
User- and Job-Centric Monitoring:
Analysing and Presenting Large Amounts of Monitoring Data

Henrik Eichenhardt, Ralph Müller-Pfefferkorn, Reinhard Neumann, Thomas William
Technische Universität Dresden

D-01062 Dresden, Germany

Abstract

For data analysis or simulations (e.g. in particle physics)
single users submit hundreds or thousands of jobs to the
Grid. This puts a new burden on the users side - keeping an
overview on the status and performance of the jobs in a dis-
tributed environment. In this paper, a user- and job-centric
monitoring system is presented. It collects job and sys-
tem specific information, analyses them and presents them
graphically to the user. In the analysis of the monitoring
data job problems are classified to give hints to the user.
The graphical and interactive presentation allows the user
to easily keep an overview as well as to dig into more de-
tailed monitoring data.

1 Introduction

One of the most common scenarios of the use of Grid
computing is the submission of a large number of jobs, e.g.
for the analysis of large data sets, for large scale simulations
or parameter scans. A typical example (and one of the ma-
jor promoters of Grid computing) is particle physics. With
the start of the Large Hadron Collider (LHC) at CERN in
autumn 2008 dozens of petabyte of data need to be anal-
ysed by thousands of physicists. Furthermore, simulations
will produce even more data to compare theory and experi-
ments. Thus, the LHC Computing Grid (LCG) was setup to
fulfil these needs.

To accomplish an analysis a single physicist will submit
hundreds or thousands of jobs to the Grid - each job reading
only a small part of the data. Managing such a large num-
ber of jobs is difficult - delayed or failed jobs slow down the
work of the user. On a desktop machine the user is accus-
tomed to have the ability to monitor the application, e.g. to
use operating system tools (like top on Linux/Unix systems)
to find out what the resource usage of the application is. In
the LCG such tools did not exist or were of limited use (e.g.
with textual output).

In this paper, the AMon monitoring system is presented
which was designed and implemented not only to provide
users with information, but support them in their daily work
in the Grid. Section 2 shortly introduces AMon’s architec-
ture. Section 3 describes the analysis and classification of
the monitoring data to find problematic jobs and section 4
shows the browser-based user interface and its capabilities
to visualise the data and to allow an interactive monitoring
by the user.

2 The AMon Architecture

The AMon monitoring system was designed and im-
plemented in the High Energy Physics Community Grid
project1 (HEPCG) [7] of the German D-Grid initiative [5].

AMon consists of four components that are distributed
in the Grid (see figure 2):

1. Data Collection: On the worker nodes - where the user
application is running - a monitoring daemon is started
in parallel to the job. It samples a variety of job- and
system specific information in configurable time inter-
vals of a few minutes (see table 1). Currently, these
data are stored in R-GMA, the Relational Grid Moni-
toring Architecture [4] which is used in the LCG mid-
dleware gLite [1] to publish monitoring data. R-GMA
is a kind of a distributed relational database that stores
the data in predefined tables for a predefined duration.
In general, AMon allows to use any other system to
store and retrieve distributed monitoring data.
The user can switch on and off the monitoring by sim-
ply setting an environment variable.

2. Data Gathering: A Web Service is used to gather
the monitoring data. Currently, it is possible to ac-
cess R-GMA or conventional relational databases (like
MySQL, e.g. where local monitoring data are stored),

1funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01AK802C

Figure 1. Architecture of the Job and Resource Usage Monitoring System AMon

but in general any monitoring system can be accessed
here.

3. Data Analysis and User Interface: The entry point for
the users of AMon is a Web portal (based on the portal
technology Gridsphere [8]). Portlets (Java classes run-
ning in the portal) provide the logic and the look and
feel to the user, e.g. asking the Web Service for data
and analyse them (see section 3).

4. Visualisation: The preanalysed data can be viewed in
Java applets that are embedded in the portlets. Java ap-
plets were chosen because they provide the possibility
of interactivity with the user and sophisticated visuali-
sation capabilities (see section 4).

AMon allows to persistently store the monitoring data from
R-GMA into a relational database (e.g. MySQL). The in-
tention is to allow site administrators to keep the data for
debugging purposes.

The access to the data may be restricted by authorisa-
tion decisions. Currently, AMon can connect to VOMS, the
virtual organisation management systen [2] that is used in
LCG to obtain authorisation information for a user.

3 Characterising Job Problems

Though having access to extensive information about
jobs is quite valuable for a user, it is of limited help in the
case of large jobs sets of hundreds or thousands of jobs.
Even with the graphical presentation of the mass of data,
it is hard to identify problems. Thus, an analysis of the
monitoring data is integrated in AMon that tries to give the

users hints on possible problems. It can just give hints be-
cause it is not possible with the limited monitoring infor-
mation available to absolutely classify a job as problematic
or good. This depends on the job’s intrinsic logic too. For
example, an application that reads data in very small por-
tions will show a low rate (MBytes/second) of disk access.
Even though this might be normal for the application, from
an outside (monitoring) view a low rate might also point to
a problem with the disk or network hardware. Hence, only
the user can decide - with supporting information from the
monitoring system - if the state of a job is critical or not.

3.1 Critical Job States of a Single Job -
Single-Job Analysis

To characterise the state of a single job for every mea-
surement point, a set of filters were developed that anal-
yse the monitoring information. Based on the available data
(see table 1) new metrics are created that normalise the data
to a starting point or calculate rates.

Currently, there are 9 filters that look at the following job
activities and system states:

disk usage: critical amount of disk usage reached prone
to cause a job abortion due to “disk full”

swap: performance due to insufficient memory and
swapped out pages

I/O: performance of the disk access on the host

memory usage: critical amount of memory usage prone
to cause swap activity

calculation: degree of CPU utilisation

Sensor group Description
CPU activity Utilisation of CPU(s): overall as well as divided into groups (user, nice, system, irq,

iowait, idle)
CPU load Load Averages of CPU(s)
Memory usage Main memory, swap memory, resident and virtual set size of jobs
I/O File centric monitoring of disk access [14]
Network Transfer rates of network interface
Disk usage Disk usage of specific directories and partitions
Time measurements Runtime and utilised CPU time
Output Output of user specified files (e.g. stdout, stderr)

Table 1. Summary of monitoring data collected

idle: job is not showing any progress

overload: CPU load on the host

OS activity: operation system activity on the host

network: network performance on the host

The filter evaluation consists of two steps. First, a fil-
ter/activity specific set of metrices is created and evaluated.
Both, job- and system specific data are used. In the sec-
ond step the influence of the found state on the job’s per-
formance is characterised by looking at job specific perfor-
mance parameters, like the ratio of used CPU time and run-
time. According to the result one of the three severity levels
low, medium or high is set. In summary a state is char-
acterised by a statement like ”low job performance due to
swap activity”.

Currently, the filters are implemented in form of a dis-
qualification procedure: Once a filter matches a measure-
ment point, the evaluation is cancelled. Therefore, the fil-
ters have a hierarchy in which they are applied. In the next
version of AMon this procedure will be succeeded by one
that evaluates all filters and also defines one of three levels
(low, medium or high) for the activity.

As an example the swap filter will be explained in the
following. The main memory of a Linux system is divided
into application memory, page cache, buffer cache and free
memory. If there is not enough free memory available, the
least recently used application pages are moved (swapped)
to disk. Disk access is much slower than memory access.
Therefore, if a process needs to access its data that were
swapped to disk, the performance of the process can slow
down significantly. Such a state of the system should be
considered harmful.

The swap filter checks a number of process and system
specific metrics to find such a critical state at a measurement
point. At first, it looks at the state of the host machine:
metrices on the load and memory usage - the ratio of user
load and system load average normalised by the number of

CPUs Lrel

Lave
ncpu

, the overall system CPU load Lrel, the CPU

load for I/O wait Lrel
io , the fraction of free main memory

Mrel
free and the fraction of swapped out memory Mrel

swap are
evaluated to match the host with swap activity.

To mark the influence of the swap activity on the job
performance the process specific metrices: the ratio of the
used CPU time of the process to the running time (CPU
utilisation) tcpu

trun
and the fraction of main memory used

by the process Mrel
proc). If they exceed predefined values

the filter matches. Once the filter is matched it differenti-
ates between three cases according to the job performance:
low/medium/high (see table 2).

Figure 2 shows some of the filter variables for an ex-
ample case. The application has a memory demand above
the size of the main memory. Thus, the load of the CPU
caused by both waiting for I/O and idling has increased sig-
nificantly, while the CPU utilisation by the application pro-
cess is very low. Together with an increased memory and
swap usage (not shown) this points to the swapping prob-
lem.

Figure 2. Overall CPU load (Lrel = CPULoad),
load due to waiting for I/O (Lrel

io = IOWait) and
idling (Lrel

idle = Idle) for an example application
with a large memory demand

Swap criteria Performance State
Lrel

LoadAvg Lrel Lrel,io Mrel
free Mrel

swap Mrel
proc

tcpu

trun

< 0.2 low
< 0.8 < 0.8 > 0.1 < 0.05 > 0.1 > 0.05 0.2 - 0.8 medium

> 0.8 high

Table 2. Filter criteria for the Swap Activity Filter

3.2 Comparing Job States - Multi-Job
Analysis

Another possibility to find critical job conditions is the
analysis of the evolution of the jobs and the distribution of
the states identified with the filters. Depending on the sever-
ity level of the found states a job status can be defined as
either problematic or not problematic. An example for a
problematic state is swapping activity combined with a low
job performance, while a high job performance with net-
work activity should not be problematic. Looking at the
distribution of these states one can extract more informa-
tion. Several algorithms were investigated for AMon.

The most straightforward information to get is to take a
look at the distribution of states in a single job. Taking the
found states at all measurement points in time, a job can
be presumed to be problematic if more than 20% of all its
states are themselves problematic.

Figure 3. Example of the state distribution of
a set of network intensive jobs - all states not
included in the 95% integration are consid-
ered ”rare”

Another algorithm takes a deeper look and compares the

states of several jobs. This is only valid in the case of a
set of similar jobs, e.g. analyses in particle physics that run
the same algorithms on different chunks of data. The basic
idea is that similar jobs are similar in their state distribu-
tion. Most of the time only a few jobs will have problems or
will fail and thus will be observable as a deviation from the
”standard” behaviour. Jobs that contain such ”rare” prob-
lematic states will be marked as problematic. The algorithm
finds rare states in the distribution of all states of all jobs
that are seen as problematic. ”Rare” is defined for a state
if it is not included in the 95% confidence interval of the
distribution (see figure 3).

A third algorithm looks at the state distribution of calcu-
lation intensive jobs. It takes the ratio of the CPU time used
by the job to its runtime of the set of jobs and calculates
average and standard deviation of that metric. Jobs with a
ratio outside of two standard deviations will be selected as
problematic.

Further studies on other algorithms are ongoing. Never-
theless, even these quite simple algorithms already have a
large potential. First studies showed that they have the abil-
ity to distinguish critical and normal jobs. For these studies
the old model of the filters was used, which applies the sin-
gle job analysis filters (section 3.1) in a hierarchical way.

In the test scenario a number of jobs/applications were
run each showing a ”faulty” behaviour, e.g. large mem-
ory consumption or idling, as well as ”normal” (calcula-
tion intensive) jobs. The jobs were started in a random
order so that different combinations of jobs ran on the re-
sources. The host was a cluster with Dual-CPU nodes. Ta-
ble 3 summarises the results. It shows for every ”faulty” job
behaviour (job type) the fraction of states of all jobs selected
and their share of problematic states as well as the fraction
of states not selected (missed) and their share of missed
problematic states. The miss rate of problematic states is
very low (below 6% for all job types) denoting that most
of the problems can be identified. But still there are some
problems like high network or I/O activities which are not
yet identified well by the filters. The last line shows that the
analysis results of the ”normal” jobs are affected if they run
on machines where they share resources (e.g. multi-core
machines which share the main memory). If ”faulty” jobs
run on the same machine, at about 5% of all measurement
points problematic states were also assigned to the ”nor-

Job Type fraction of
states selected

fraction of
problematic
states in selected

fraction of
states missed

fraction of
problematic
states in missed

Idling 73% 80% 27% 1.8%
Memory intensive (more than
the main memory available)

48% 50% 52% 3.8%

Overload 95% 82% 5% 0%
I/O intensive 20% 48% 80% 1.4%
System intensive 75% 80% 25% 3.7%
Network intensive 15% 60% 85% 5.2%
”Normal” (calculation) 10% 44% 90% 0.6%

Table 3. Overview of the selection results of the multi state analysis on synthetic jobs

mal” jobs. The reason is that on shared systems the system
specific information can not distinguish between the single
processes. On dedicated non-shared resources the ”normal”
jobs are identified as ”not problematic”.

4 Visualisation of the Data

Another major focus of AMon is the visualisation of the
monitoring data and the analysis results. In the case of large
job sets only a graphical presentation of information is of
use for the job submitter, both for getting an overview on the
jobs and to examine detailed monitoring data for debugging
purposes.

The visualisation is based on Java applets that run on the
users desktop machine. They allow immediate interactivity
with the user by clicking with the mouse into the displays.
Compared with other dynamic web technologies (e.g. PHP
or JSP [12]) that are server based the response to user in-
teractions is much faster. Using applets also improves the
scalability of the AMon system as data collection (Web Ser-
vice), user interface (portal) and visualisation (applets) are
separated.

The data are presented in four categories/views: job sta-
tus information from the middleware, analysis results of the
AMon filtering, detailed monitoring data, and user output.
In the following some of the associated visualisations are
described and shown.

Figure 4 presents the display of the status data from the
gLite middleware. The user gets information whether the
job is running, pending, aborted etc. The data are shown
either graphical in a pie chart or as a list with the additional
textual information on each job. The list can be sorted by
any column.

The analysis results of the monitoring data (section 3.1)
are presented in a display depicted in figure 5. In each row
the filter results of the different activities are shown, the
severity marked with the traffic light colours. Additionally,

hints are given as text. The ”***” columns weights the fil-
ter results (severity levels) to create a kind of a summary.
Again, the list can be sorted by any column.

The data display (figures 6 and 7) allows the user to go
into detail. The timeline shows monitoring data in their
temporal development, both as colour coded displays for
all jobs or as drawing for a single job. The user can select
single jobs and metrices by simple mouse clicks. It is pos-
sible to zoom into the data views (by choosing a range with
the mouse) or to switch between a view of the data versus
the runtime or the measurement time of the application(s).

When switching on the monitoring, the user can define
up to five output files of his application to be observed. At
every measurement point AMon catches the last thousand
characters of these files, which the user then can view in the
output display (figure 8).

5 Related Work

Most existing monitoring tools in Grid computing focus
on the monitoring of resources and services. Examples are
GridICE [3], GStat [13] or the LCG Real Time Monitor [6].
Only very few collect job specific information and provide
a user view. G-Monitor [9] retrieves its information only
from the resource broker, and thus is restricted to data from
the submission process. OCM-G [10] is a Grid job monitor-
ing tool that focuses on parallel jobs which are distributed
across multiple sites. It contains an infrastructure to col-
lect data from different processes and supports monitoring
of the environment and performance monitoring.

6 Conclusions and Future Work

For the submission of large job sets to the Grid it is nec-
essary to support the users in keeping track on the status
of their jobs and provide them with sufficient information
on the job conditions. The job- and user-centric monitoring

Figure 4. Status Display - status information from the gLite middleware: left - pie chart, right - list
with detailed state information

system AMon collects such information and presents them
graphically with an easy to use interface. Furthermore, it
analyses the data to give hints to the user about possible
problems in the job execution.

In the future, the analysis algorithms will be enhanced
to improve the problem search and identification. For data
collection AMon will be integrated with Globus 4 [11] to
use MDS for information storage and retrieval and to pro-
vide job-centric monitoring information in Globus 4 envi-
ronments. The visualisation part will be extended to refine
the presentation, for example to present the performance in-
formation of the I/O monitoring [14].

References

[1] gLite - Lightweight Middleware for Grid Computing.
http://www.glite.org (visited 2008).

[2] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello,
A. Frohner, K. Lőrentey, and F. Spataro. From gridmap-file
to VOMS: managing authorization in a Grid environment.
Future Gener. Comput. Syst., 21(4):549–558, 2005.

[3] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, G. L.
Rubini, G. Tortone, and M. C. Vistoli. Gridice: a monitor-
ing service for grid systems. Future Gener. Comput. Syst.,
21(4):559–571, 2005.

[4] P. Bhatti, A. Duncan, S. M. Fisher, M. Jiang, A. O. Kuseju,
A.Paventhan, and A. J. Wilson. Building a robust distributed
system: some lessons from R-GMA. In CHEP’07, Sep
2007.

[5] D-Grid. The D-Grid Initiative. http://www.d-grid.de (visited
2008).

[6] GridPP. the LCG Real Time Monitor.
http://gridportal.hep.ph.ic.ac.uk/rtm/ (visited 2008).

[7] HEPCG. High Energy Physics Community Grid.
http://www.hepcg.org (visited 2008).

[8] J. Novotny, M. Russell, and O. Wehrens. Gridsphere: a por-
tal framework for building collaborations: Research articles.
Concurr. Comput. : Pract. Exper., 16(5):503–513, 2004.

[9] M. Placek and R. Buyya. G-Monitor: A web portal for mon-
itoring and steering application execution on global grids.
In CLADE ’03: Proceedings of the International Workshop
on Challenges of Large Applications in Distributed Environ-
ments, page 10, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[10] K. Rycerz, B. Balis, R. Szymacha, M. Bubak, and P. Sloot.
Monitoring of hla grid application federates with ocm-g. In
DS-RT ’04: Proceedings of the 8th IEEE International Sym-
posium on Distributed Simulation and Real-Time Applica-
tions, pages 125–132, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] J. M. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Fos-
ter, and C. Kesselman. Monitoring and discovery in a
web services framework: Functionality and performance of
the Globus toolkits MDS4. Technical Report, ANL/MCS-
P1248-0405, April 2005.

[12] Sun Microsystems. Java Server Pages Technology.
http://java.sun.com/products/jsp/ (visited 2008).

[13] The GStat team. Grid statistics (gstat) description.
http://goc.grid.sinica.edu.tw/gstat/ (visited 2008).

[14] T. William. Monitoring von Dateizugriffen in einer Grid-
Umgebung. Number ZIH-R-0703. Technische Universität
Dresden, June 2007.

Figure 5. Filter Display - results of the single job analysis: the severities of the filter states are
denoted in traffic light colours and are combined with additional textual explanations

Figure 6. Data Display - colour coded timeline of monitoring data for all jobs (here: real memory
usage versus the runtime), the red line denotes that clicking into the display will get a detail infor-
mation

Figure 7. Data Display - data (memory usage) of a single job versus the measurement time

Figure 8. Screenshot of the browser with the Gridsphere based portal and the display with the output
of user defined files

