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1 Introduction

Line planning is one of the strategic tasks a transport company is faced
with. The aim is to create a line plan with line routes and service fre-
quencies. Line optimization means to determine a line plan that is
optimal regarding to a defined objective like the number of direct trav-
elers [3], the total ride time, number of changes [5], the total cost [2] or
the total traveling time. The literature offers approaches with choos-
ing lines from a given set as well as construct line routes from the
scratch [1], [4].

All of these approaches presume a given origin-destination-matrix.
At least for urban areas this is not realistic. The most important ques-
tions of a traffic planner of a transportation company are: ”How much
does the new line plan cost?” and ”How many passengers will go by
public transport under the new circumstances?”. Obviously it is neces-
sary to consider the movement in demand for public transport within
line optimization.

In this paper we include frequency depending changing times. In
urban public transport systems often more than one line connects two
points in a direct way. The expected traveling time is therefore lower
than riding time plus half of the frequency time of the used line(s). The
waiting times will decrease if there are e.g. two lines that connect two
points by parallel line routes.

In practice, transport companies take advantage of lines that are
parallel in the city and separate in the periphery to give a good ser-
vice in the area with a great demand and connect the suburbs more
efficient with the city. By experience (i.e. tested with data of Dresden)
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minimizing traveling times without regarding parallel line routes yields
unrealistic results for the waiting times.

2 Model

In this section we present a model that can cope with (partially) parallel
lines and traveling time dependent passenger demand.

2.1 Assumptions

Let G [V,A] be a directed graph with a set of nodes V and a set of node
connecting arcs A. The nodes represent stops for public transport. The
arcs symbolize connections between nodes that can be passed by public
transport vehicles. For each arc a ride time tij is defined. Furthermore,
we know a set of line routes L. The arcs (i, j) which are part of the
route of line l are given by set Âlij . F is a set of possible frequencies a
line can be operated with.

Every node pair that is connected by at least one potential line route
yields for each combination of potential line routes l and frequencies
f one arc. The larger the pool of lines L is, the more such arcs are
required. For practical reasons we generate combinations with no more
than five parallel line routes. Thus for each combination the expected
traveling time can be estimated. Furthermore, we are able to calculate
the proportion of passengers for each line frequency combination within
a subset of lines. We assume that a path p ∈ P is a connection between
one pair of nodes u, v i.e. possibility for passengers to get from node u
to node v. While the arcs are direct connections by one or more lines a
path can be a combination of more than one arc. So necessary changes
on the way from u to v can be modeled.

Example We show the computation of traveling times for one path.
In Figure 1 you can see the connection between node u and node v with
three lines. Line 2 connects the origin and the destination directly with
a detour of four minutes and a frequency of 2 vehicles per hour while
line 1 and line 3 offer only a part of this connection. We are now able
to calculate traveling times (including the expected waiting times) of
the given connections. Exemplary the traveling times of two generated
arcs are shown in Figure 2.

The traveling times of the arcs are calculated as follows:
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Fig. 1. Generated path with three involved lines

t∗puj =
60

2 · (2 + 6)︸ ︷︷ ︸
waiting time

+
2 · (10 + 10) + 6 · (10 + 6)

(2 + 6)︸ ︷︷ ︸
riding time

= 20.75 (1)

t∗pjv =
60

2 · (2 + 6)
+

2 · 2 + 6 · 2
(2 + 6)

= 5.75 (2)

The expected traveling time of the shown path is t∗puv = 20.75+5.75 =
26.5 minutes. If only line 2 is available for the path, the expected trav-
eling time is 15 + 22 = 37 minutes. Similar to this we can calculate the
proportions of the demand of each original arc and each line frequency
combination as follows:

βp,1,6,i,j =
6

6 + 2
= 0.75 (3)

This means that 75% of the demand of passengers from u terminating
in v will go by line 1 with the frequency of 6 vehicles per hour on arc

Fig. 2. Traveling times under the condition of parallel line routes
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(i, j) when the line plan contains path p. We assume that 75% of the
passengers will go by line one because six out of eight vehicles per hour
belong to line 1.

On the basis of generating a large set of paths before optimization
(e.g. by a n-shortest-path-algorithm) we get the following model:

max F =
∑

p

dp · zp (4)∑
p,u,v∈p̄puv

zp ≤ 1 ∀ (u, v) ∈ V 2|u 6= v (5)

∑
f

ylf ≤ 1 ∀l ∈ L (6)

∑
p∈P̂plfij

dp · βplfij · zp ≤ Klf · ylf ∀ (l, i, j) ∈ Âlij ,∀f ∈ F (7)

∑
l,f

clf · ylf ≤ C (8)

zp ∈ {0, 1} ∀p ∈ P (9)
ylf ∈ {0, 1} ∀l ∈ L,∀f ∈ F (10)

The objective function (4) maximizes the expected total number of
passengers. To every path p an expected traveling time is assigned, that
defines the expected number of passengers dp. The binary variables zp

decide whether path p is selected or not. Obviously one pair (u, v) of
nodes can be connected by many different paths. The constraints (5)
ensure that the demand of one node pair (u, v) can be met by maximum
one path p. The set p̄puv gives for each path p the corresponding origin
and destination. It is allowed to choose at most one frequency f for
every line path l (6). The binary variables ylf take the value 1, when
line route l with the frequency f is selected. The capacity constraints
(7) for all arcs (i, j), belonging to the line route l and the frequency
f , give at least the capacity to handle the number of passengers mov-
ing along it. The demand of a path dp multiplied by βplfij represents
the expected number of passengers. Set P̂plfij denotes line routes l fre-
quencies f and arcs (i, j) which correspond to path p. The parameter
Klf gives the capacity per vehicle of line l and frequency f . Let clf be
the (proportional to the riding time) operating cost of line route l and
frequency f . So the constraint (8) bounds the total operating cost to a
given maximum of total cost C.
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2.2 Discussion

One obvious problem is the large amount of possible and reasonable
paths. When generating them before the optimization process we en-
large the model unnecessarily because most of the paths will not be part
of a solution. So it seems to be appropriate to generate only those paths
which will be probably part of a solution. A decomposition method for
problems with many possible but only a few reasonable alternatives
could be helpful.

3 Example

To clarify the above statements we present a small example. Starting
with a directed graph with 10 nodes and 36 arcs. Before the optimiza-
tion process we defined 16 possible line routes. Based on it 4320 arcs
have to be created to model all (parallel) line frequency combinations.
After that 24728 possible paths are generated by a modified n-shortest-
path-algorithm. These paths contain the line routes, the frequencies and
the passenger demand for each arc of the original graph.

For each pair of nodes we assume linear demand functions dpuv =
auv − buv · t∗puv with random parameters auv and buv.

Now we are in a position to solve the problem and vary the maximum
total cost. The results are shown in table 1. One obvious result is that
the increase of the maximum total cost yields no fundamental increase
of the total number of expected passengers at a certain point.

No max. Cost objective computing time [s] gap
1 100 1016 1.92 -
2 200 1852 33.04 -
3 400 2840 1000.00 0.038
4 500 3228 1000.00 0.033
5 700 3621 31.28 -
6 800 3631 14.26 -
7 1600 3656 7.62 -

Table 1. Results of the example

For all scenarios, which took more than 1000 seconds the gap be-
tween the best possible and the actual integer solution is denoted. For
example in Figure 3 we show the solution of scenario 5 with the maxi-
mum total cost of 700 minutes of total vehicle operating time and the
objective of 3621 passengers.
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Fig. 3. Solution of scenario 5

4 Conclusions

In this article we have presented an approach on line optimization in
urban public transport systems. It is shown that it is possible to take
into account parallel line routes (with decreasing waiting times) and
changing demand. There is still a lot of work to be done in the field
of estimation of relation specific demand regarding to the expected
traveling time and e.g. the number of changes needed or socioeconomic
structures of corresponding districts. Moreover, the solution process
should be made more efficient to get the ability for solving real world
instances. An advantage of our approach is that it is possible to include
non-linear demand functions in the data but nevertheless the model will
stay linear.
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