher initial costs,i.e. a finite difference to ICEs at L = 0,
but lower consumption costs, i.e. smaller slopes. The range of VKTs L for which one
technological option is cheapest is simply the range of Ls where the respective curve
is below all others. Thus, there is a minimal driving distance required for BEVs and
PHEVs to become cost-effective compared to ICEs and HEVs.
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Figure 6: TCO projections by segment and technology as a function of the daily driving distance. Top panel : Sales shares for the individual technologies
per segment (from left to right: small, medium, large) with ICE (light blue), HEV (dark blue), PHEV (green) and BEV (red). Lower panel : The same
as in the upper panel, but sales shares are stacked.
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Clearly visible in all panels is the finite driving range per day of BEVs which allows
them to be considered only for daily trips within that range. This driving range could
be extended by fast charging, however, since this option is rather expensive and its pro-
liferation difficult to estimate, we do exclude it for our present discussion. Furthermore,
the two specific consumption costs for PHEVs, one for electric and one for range ex-
tender driving are clearly visible in the changing slopes for PHEVs. Overall, the low
additional invest and low consumption cost make PHEVs highly relevant in all segments
and particularly dominating in the large vehicle class, where fuel consumption is rather
high. This is partially due to the high assumptions on fuel consumption. Put differ-
ently, stronger reduction goals in CO2 emissions for future vehicles could significantly
reduce fuel consumption of conventional vehicles, especially in the large segment and
the picture would change. Furthermore, new battery generations such Lithium-Sulfur or
Lithium-air may drastically alter the battery capacities and prices for electric vehicles.
However, for the sake of comparability, we stick to the assumptions presented above in
the following (Helms and Hanusch, 2010; Wietschel et al., 2010; Fraunhofer ISI, 2010).

Based on these TCO projections we compute market shares. Figure 7 shows the
market share projections for the four vehicle technologies and three size segments. Again,
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Figure 7: Sales shares projections based on TCO-calculation by segment. Top panel : Sales shares for
the individual technologies per segment (from left to right: small, medium, large) with ICE (light blue),
HEV (dark blue), PHEV (green) and BEV (red). Lower panel : The same as in the upper panel, but
sales shares are stacked.

we observe that PHEVs are dominating in market shares as well, particularly in the large
vehicle segment. This a consequence of the TCO projections and the VKT distributions.
In the case of large vehicles, where large VKTs are more common, the dominance of
PHEVs is even emphasised by multiplication the VKT distribution. Furthermore, the
market shares for PHEVs show a slight kink, indicating the crossover from electric and
range extender driving for market shares to a regime where costs have changed such that
electric driving only is sufficient for PHEVs to become cheaper in terms of TCO than
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Figure 8: Stock projections based on TCO market shares and summed over segments (see legend for
colour code).

conventional vehicles. Please note that these are only theoretical market shares based on
our TCO projections. The actual buying decision is more complex. Furthermore we have
not taken into account, that only a very limited number of PHEVs is currently offered
for all segments and almost no BEVs are available for the large segment in Germany.

Using the stock model of eq. (8) and assuming slowly decreasing absolute sales from
3 million per year in 2011 to 2 million per year in 2050, we obtain projections for the
total stock of German vehicles. The results are shown in figure 8 summed over all vehicle
segments.

We observe that the dynamics in the stock are much slower. With the absolute
number of vehicles growing, the market diffusion of ICEs reaches according to the TCO
projections a maximum around 2020. The HEVs are a relevant and cheap option for not
too long VKT and reach a small but significant share in stock of approximately 5 million
vehicles that declines only very slowly towards the distant future. The PHEV turns out
to be the most cost-efficient technology for most users in the long run and acquired very
high market shares in sales as well as in stock.

The stacked time evolution of the German vehicle stock according to the TCO pro-
jections is shown in figure 9. Due to the cost effectiveness of PHEVs, the goals in terms
of stock the German federal Government has set for EVs, appear possible: 1 or more
million electric vehicles in 2020 and 5 or more in 2030. However, as already mentioned,
TCO are one important aspect of vehicle buying decisions but not the only one. Further-
more, private car-owners do usually not directly calculate the TCO but rather stick to
more heuristic estimates. In this sense, the projected stock evolution shown in figure 9
is no actual market prediction. However, it demonstrates that the federal goals are not
unrealistic.

5. Implications for Electricity and Power Demand

Clearly, a large number of electric vehicles represent additional electricity consumers
and several studies on the expected additional demand both for electricity and power
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Figure 9: Stacked stock projections based on TCO calculation and summed over segments with ICE
(light blue), HEV (dark blue), PHEV (green) and BEV (red).

exist (see, e.g., (Biere et al., 2009) and references therein). In the present section, we
combine the results of the stock model and on VKTs to compute the additional annual
electricity consumption. Furthermore, we simulate battery states of charge to compute
when to expect charging if every car owner would directly charge his or her vehicle after
arrival at his or her final destination.

5.1. Additional annual Electricity Demand for Electric Vehicles

The total number of distance driven electrically by PHEVs of size class i is given
by all kilometres below the electric driving range driven by PHEVs as optimal vehicles.
This has to be multiplied by the electricity consumption per kilometre to obtain the
additional electricity demand

Ephev,i(t) = uE,i

∫ LE,i

0

rPi(r)χphev,i(r, t)dr. (13)

A similar relation holds for BEVs. We observe that eq. (13) bears strong similarity to
the eq. (7) for the computation of market shares since χi(L, t) selects only that fraction
of drivers for which the given technology i is optimal. However, to compute the total
electricity consumption of all vehicles in stock, we need to adopt the stock model of
eq. (8) to electricity demand. That is, we replace the sales share pi(t) in eq. (8) by
electricity consumption Ei(t) from eq. (13) and obtain the total electricity demand by
all electric vehicles in stock with their respective annual VKTs.

Figure 10 shows the additional electricity demand per year of all electric vehicles in
stock based on the TCO projections and stock model results of the previous section.

We observe a slow s-shaped increase of electricity demand over time, that seems to
follow the stock of electric vehicles quite nicely. However, the situation is more compli-
cated since the resulting electricity is not directly proportional to the number of vehicles
in stock. The difference is two-fold. Firstly, the EVs that enter stock early according
to our TCO projections drive more VKT per year than vehicles entering the stock later.
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Figure 10: Additional annual electricity demand electric vehicles in stock based on the TCO projections
and stock model results. Shown are the electricity demand of BEVs (red) and PHEVs (blue).

Secondly, PHEVs add significantly to the electricity demand, but can drive both electri-
cally and on conventional fuel. Thus, the smoothly growing curve for electricity demand
is slightly misleading since the underlying mechanisms are more complex. Needless to
say, a computation using average values for the VKT can nevertheless give the right
order of magnitude.

It is interesting to note that figure 10 demonstrates that the electricity demand of
PHEVs is very important. Their smaller batteries and limited electric driving range,
which is equivalent to a limited daily electricity consumption, is more than compensated
by their large market shares.

5.2. Time of Charging and Power

Let us now turn to the time that could be expected for charging the computed elec-
tricity. The upper panel of figure 11 shows the times when the vehicles from a large scale
survey of German driving behaviour (MoP 1994 – 2008, see MoP (2008)) arrival at their
final destination for the day of the survey.

Most drivers arrive at their final destination in the afternoon with a peak around 5
to 7 pm. The lower panel of figure 11 shows on a logarithmic scale the distribution of
required electricity for recharging if all vehicles of the survey were operated as electric
vehicles. That is, we performed the battery state of charge simulation as described in
section 2.3 irrespective whether they could be operated as electric vehicles or whether
they were economically attractive as electric vehicles. We observe that the theoretical
distribution of required energy recharging is approximately Gaussian on the logarithmic
scale, as expected from the log-normal distribution of daily driving ranges that has been
demonstrated and discussed in section 3.3.

The arrival times alone are not sufficient for the time to decide when additional power
demand is to be expected. To this end, we need to combine the individual arrival times
with the individual electricity demand. We assume that all drivers start recharging as
soon as they arrive at their final destination and remain connected to the power grid until
they potential battery is completely recharged (using a standard German 3.7 kW power
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Figure 11: Arrival times and Electricity need for recharging. Upper Panel : Distribution of arrival times
with absolute values of occurrence from a large scale survey of German mobility behaviour. Lower Panel :
The distribution of required electricity for recharging.

supply). The result of this computation is shown in figure 12 with a time resolution of
15 minutes.
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Figure 12: Share of charging times over the day in 15 minute steps. Shown is the fraction of total
charging required in per cent that would be done if all users started charging directly after arrival at
their final destination for the day under consideration.

If car owners started to charge their vehicles directly after arrival, as assumed for
the computation, a maximum in power demand would lie around 8 pm. Please note the
special y-axis in figure 12: What is shown is the distribution of the total time for charging
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over the whole day in units of 15 minutes. The average is roughly 1%. Multiplication with
96 for the 96 quarter hours of a whole day yields roughly 100% of charging needed. Put
differently: Figure 12 shows what fraction of the total energy required would be charged
in which quarter of an hour (if all users started charging directly after arrival at their
destination). To obtain the power in physical units one needs to combine this fraction
with the total electricity demand of a given number of vehicles. For example, based on
the TCO projections, figure 10 showed that for 2030 the approx. 1 million BEVs and
7.5 million PHEVs (see figure 8) would need 5+7=12 TWh per year (cf. figure 10). Of
this energy, 2.5% would be charged within 15 minutes around 8 pm (if all users started
charging directly after their final arrival) would result in (12 TWh/365 d) ·2.5%/0.25 h≈
3.3 GW. This additional evening peak represents a significant power demand to the
typical 70 GW or so evening power demand in Germany (Biere et al., 2009). To avoid
such a peak, measures of demand side management would be required. The distribution
of charging times shows, that it should be possible for most users to shift charging to the
late night or early morning and still have a fully recharged battery ready for driving in
the morning.

6. Summary and Conclusion

To summarize, we computed TCO projections for conventional and electric vehicles
based on changing future fuel, electricity and battery prices. Since TCO is an impor-
tant cornerstone of buying decisions, we derived future market shares and corresponding
stocks of electric vehicles for Germany. Our results show that PHEVs are cost optimal
for many drivers since they combine low variable costs, unlimited total range and not
too high additional initial investment compared to ICEs. Despite their smaller batteries
and limited electric driving range, PHEVs also contribute largely to the electricity con-
sumption that could be expected from the growing number of electric vehicles in stock.
We presented calculations with a time frame until 2050, but the assumptions made can
well be justified until approximately 2030. With the possible introduction of new bat-
tery technologies and limited availability of fossil fuels, the technical parameters, e.g.
the driving range of electric vehicles, and prices can change significantly. The results
presented here beyond 2030 are more to follow the rather slow diffusion into stock and
provide an outlook what could happen if existing trends were extrapolated. Finally, the
power demand from a large number of electric vehicles if they started charging directly
after arrival at their final destination, would result in a significant power peak around 8
pm and means to shift this demand to the later night seem necessary.
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