
VampirServer 9

User Manual

Copyright
c© 2019 GWT-TUD GmbH

Freiberger Str. 33
01067 Dresden, Germany

http://gwtonline.de

Support / Feedback / Bug Reports
Please provide us feedback! We are very interested to hear what people like,
dislike, or what features they are interested in.

If you experience problems or have suggestions about this application or manual,
please contact service@vampir.eu.

When reporting a bug, please include as much detail as possible, in order to
reproduce it. Please send the version number of your copy of VampirServer
along with the bug report.

Please visit https://vampir.eu for updates and new versions.

service@vampir.eu
https://vampir.eu

Manual Version
VampirServer 9.7 / June 2019

2

http://gwtonline.de
mailto:service@vampir.eu
https://vampir.eu
mailto:service@vampir.eu
https://vampir.eu

Contents

1 Introduction 4

2 Installation 5

3 Vampir Server 9
3.1 Using the Standard Control Interface 9

3.1.1 Obtaining a Command Overview (help) 9
3.1.2 Starting a New Server Instance (start) 10
3.1.3 Stopping an Existing Server Instance (stop) 12
3.1.4 Listing Server Related Information (list) 13
3.1.5 Configuring the Server (config) 13
3.1.6 Authentication . 14
3.1.7 Command Line Reference 15
3.1.8 Environment Variables . 16

3.2 Connecting Vampir to VampirServer 16
3.2.1 SSH Tunneling . 17

3.3 Using the Back-End Control Interface 19
3.3.1 Manual Invocation . 19
3.3.2 Environment Variables . 20

3.4 Customizing Launch Scripts . 21
3.4.1 Adding Batch Support (LSF) to the MPI Launch Script . . . 22
3.4.2 Adding Custom Launch Arguments 23

4 Vampir Proxy 25
4.1 Prerequisites . 25
4.2 Starting a Proxy Session . 26
4.3 Connecting to a VampirServer Remote Station 27
4.4 Launching VampirServer via VampirProxy 28

A Appendix 30
A.1 Default MPI Launch Script . 30
A.2 MPI Launch Script with LSF Support 33

3

1 Introduction

VampirServer is a software tool for analyzing the run-time behavior of parallel
software programs. It visualizes the program execution by means of event traces,
gathered by monitoring software like Score-P, VampirTrace, or TAU. The visual-
ization takes place after the completion of the monitored program, by using data
that has been captured during the program execution and stored in so-called
trace files.

VampirServer is based on parallelized analysis algorithms. Data analysis and
visualization are implemented as a client-server framework. The server compo-
nent can be installed on a segment of a parallel production environment. The
corresponding clients visualize the performance results graphically on remote
desktop computers. Major advantages of this parallel and distributed approach
are:

1. Performance data which tends to be bulky is kept at the location where it
was created.

2. Parallel data processing significantly increases the scalability of the analy-
sis process.

3. The applied performance analysis paradigm is easy to handle and works
efficiently from arbitrary remote end-user platforms.

4. Very large trace files can be browsed and visualized interactively.

VampirServer translates a program’s performance data into a variety of graph-
ical representations providing developers with a good understanding of perfor-
mance issues concerning their parallel and serial applications. VampirServer en-
ables quick focusing on appropriate levels of detail which facilitates the detection
and explanation of various performance bottlenecks such as load imbalances
and communication deficiencies. This documentation is intended to be used
both as a startup guide and as reference manual.

4

2 Installation
The platform specific executables for server and client, as well as their corre-
sponding license files, are needed so as to run the VampirServer tool. Server
and client are available in platform specific installation packages. Please, contact
sales@vampir.eu for the purchase of software licenses. Once you obtained
the installation files proceed with the following steps:

1. Start the VampirServer Installer by typing

$ vampirserver-9.7.0-<platform>-setup.sh

on your command line. You will be asked a few questions. Default answers
to these questions are provided in brackets. Please confirm the default
answers by pressing the enter key on your keyboard. Alternatively, you
can enter the appropriate settings for your compupter system. Contact
your system’s administrator if you are not sure about the right answers.

The VampirServer Installer copies the software into the directory <install-
dir>. By default, <install-dir> is set to /opt/local/vampir-9.7.0 if installed
with root permissions or $HOME/vampir-9.7.0 otherwise. After a success-
ful installation, the following files reside in <install-dir>:

INSTALL.txt
bin/

vampir-proxy
vampirserver
vampirserver-core
vampirserver-shutdown

doc/
vampirserver-manual.pdf
vampirserver-release-notes.txt

etc/
proxy/
server/

etc/proxy/
agent
agent-auto-start
config

etc/server/launcher/

5

sales@vampir.eu

2 INSTALLATION

ap
mpi
smp

etc/server/launcher/custom/
llbg
lsf
mpi-intel
pbs
slurm

lib/
driver/

lib/driver/
MpiModCore.c
MpiModDef.h

In case of a configuration error, detailed error messages can be found in
<install-dir>/vampirserver-config.log .

2. Adjust the system environment variable PATH as follows:

$ export PATH=$PATH:<install-dir>/bin

Make sure that this variable is set accordingly whenever you want to use
VampirServer. This can be achieved by adding the above line to your lo-
gin scripts or by creating an appropriate software module for the software.
Contact your local system administrator for further details.

3. Copy the license file vampir.license that you received separately to <install-
dir>/etc/ and make sure that it is readable (i. e. the right permissions bits
are set) for all users and writable (!) for the user who is doing the setup
procedure. See Section 3.3.2 for further details.

4. Start the VampirServer program with:

$ vampirserver start smp

This should result in a message similar to the following:

Launching VampirServer...
Estimating the number of processing elements
↪→ (overwrite with -n option)...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and [...]
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

6

Certain Vampir license types require to be activated for individual comput-
ers. If this is the case for your license, VampirServer will print out the
following message instead:

Launching VampirServer...

Dear customer, your license needs to be activated ...
Please, visit https://vampir.eu/activation ...

-----BEGIN REGISTRATION-----
LicenseId: 7592bbc4c9
Serial: 1146eca05c49d4b6b74a3daf5b046e92332930aa
-----END REGISTRATION-----

An activation file, named vampir.activation ...
Error: Could not start VampirServer.

Please visit https://vampir.eu/activation in order to obtain a li-
cense activation code file. Alternatively, send the printed registration infor-
mation in an e-mail to service@vampir.eu. In both cases, an activa-
tion code file will be sent to you by e-mail. Copy the activation file vam-
pir.activation to <install-dir>/etc/ and start over at this item.

5. Start the Vampir visualization program, which has to be installed inde-
pendently from VampirServer. Establish a connection to VampirServer
from within the visualization program by clicking on Menu→File→Open Re-
mote... . Complete the input fields Server and Port. If both Vampir and
VampirServer are executed on the same computer system you would typi-
cally have to enter localhost and a port number between 30000 and 30099.
VampirServer’s startup output

VampirServer <12991> listens on: bedrock:30000

assists you in finding the right connection parameters. It tells you exactly
on which host VampirServer runs and to which port it listens.

The progress and status of the connection setup is indicated in the Vampir
performance visualizer. Once it is connected to a VampirServer instance,
its usage is identical to the stand-alone Vampir program. Please consult
the Vampir user manual for further reading.

6. Do further optional customization. The process of launching the Vam-
pirServer core program (vampirserver-core) is slightly platform dependent.
The necessary parameters and environment variables are normally set au-
tomatically by the standard control interface (vampirserver), which makes

7

https://vampir.eu/activation
service@vampir.eu

2 INSTALLATION

use of launch scripts located in <install-dir>/etc/server/launcher. If nec-
essary, these scripts can be complemented with system specific settings
like specific MPI or batch parameters. Example scripts are located in
<install-dir>/etc/server/launcher/custom. Please note that this procedure
addresses system administrators or experienced users.

8

3 Vampir Server

3.1 Using the Standard Control Interface

VampirServer is a parallel program that supports both distributed and shared
memory computer systems. Unfortunately, the startup procedure of parallel pro-
grams on high performance computers is somewhat platform dependent. There-
fore, VampirServer is shipped with a standard control interface that takes care
of all platform dependent settings. The control interface is a command line pro-
gram named vampirserver. This control interface is the preferred way to manage
VampirServer analysis sessions. A default VampirServer instance can be started
with the following command line sequence:

$ vampirserver start

which results in the following output:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

The vampirserver command line program provides a generic interface to a set
of administrative commands. Its general invocation syntax is as follows:

$ vampirserver [command] [arguments ...]

The following commands are supported: help, start, stop, list, version. We will
now discuss the commands one by one. A short summary of all supported com-
mands and arguments is given in Section 3.1.7.

3.1.1 Obtaining a Command Overview (help)

Issuing the following command on the command line:

$ vampirserver help

provides a brief overview of all commands and their arguments:

9

3 VAMPIR SERVER

USAGE
vampirserver [subcommand] [arguments ...] [-- [custom arguments ...]]

SUBCOMMANDS
help, -h, --help show this little help

config, cf
Interactively configures VampirServer for the given host system. MPI
support can be enabled or disabled. The default launch script can be
set.

-s, --silent use default answers for all questions

list, ls [servers | launchers]
List server related information. Currently, this command lists all
active servers or the available launch scripts (launchers). If no
argument is provided, all active servers are listed.

start, up [-n] [-p] [-t] [LAUNCHER]
Start a new server instance. LAUNCHER identifies the launch script to
be used.

-a, --auth=MODE set authentication mode: crpw-rnd, none
-n, --ntasks=NUMBER set the number of analysis tasks
-p, --port=NUMBER[:END] set port (range) the server is going to listen on
-t, --timeout=NUMBER set the startup timeout to NUMBER seconds

stop, ex [SERVER_ID]
Stop the given server or the most recent server if no SERVER_ID is
provided. The server ID is printed during startup. Alternatively, use
the list command to print a list of available servers.

version, -v, --version show VampirServer’s revision

3.1.2 Starting a New Server Instance (start)

Issuing the following command on the command line:

$ vampirserver start

starts a new instance of VampirServer as a background process. Upon startup,
VampirServer will generate the following output:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

The last output line provides the server ID (12991), the host address (bedrock),
and the socket port (30000) where the server awaits connection requests from
the Vampir performance visualizer.

By default, VampirServer will start with a concurrency level of four analysis
tasks. For analysis sessions with large data volumes this concurrency level can
be increased with the option -n:

10

3.1 USING THE STANDARD CONTROL INTERFACE

$ vampirserver start -n 32

which starts a new instance of VampirServer with 32 parallel worker tasks. Vam-
pirServer will generate the following output in return:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 32 analysis processes...
↪→ (abort with vampirserver stop 13227)
VampirServer <13227> listens on: bedrock:30000

Please note that it is recommended to have at least as many cores in your
computer system as the specified concurrency level. Otherwise, a performance
degradation will be observed.

During its lifetime VampirServer listens on a specific socket port for incoming
connection requests from the Vampir performance visualizer. At startup Vam-
pirServer picks a free port in the range of 30000-30099. Sometimes it is desirable
to use one specific port or a different port range. The port selection behavior can
be modified with the option -p. Issuing the following command on the command
line:

$ vampirserver start -p 47011

starts a new instance of VampirServer that listens to port number 47011. Vam-
pirServer generates the following output in return:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 32 analysis processes...
↪→ (abort with vampirserver stop 17653)
VampirServer <17653> listens on: bedrock:47011

If port 47011 is already in use by another application, the invocation of Vam-
pirServer fails with the following error message:

Error: Failed to listen to network port 47011

Depending on the host platform, the startup of VampirServer involves the allo-
cation of system resources through the installed batch system. The initialization
and provision of system resources can induce long delays if they are temporarily
unavailable. VampirServer’s startup process timeouts if system resources are
unavailable for a certain period of time. The respective waiting time in seconds
can be set with the option -t. The startup command

$ vampirserver start -t 60

11

3 VAMPIR SERVER

terminates after 60 seconds if the allocation of system resources could not be
achieved. It generates the following output:

Launching VampirServer...
Error: Could not start VampirServer.

The invocation an initialization of VampirServer depends on host specific char-
acteristics like the MPI system, the batch system, or the memory and processor
architecture. The required checks and adjustments are hidden in fully transpar-
ent launch scripts so that host specific customization is reduced to a minimum.
VampirServer automatically uses a default launch script, which is selected dur-
ing the software installation process. Sometimes, additional launch scripts are
beneficial to support multiple system setups. If required, the user can manually
select a specific launch script by adding the launch script’s name to the invoca-
tion command.

$ vampirserver start smp

launches VampirServer in thread mode, i. e. MPI parallelization is disabled and
shared memory parallelization with threads is used instead. Currently, three
default launch scripts are shipped with VampirServer:

• ap: is a pure MPI startup sequence based on aprun for Cray systems.

• mpi: provides a pure MPI startup sequence without batch job creation.

• smp: is an alternative startup sequence for a threaded shared memory
execution without MPI parallelization and without batch job creation.

Launch scripts can customized by system administrators and users. See Sec-
tion 3.4 for further details. By default, VampirServer searches for script files in
<install-dir>/etc/server/launcher. Alternatively, an absolute file path with a lead-
ing / to an arbitrary location in the file system can be specified as launch script
argument.

The server program is executed as a background process. It runs until it is
terminated either manually (see Section 3.1.3 below) or automatically by the
host computer’s batch system.

3.1.3 Stopping an Existing Server Instance (stop)

The standard control interface keeps track of all VampirServer launches. Upon
startup, a specific server ID is assigned to each server instance and printed as
follows:

VampirServer <server-id> listens on: <host>:<port>

12

3.1 USING THE STANDARD CONTROL INTERFACE

A given active server instance can be terminated by issuing a stop command
with the respective server ID. Issuing the following command on the command
line will stop server instance 9991:

$ vampirserver stop 9991
Shutting down VampirServer <9991>...
VampirServer <9991> is down.

Please note that the server ID is an optional argument. If it is omitted, the stan-
dard control interface will terminate the most recently launched server instance.
Repeated invocation of vampirserver stop will terminate server instances
one by one until no active servers are left.

3.1.4 Listing Server Related Information (list)

The standard control interface of VampirServer can list related status and setup
information of program instances. Currently, two list types are supported: the
servers list includes all VampirServer instances that have been started by the
user. Alternatively, the launchers list provides the names of all pre-defined
launch modules.

The following command on the command line will list all known server in-
stances:

$ vampirserver list servers
24947 mars:30055 [4x, mpi]
24948 neptun:30056 [16x, smp]
24949 mars:30057 [8x, ap]

The output lines have the following format:

<server-id> <host-name>:<port-number> [<ntasks>, <launcher>].

Each line starts with a server-id, which is a unique number for every server in-
stance. It is followed by the network location of VampirServer’s master service
process. The information consists of the host name and the port number sep-
arated by a colon. The Vampir performance visualizer requires this information
during a connection setup. A line ends with brackets enclosing the degree of par-
allelism (ntasks) and the name of the launcher startup module for a particular
server instance.

3.1.5 Configuring the Server (config)

The VampirServer program needs to be configured for the given host system
prior to being used for the first time. Normally, this configuration is done during

13

3 VAMPIR SERVER

the software installation (see Section 2). It is however possible to re-configure
VampirServer at any time1 by typing:

$ vampirserver config

on the command line. Re-configuration can become necessary if default startup
parameters need to be changed or if the system’s message passing library (MPI)
has been updated or replaced. During the configuration the following questions
will be asked:

• Would you like to enable MPI support in VampirServer? [y]

• MPI Compiler used for VampirServer customization [/usr/bin/mpicc]:

• Compiler flags for shared object creation [-shared -fPIC]:

• Default VampirServer launch configuration (ap, mpi, smp) [mpi]:

Default answers to these questions are provided in brackets. The default an-
swers can be confirmed by simply pressing the ’enter’ key on the keyboard. Al-
ternatively, the appropriate system settings can be entered.

For automatic, non-interactive configuration, the command line option --silent
can be set. The resulting configuration assumes default values for all parame-
ters.

3.1.6 Authentication

VampirServer has encrypted password support for client (Vampir) authentica-
tion2. Authentication can be activated or deactivated with the -a command line
option. Issuing the following command on the command line:

$ vampirserver start -a crpw-rnd

starts a new instance of VampirServer that requires password authentication dur-
ing the connection setup with Vampir. VampirServer will generate the following
output:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
User: fred
Password: jfvUzFHJaW+p
VampirServer <12991> listens on: bedrock:30000

1System administrator rights might be necessary
2Please note that the data transfer protocol itself is not encrypted.

14

3.1 USING THE STANDARD CONTROL INTERFACE

User is the login name of the user who started VampirServer. Password is a
random password that needs to be entered on the client side in order to connect
to the given instance of VampirServer.

Authentication can be disabled by starting VampirServer with the following
command line sequence:

$ vampirserver start -a none

3.1.7 Command Line Reference

The standard control interface of VampirServer is a powerful front-end for manag-
ing service instances. It hides platform dependent setup steps from the software
user. Table 3.1 gives a brief overview of the commands that are understood by
the vampirserver command line tool.

Commands Arguments and Description
config, cf [-s] Configure server settings

-s, --silent Use defaults for all questions
help Show a brief command overview

start, up [-a] [-n] [-p] [-t] [SCRIPT] [--] Start a new server instance
-a, --auth MODE Set the authentication mode
-n, --ntasks NUMBER Set the number of analysis tasks
-p, --port NUMBER[:END] Set port (range) the server is go-

ing to listen on
-t, --timeout NUMBER Set the startup timeout to

NUMBER seconds
SCRIPT Name of the launch script to be

used
-- Separator for custom launch

script parameters
stop, ex [SERVER ID] Stop a given server instance

SERVER ID Sever specific ID assigned dur-
ing startup

list, ls [servers | launchers] List server related information
servers List all launched servers
launchers List all available launch modules

version Show program version

Table 3.1: Commands and arguments of the VampirServer control interface

15

3 VAMPIR SERVER

3.1.8 Environment Variables

The VampirServer standard control interface evaluates the following environment
variables. These variables overwrite the built-in defaults. Use them with care.

VAMPIRSERVER HOST

If VampirServer is supposed to run on multiple hosts that share home directories
this variable is applicable. Setting it to the respective host name guarantees that
Vampir instances on different hosts are managed in separate lists.

VAMPIRSERVER LAUNCHER

Sets the dafault launch script that is used when no script name is given during
startup. The following command sequence

$ export VAMPIRSERVER_LAUNCHER="ap"

$ vampirserver start

has the same effect as

$ vampirserver start ap

This variable can be handy on systems that support custom software modules.

3.2 Connecting Vampir to VampirServer

The VampirServer program has to be used in combination with the Vampir perfor-
mance data browser, which can connect to multiple instances of VampirServer.
Once a connection has been established between Vampir and VampirServer,
trace files containing performance data can be read and analyzed.

A new remote session can be created by clicking on Open Remote. . . in the
File menu. As a result, an input dialog appears as depicted in Figure 3.1. On
the right hand side, the server’s host name, network port, and authentication
mode can be specified. The default parameters are localhost, port 30000, and
no authentication (None). Clicking on the Connect button starts the connection
setup. Once the connection is established, a file dialog is opened, which allows
to browse the remote files on VampirServer’s host system as depicted in Fig-
ure 3.2. The trace files to be loaded have to be compliant with the OTF/OTF2 or
the Epilog trace file format. A compliant trace file can be loaded by selecting the
respective file name and clicking on the Open button.

After loading has been completed, Vampir will depict the Master Timeline, the
Function Summary, and the respective Function Legend. Please consult the
Vampir manual for further information. Recently viewed trace files can be re-
opened via Menu→File→Open Recent.

16

3.2 CONNECTING VAMPIR TO VAMPIRSERVER

Figure 3.1: Connect to Server Dialog

Figure 3.2: Open Remote Trace File Dialog

3.2.1 SSH Tunneling

Network firewalls often prohibit to directly connect to an active VampirServer
instance on a given port like 30000. In such a situation ssh tunneling can be
used to set up a secure network tunnel from a local computer running the Vampir
browser to the remote computer where VampirServer is active. The following
command line sequence sets up a network tunnel from local port on your local

17

3 VAMPIR SERVER

computer to the remote port of the given remote computer.

$ ssh -L <local-port>:<remote-node>:<remote-port>
↪→ [<user>@]<remote-computer>

Remote port needs to be set to the port number printed at the startup of Vam-
pirServer:

VampirServer <server-id> listens on:
↪→ <remote-node>:<remote-port>

The parameter user is optional and specifies your login name on the remote
computer. Please consult the SSH manual for further information about network
tunnels. Once the network tunnel is set up, the Vampir performance browser
needs to be connected locally to localhost on local port.

The following example starts a VampirServer instance on the remote computer
bedrock.eu and sets up a tunnel from an aribtrary local computer. First, Vam-
pirServer is started with:

bedrock$ vampirserver start
Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 13227)
VampirServer <13227> listens on: node42:30000

The following command line sequence on the local computer sets up an SSH
tunnel to node42 on the remote computer bedrock.eu:

local$ ssh -L 30001:node42:30000 bedrock.eu

Finally, Vampir (on the local computer) is connected to the remote server by
means of the Open Remote dialog which appears when klicking on File→Open
Remote. . . in Vampir’s main menu. Prior to clicking on the Connect button,
localhost and 30001 needs to be entered in the respective input fields Server
and Port.

Unfortunately, the setup process of a tunneled Vampir/VampirServer session
is somewhat cumbersome. Therefore, Vampir introduced an alternative remote
connection type (SSH) that renders this user driven setup process obsolete. It
involves a new component called VampirProxy, which automatically takes care
of the above steps. See Section 4 for further information.

18

3.3 USING THE BACK-END CONTROL INTERFACE

3.3 Using the Back-End Control Interface

VampirServer’s processing core is a parallel distributed program whose invoca-
tion slightly depends on the host platform. These dependencies are handled au-
tomatically by the standard control interface described in Section 3.1. Therefore,
it is recommended to use VampirServer’s standard control interface by default.
However, it is possible to directly start the VampirServer processing core from
the command line. Please note that this is only recommended to experienced
users or system administrators. This section describes the server core’s invoca-
tion syntax and options.

3.3.1 Manual Invocation

The server core currently supports two modes of parallel operation: MPI mode
and thread mode. For the former, MPI has to be installed and configured prop-
erly before starting the server. The exact command line is MPI implementation-
dependent. If LAM-MPI is used, lamboot must be executed on the command line
prior to using mpirun. If MPICH is used, a machine file might be needed (see
MPICH user manual). Other MPI implementations might require different steps.
Please consult the MPI documentation of your computer system.

A server core instance can be started manually with the following command
line sequence:

$ mpirun -np <number of processes>
↪→ <install-dir>/bin/vampirserver-core

or

$ mpiexec -np <number of processes>
↪→ <install_dir>/bin/vampirserver-core

Please note that the number of MPI processes must at least be two. Its recom-
mended upper boundary is the number of processes and threads in the trace
files to be processed plus one. The “plus one” results from the fact that Vam-
pirServer uses a master/worker data processing model with one master and n
worker tasks.

The thread mode of the server core needs to be invoked without mpirun or a
similar prefix. Simply type:

$ export VAMPIRSERVER_MODE="thread-mode"
$ vampirserver-core

The server core will automatically detect the optimal number of threads for your
system. Alternatively, the number of threads can be set manually with the com-
mand line option -n.

19

3 VAMPIR SERVER

-a --auth=MODE Authentication mode: crpw-rnd or none
-c --chost=NAME Cluster node that is going to listen for requests
-h --help Show this help
-n --nthreads Number of analysis threads (1–16) if

VAMPIRSERVER MODE is set to
thread-mode

-p --port=NUMBER:[END] Port range, the server is going to listen for
requests

-v --version Show program version

Table 3.2: Command line options of the vampirserver-core program

A summary of all supported command line options of the server core is given
in Table 3.2:

The server program will run until it is terminated either manually with the key
sequence Ctrl-C on the command line or automatically by the host’s batch sys-
tem. Alternatively, a small utility program is provided that triggers an internal
shutdown of the server program. On systems without automatic MPI cleanup
this utility can help to ensure that no orphaned processes remain on the system.
Type

$ vampirserver-shutdown -p <host>:<port>

on the command line to trigger a server core shutdown. The server core will
terminate with the following output:

Server shutdown triggered by client.

3.3.2 Environment Variables

The VampirServer core evaluates the following environment variables for config-
uration purposes. These variables overwrite the built-in defaults. Use them with
care. Please note that some MPI implementations require special command line
options, e.g. -x VAMPIRSERVER DRIVER, to correctly propagate environment
variables among their processes. Consult the documentation of your MPI instal-
lation for further details.

VAMPIRSERVER MODE

The server core currently supports two modes of parallel operation: MPI mode
and thread mode. Setting the environment variable VAMPIRSERVER MODE to
thread-mode with

$ export VAMPIRSERVER_MODE="thread-mode"

20

3.4 CUSTOMIZING LAUNCH SCRIPTS

enables the built-in thread parallelization of the vampir core. MPI parallelization
is enabled by setting VAMPIRSERVER MODE to mpi-mode with

$ export VAMPIRSERVER_MODE="mpi-mode"

The server core will start in MPI mode if the variable VAMPIRSERVER MODE is
not defined or set to an unknown string.

VAMPIRSERVER DRIVER

In MPI mode, the server core requires an MPI specific driver module named
vampirserver-driver.so that is normally setup during installation. Speaking tech-
nically, this driver module is a dynamically linked shared object library. By default,
the module is located in <install-dir>/lib/vampirserver-driver.so . The environ-
ment variable VAMPIRSERVER DRIVER can be used to overwrite this default
location.

Use the following command line to set an alternative file name and path:

$ export VAMPIRSERVER_DRIVER="my-path/my-driver.so"

This option can be used to support multiple MPI implementations on the same
host. Please note that such a setup requires expert knowledge about the host
system.

VAMPIRSERVER LICENSE, VAMPIR LICENSE

The server core requires a valid Vampir Professional license. After a standard
installation, the license file is located in <install-dir>/etc/vampir.license . An al-
ternative file name and path can be set with either VAMPIRSERVER LICENSE
or VAMPIR LICENSE with the following command line:

$ export VAMPIRSERVER_LICENSE="my-path/my-vampir.license"

The variable VAMPIRSERVER LICENSE has precedence over VAMPIR LIC
ENSE if both variables are defined. Please note that both variables also influ-
ence the respective license activation file location, which normally is <install-
dir>/etc/vampir.activation . The alternative license file name above for example
results in the following activation file location: my-path/my-vampir.activation .

3.4 Customizing Launch Scripts

The invocation an initialization of VampirServer depends on host specific charac-
teristics like the MPI system, the batch system, or the memory and processor ar-
chitecture. The required checks and adjustments are hidden in fully transparent

21

3 VAMPIR SERVER

launch scripts so that host specific customization is reduced to a minimum. Vam-
pirServer automatically uses a default launch script, which has been selected
during the software installation process. Sometimes, additional launch scripts
are beneficial to support multiple system setups. If required, the user can man-
ually select a specific launch script by adding the launch script’s name to the
invocation command as described on page 12. Additionally, custom launch argu-
ments like a batch job reservation number can be forwarded to the launch scripts.
Example launch scripts are located in <install-dir>/etc/server/launcher/custom.

3.4.1 Adding Batch Support (LSF) to the MPI Launch Script

This section describes the customization of a launch script step by step. Based
on the default MPI launch script a new script with support for the LSF batch
system is created. The default MPI launch script is located at <install-dir>/etc/
server/launcher/mpi. Its full listing is available at A.1. The modified launch script
with LSF support is listed in A.2. The following steps need to be done to add LSF
support to the default MPI launch script:

1. Batch jobs usually have to wait some time before they are executed. There-
fore the timeout is increased from five seconds to 300 seconds in line 17.

2. Starting VampirServer as a batch job is LSF specific. Lines 21 to 25 have
been extended to use LSF for job submission.

Listing 3.1: Startup Snippet with Pure MPI Support
16 # Startup timeout in seconds.
17 TIMEOUT=5
18
19 # Launch vampir server process.
20 launch_vs() {
21 ${MPIRUN} ${PREFIX}/bin/vampirserver-core ${opt} >${tmpfile} 2>&1 &
22 disown
23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=$!
26 }

Listing 3.2: Startup Snippet with LSF Support
16 # Startup timeout in seconds.
17 TIMEOUT=300
18
19 # Launch vampir server process.
20 launch_vs() {
21 local submission; echo "Submitting LSF batch job (this might take a while)...

"
22 submission=‘bsub -n $((${IN_NTASKS} + 1)) -o ${tmpfile} ${MPIRUN} ${PREFIX}/

bin/vampirserver-core ${opt}‘
23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=‘echo "${submission}" | grep "is submitted" | sed "s/ˆJob <//;s/>

is submitted.*//"‘
26 }

22

3.4 CUSTOMIZING LAUNCH SCRIPTS

3. Stopping a VampirServer instance is LSF specific likewise. Lines 32 to 35
have been altered to properly terminate the respective LSF job.

Listing 3.3: Snippet with MPI Shutdown
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 kill -9 ${IN_CUSTOM} 2>/dev/null
33
34 # Wait for server to terminate.
35 while [$(kill -0 "${IN_CUSTOM}" 2>/dev/null)]; do
36 sleep 1
37 done
38 }

Listing 3.4: Snippet with LSF Shutdown
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 bkill >/dev/null ${IN_CUSTOM}
33
34 # Wait for server to terminate.
35 while false; do # No waiting needed! Already done by bkill.
36 sleep 1
37 done
38 }

The resulting LSF launch script needs to be saved to <install-dir>/etc/server/
launcher/lsf. It can be tested by adding the launch script’s file name to Vam-
pirServer’s start command.

$ vampirserver start lsf

User-defined launch scripts (not located in <install-dir>/etc/server/launcher) are
supported as well. In this case, an absolute file path with a leading slash has to
be added to the start command.

$ vampirserver start /tmp/custom-script

3.4.2 Adding Custom Launch Arguments

VampirServer’s launch scripts take care of the parallel startup process for differ-
ent system types and configurations. For portability reasons, they are generic
and use default system parameters, for example the default batch system queue
or the default MPI run-time system. Some systems require users to provide
user specific information for job submission like certain batch queues, reserva-
tion codes, or accounting information. VampirServer’s standard control interface
can forward this kind of user specific information to the actual launch script in
the form of custom arguments. Custom arguments need to be separated from
standard arguments by means of two dashes (--). The following command line
sequence starts VampirServer and hands over the custom argument -a providing
the value 4711.

23

3 VAMPIR SERVER

$ vampirserver start -n 4 mpi -- -a 4711

During startup, the server will printout the following:

Launching VampirServer...
Custom argument A = 4711
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

All example launch scripts are pre-equipped with reading support for custom
arguments. Its custom application needs to be added manually to a launch script
according to the individual demands. Please note that this is an advanced task
which addresses system administrators or experienced users. The relevant parts
in the launch scripts are:

Listing 3.5: Custom Argument Parser in MPI Launch Script
50 # Parse non-Vampir command line arguments for customization.
51 IN_CUSTOM_ARG_A=""
52 IN_CUSTOM_ARG_B=""
53 parse_custom_args()
54 {
55 temp=‘getopt a: "$@"‘
56 if [$? != 0] ; then echo "Terminating..." >&2 ; exit 1 ; fi
57 eval set -- "$temp"
58 while true ; do
59 case "$1" in
60 -a) IN_CUSTOM_ARG_A="${2}"; shift 2
61 ;;
62 --) shift; break
63 ;;
64 *) echo "Error: Internal!" >&2; exit 1
65 ;;
66 esac
67 done
68 if [-n "$1"]; then
69 IN_CUSTOM_ARG_B="$1"
70 fi
71 }

and

Listing 3.6: Custom Argument Application in MPI Launch Script
137 # Example custom arguments.
138 parse_custom_args ${IN_CUSTOM}
139 if [-n "${IN_CUSTOM_ARG_A}"]; then
140 echo "Custom argument A = ${IN_CUSTOM_ARG_A}"
141 fi
142 if [-n "${IN_CUSTOM_ARG_B}"]; then
143 echo "Custom argument B = ${IN_CUSTOM_ARG_B}"
144 fi

Please add your customizations accordingly.

24

4 Vampir Proxy

VampirProxy is a command line tool that supports the user in establishing a con-
nection between the Vampir performance visualizer running on a local desktop
computer and a remote instance of the VampirServer performance processor.
It fully automates the setup of so-called communication tunnels. High perfor-
mance computing resources usually require such communication tunnels for re-
mote data visualization. VampirProxy can automatically launch and connect to
remote VampirServer instances.

4.1 Prerequisites

First of all, make sure that the vampir-proxy program is installed properly on
your local system and the remote computer system. Also make sure that vampir-
proxy exists in the search path on the remote computer system. You can verify
this by typing:

$ ssh <remote-address> vampir-proxy

on the command line of your local computer system. The following output will be
printed to your console if the invocation was successful:

USAGE
vampir-proxy [OPTIONS] [[user@]hostname]

OPTIONS
Local options, evaluated when hostname is set:
-C, --config-local=FILE local configuration file
-P, --proxy-port=NUMBER local proxy listen port (default: 30000)
-E, --rsh=COMMAND remote shell invocation (default: ssh)

(default: use remote configuration file)

Options which are forwarded/executed on the remote side:
-c, --config=FILE configuration file on the remote side

(default: $HOME/.vampir/proxy/config,
<install-dir>/etc/proxy/config)

-s, --config-section=NAME section in the configuration file
(default: DEFAULT)

-h, --help show this help
-l, --list list active servers on the remote side

--proxy-exec=PROGRAM proxy file path on the remote side
(default: $PATH/vampir-proxy)

-a, --server-host=ADDRESS server address (default: localhost)
-p, --server-port=NUMBER server listen port (default: 30000)

--server-script=SCRIPT script that starts vampir server
(default: $HOME/.vampir/proxy/agent,
<install_dir>/etc/proxy/agent)

--server-startup=MODE start server on remote host

25

4 VAMPIR PROXY

[no][single][multi] (default: no)
-n, --server-tasks=NUMBER number of worker tasks (excluding boss)

(default: 4)
-v, --verbose increase verbosity

If the command vampir-proxy has not been found on the remote side, the follow-
ing output will be printed to your console:

bash: vampir-proxy: command not found

Make sure that the install path of vampir-proxy is permanently added to your
default search path (see the shell documentation about the PATH environment
variable on your remote computer).

Finally, check that VampirServer is installed properly on your (remote) com-
puter system by typing:

$ vampirserver start

which should result in an output similar to:

Launching VampirServer...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

See Section 2 for the installation of VampirServer.

4.2 Starting a Proxy Session

VampirProxy needs to be started on the computer system that runs the Vam-
pir performance visualizer. In the following section, this computer system will
be referred to as local system. The remote system is the machine where Vam-
pirServer will be running. The following input on the command line interface will
start a proxy instance on the local system:

$ vampir-proxy [<user>@]<host>

The proxy command on the local system will automatically establish a connec-
tion to the remote system host. A successful connection setup is quoted with the
following message:

Waiting for confirmation from the remote side.
This may take some time.
Listening on localhost:30000
Type "quit" and press "Enter" to exit vampir-proxy.

26

4.3 CONNECTING TO A VAMPIRSERVER REMOTE STATION

On the local system you can now connect to the remote VampirServer instance
by connecting to localhost:30000 (see Section 3.2 for further details). An error is
indicated as follows:

VAMPIR-PROXY: Error: Could not find the vampir-proxy
↪→ executable on the remote host.

On the local system, VampirProxy listens on network port 30000 for incoming
connect request from the Vampir performance visualizer. The port number can
be changed with the command line option -P <port>.

In order to connect to a remote system, VampirProxy uses the remote-shell
program ssh as the transport. It is possible to set a different remote-shell pro-
gram and additional command line arguments with the option -E ”<command>”.
The proxy invocation

$ vampir-proxy -P 30003 -E "ssh -c blowfish" bedrock.eu

for example, uses the remote shell program ssh with blowfish encryption for trans-
port and offers its service on the local network port 30003. The connection is
established to a remote system named bedrock.eu.

4.3 Connecting to a VampirServer Remote Station

When connected to a remote system, VampirProxy tries to forward all requests
to the remote VampirServer instance listening on port 30000. For this basic
example, we assume that VampirServer was manually started beforehand (see
Section 3.1.2). It is possible to alter this default behavior with the command line
options -p <port> and -a <host>, which can be used to contact an alternative
server on or reachable from the remote system.

Entering the following command line sequence on the local system sets up a
proxy session between port 300xx (default) on the local system and port 25000
on the remote system called bedrock.eu.

$ vampir-proxy -p 25000 bedrock.eu

This example assumes that VampirServer has been started manually beforehand
on bedrock.eu and that it has been configured to listen on port 25000 (see Sec-
tion 3.1.2).

If required, the local port of VampirProxy can be changed with the -P (capital!)
option. Entering

$ vampir-proxy -p 25000 -P 25001 bedrock.eu

on the local system starts a proxy session that connects to a VampirServer in-
stance on bedrock.eu port 25000 and forwards its service to the local system on
port 25001.

27

4 VAMPIR PROXY

Large computer systems often consist of login and compute nodes. The lat-
ter are typically protected and hidden behind a firewall. VampirProxy can also
connect to VampirServer instances behind a firewall. The following example as-
sumes that a VampirServer instance is active on the compute node node42 of the
remote system bedrock.eu. The following command line sequence starts a proxy
session to VampirServer on node42 (port 30000) via the login node bedrock.eu.

$ vampir-proxy -a node42 bedrock.eu

On some remote systems, the executable vampir-proxy might not be in the
default search path when invoked as SSH remote command. VampirProxy will
consequently fail with the following error message:

VAMPIR-PROXY: Error: Could not find the vampir-proxy
↪→ executable on the remote host.

The problem usually can be solved by extending the default search path on the
remote system. If this is not possible or does not solve the problem for some
unknown reason, it is possible to specify the absolute remote path of vampir-
proxy as follows:

$ vampir-proxy --proxy-exec /home/barnie/vampir-proxy
↪→ bedrock.eu

4.4 Launching VampirServer via VampirProxy

VampirProxy facilitates the connection setup between the Vampir performance
browser and VampirServer. The previous sections assume that VampirServer
is started manually by the user. VampirProxy can also automatically launch pro-
gram instances of VampirServer. The command line options --server-startup and
--server-script control the launch behavior, which is turned off by default. Prior to
using this functionality, make sure that VampirServer is reachable and configured
on the remote system by typing:

$ ssh <remote-address> vampirserver start

on the command line of the local computer system. The resulting output should
look like:

Launching VampirServer...
Estimating the number of processing elements
↪→ (overwrite with -n option)...
VampirServer 9.7.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer <12991> listens on: bedrock:30000

28

4.4 LAUNCHING VAMPIRSERVER VIA VAMPIRPROXY

The following command line sequence on the local computer system creates a
proxy connection to the remote computer system bedrock.eu and automatically
starts a new instance of the VampirServer program.

$ vampir-proxy --server-startup=multi bedrock.eu

A successful setup is prompted with the following message:

Waiting for confirmation from the remote side.
This may take some time.
Listening on localhost:30000
Type "quit" and press "Enter" to exit vampir-proxy.

The command line option --server-startup=multi implies that each proxy session
starts its a own instance of the VampirServer program. This is not desirable in
all situations. Alternatively, --server-startup=single starts only one instance of
the VampirServer program that is shared among other sessions started with this
option. Finally, --server-startup=no prohibits automatic startup of VampirServer,
even if it has been made the default configuration during software installation.

By default, VampirServer is started with 1 to 16 parallel tasks depending on the
available CPU resources. It is possible to set the number of tasks manually with
the command line option --server-tasks. Entering the command line sequence

$ vampir-proxy --server-tasks=32 --server-startup=multi
↪→ bedrock.eu

on the local system sets up a proxy session with bedrock.eu and starts a Vam-
pirServer instance with 32 parallel analysis tasks on bedrock.eu. Please note
that this option requires --server-startup=multi to take effect. When combined
with --server-startup=single this option will only influence the initial startup of the
shared VampirServer instance. With --server-startup=no it has no effect at all.

The automatic startup process of VampirServer is performed by a script agent
located at <install-dir>/etc/proxy/agent. Use the --server-script=filepath option
to specify an alternative script agent. Make sure that the alternative file path
points to a valid script location on the remote system.

$ vampir-proxy --server-script=/home/fred/proxy-agent
↪→ bedrock.eu

29

A Appendix

A.1 Default MPI Launch Script

1 #
2 # Copyright (c) 2011 ZIH, Technische Universitaet Dresden, Germany
3 #
4 # @file launcher/mpi
5 #
6 # @brief Pure MPI startup sequence without batch job creation.
7 #
8 # @author Holger Brunst
9 #

10
11
12 # System’s launch program for MPI programs.
13 MPIRUN="mpirun"
14
15
16 # Startup timeout in seconds.
17 TIMEOUT=5
18
19 # Launch vampir server process.
20 launch_vs() {
21 ${MPIRUN} ${PREFIX}/bin/vampirserver-core ${opt} >${tmpfile} 2>&1 &
22 disown
23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=$!
26 }
27
28
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 kill -9 ${IN_CUSTOM} 2>/dev/null
33
34 # Wait for server to terminate.
35 while [$(kill -0 "${IN_CUSTOM}" 2>/dev/null)]; do
36 sleep 1
37 done
38 }
39
40
41 # Return the path of a global temporary file.
42 tmpfile()
43 {
44 # IN_SERVER = internal job ID for server identification
45
46 echo "${HOME}/.vampir/tmp/vampirserver.${IN_SERVER}.tmp"
47 }
48
49
50 # Parse non-Vampir command line arguments for customization.
51 IN_CUSTOM_ARG_A=""
52 IN_CUSTOM_ARG_B=""

30

A.1 DEFAULT MPI LAUNCH SCRIPT

53 parse_custom_args()
54 {
55 temp=‘getopt a: "$@"‘
56 if [$? != 0] ; then echo "Terminating..." >&2 ; exit 1 ; fi
57 eval set -- "$temp"
58 while true ; do
59 case "$1" in
60 -a) IN_CUSTOM_ARG_A="${2}"; shift 2
61 ;;
62 --) shift; break
63 ;;
64 *) echo "Error: Internal!" >&2; exit 1
65 ;;
66 esac
67 done
68 if [-n "$1"]; then
69 IN_CUSTOM_ARG_B="$1"
70 fi
71 }
72
73
74 # Terminate the given server.
75 stop()
76 {
77 # IN_HOST = IP address of host
78 # IN_PORT = listen port of host
79 # IN_SERVER = internal job ID for server identification
80 # IN_CUSTOM = Launcher custom data. Here: PID of mpirun
81
82 # Terminate VampirServer.
83 kill_vs
84
85 # Clean up temporary output file.
86 rm -f "‘tmpfile ${IN_SERVER}‘"
87 }
88
89
90 # Start a new server instance.
91 start()
92 {
93 # IN_FORWARD = options to be forwarded to server
94 # IN_NTASKS = number of analysis tasks
95 # IN_SERVER = internal job ID for server identification
96 # IN_TIMEOUT = timeout of startup process
97 # IN_CUSTOM = custom arguments from the command line
98 # OUT_MESSAGE = server output
99 # OUT_CUSTOM = launcher custom data

100 # $? = true if successful, false otherwise
101
102 local success=false
103 local tmpfile="‘tmpfile ${IN_SERVER}‘"
104
105 if [-z "${VAMPIRSERVER_DRIVER}"]; then
106 export VAMPIRSERVER_DRIVER="${PREFIX}/lib/vampirserver-driver.so"
107 fi
108 export VAMPIRSERVER_MODE="mpi-mode"
109
110
111 # Use default for startup timeout?
112 if ["${IN_TIMEOUT}"]; then
113 TIMEOUT="${IN_TIMEOUT}"
114 fi
115
116
117 # Use default for number of analysis tasks?
118 if [-z "${IN_NTASKS}"]; then

31

A APPENDIX

119 IN_NTASKS=4
120 fi
121
122
123 # Detect MPI implementation. Make sure that VAMPIRSERVER_DRIVER and VAMPIRSERVER_MODE
124 # are exported to all MPI ranks.
125 if (${MPIRUN} --version 2>&1 | grep -q "Open MPI"); then
126 # Open MPI
127 MPIRUN="${MPIRUN} -x VAMPIRSERVER_DRIVER -x VAMPIRSERVER_MODE"
128 fi
129
130
131 # Set number of MPI ranks.
132 MPIRUN="${MPIRUN} -np $((${IN_NTASKS} + 1))"
133
134
135 # Forward options.
136 opt="${opt} ${IN_FORWARD}"
137
138
139 # Example custom arguments.
140 parse_custom_args ${IN_CUSTOM}
141 if [-n "${IN_CUSTOM_ARG_A}"]; then
142 echo "Custom argument A = ${IN_CUSTOM_ARG_A}"
143 fi
144 if [-n "${IN_CUSTOM_ARG_B}"]; then
145 echo "Custom argument B = ${IN_CUSTOM_ARG_B}"
146 fi
147
148
149 # Launch vampir server in background.
150 launch_vs
151
152
153 # Wait and read server output.
154 local begin=‘date +%s‘
155 while true; do
156 local listen
157 listen=‘grep ’Server listens on:’ ${tmpfile} 2>/dev/null‘
158
159 # Stop this loop when server has printed his communication link.
160 if [$? == 0]; then
161 success=true
162 break
163 fi
164
165 # Stop this loop when server exited with an error code.
166 if grep -q ’Error: ’ ${tmpfile} 2>/dev/null; then
167 break
168 fi
169
170 # Check timeout.
171 if timeout ${begin} ${TIMEOUT}; then
172 break
173 fi
174 done
175
176
177 # Buffer server output.
178 OUT_MESSAGE=""
179 if [-e "${tmpfile}"]; then
180 OUT_MESSAGE="‘cat ${tmpfile}‘"
181 fi
182
183
184 # Kill server in case of a failure.

32

A.2 MPI LAUNCH SCRIPT WITH LSF SUPPORT

185 if ! ${success}; then
186 IN_CUSTOM=${OUT_CUSTOM}
187 stop
188 fi
189
190
191 ${success}
192 }

A.2 MPI Launch Script with LSF Support

1 #
2 # Copyright (c) 2011 ZIH, Technische Universitaet Dresden, Germany
3 #
4 # @file launcher/lsf
5 #
6 # @brief MPI startup sequence with LSF job creation.
7 #
8 # @author Holger Brunst
9 #

10
11
12 # System’s launch program for MPI programs.
13 MPIRUN="mpirun"
14
15 # Custom batch job arguments
16 BATCH_OPT=""
17
18 # Startup timeout in seconds.
19 TIMEOUT=300
20
21 # Launch vampir server process.
22 launch_vs() {
23 local submission; echo "Submitting LSF batch job (this might take a while)..."
24 submission=‘bsub -n $((${IN_NTASKS} + 1)) -o ${tmpfile} ${BATCH_OPT} ${MPIRUN} ${

PREFIX}/bin/vampirserver-core ${opt}‘
25
26 # Return process ID or job ID as shutdown reference.
27 OUT_CUSTOM=‘echo "${submission}" | grep "is submitted" | sed "s/ˆJob <//;s/> is

submitted.*//"‘
28 }
29
30
31 # Kill vampir server process.
32 kill_vs() {
33 # Kill server process/job.
34 bkill >/dev/null ${IN_CUSTOM}
35
36 # Wait for server to terminate.
37 while false; do # No waiting needed! Already done by bkill.
38 sleep 1
39 done
40 }
41
42
43 # Return the path of a global temporary file.
44 tmpfile()
45 {
46 # IN_SERVER = internal job ID for server identification
47
48 echo "${HOME}/.vampir/tmp/vampirserver.${IN_SERVER}.tmp"
49 }
50
51

33

A APPENDIX

52 # Parse non-Vampir command line arguments for customization.
53 IN_CUSTOM_ARG_A=""
54 IN_CUSTOM_ARG_B=""
55 parse_custom_args()
56 {
57 temp=‘getopt a: "$@"‘
58 if [$? != 0] ; then echo "Terminating..." >&2 ; exit 1 ; fi
59 eval set -- "$temp"
60 while true ; do
61 case "$1" in
62 -a) IN_CUSTOM_ARG_A="${2}"; shift 2
63 ;;
64 --) shift; break
65 ;;
66 *) echo "Error: Internal!" >&2; exit 1
67 ;;
68 esac
69 done
70 if [-n "$1"]; then
71 IN_CUSTOM_ARG_B="$1"
72 fi
73 }
74
75
76 # Terminate the given server.
77 stop()
78 {
79 # IN_HOST = IP address of host
80 # IN_PORT = listen port of host
81 # IN_SERVER = internal job ID for server identification
82 # IN_CUSTOM = Launcher custom data. Here: PID of mpirun
83
84 # Terminate VampirServer.
85 kill_vs
86
87 # Clean up temporary output file.
88 rm -f "‘tmpfile ${IN_SERVER}‘"
89 }
90
91
92 # Start a new server instance.
93 start()
94 {
95 # IN_FORWARD = options to be forwarded to server
96 # IN_NTASKS = number of analysis tasks
97 # IN_SERVER = internal job ID for server identification
98 # IN_TIMEOUT = timeout of startup process
99 # IN_CUSTOM = custom arguments from the command line

100 # OUT_MESSAGE = server output
101 # OUT_CUSTOM = launcher custom data
102 # $? = true if successful, false otherwise
103
104 local success=false
105 local tmpfile="‘tmpfile ${IN_SERVER}‘"
106
107 if [-z "${VAMPIRSERVER_DRIVER}"]; then
108 export VAMPIRSERVER_DRIVER="${PREFIX}/lib/vampirserver-driver.so"
109 fi
110 export VAMPIRSERVER_MODE="mpi-mode"
111
112
113 # Use default for startup timeout?
114 if ["${IN_TIMEOUT}"]; then
115 TIMEOUT="${IN_TIMEOUT}"
116 fi
117

34

A.2 MPI LAUNCH SCRIPT WITH LSF SUPPORT

118
119 # Use default for number of analysis tasks?
120 if [-z "${IN_NTASKS}"]; then
121 IN_NTASKS=4
122 fi
123
124
125 # Detect MPI implementation. Make sure that VAMPIRSERVER_DRIVER and VAMPIRSERVER_MODE
126 # are exported to all MPI ranks.
127 if (${MPIRUN} --version 2>&1 | grep -q "Open MPI"); then
128 # Open MPI
129 MPIRUN="${MPIRUN} -x VAMPIRSERVER_DRIVER -x VAMPIRSERVER_MODE"
130 fi
131
132
133 # Set number of MPI ranks.
134 MPIRUN="${MPIRUN} -np $((${IN_NTASKS} + 1))"
135
136
137 # Forward options.
138 opt="${opt} ${IN_FORWARD}"
139
140
141 # Example custom arguments.
142 parse_custom_args ${IN_CUSTOM}
143 if [-n "${IN_CUSTOM_ARG_A}"]; then
144 echo "Custom argument A = ${IN_CUSTOM_ARG_A}"
145 fi
146 if [-n "${IN_CUSTOM_ARG_B}"]; then
147 echo "Custom argument B = ${IN_CUSTOM_ARG_B}"
148 fi
149
150
151 # Launch vampir server in background.
152 launch_vs
153
154
155 # Wait and read server output.
156 local begin=‘date +%s‘
157 while true; do
158 local listen
159 listen=‘grep ’Server listens on:’ ${tmpfile} 2>/dev/null‘
160
161 # Stop this loop when server has printed his communication link.
162 if [$? == 0]; then
163 success=true
164 break
165 fi
166
167 # Stop this loop when server exited with an error code.
168 if grep -q ’Your job looked like:\|Error:’ ${tmpfile} 2>/dev/null; then
169 break
170 fi
171
172 # Check timeout.
173 if timeout ${begin} ${TIMEOUT}; then
174 break
175 fi
176 done
177
178
179 # Buffer server output.
180 OUT_MESSAGE=""
181 if [-e "${tmpfile}"]; then
182 OUT_MESSAGE="‘cat ${tmpfile}‘"
183 fi

35

A APPENDIX

184
185
186 # Kill server in case of a failure.
187 if ! ${success}; then
188 IN_CUSTOM=${OUT_CUSTOM}
189 stop
190 fi
191
192
193 ${success}
194 }

36

	Introduction
	Installation
	Vampir Server
	Using the Standard Control Interface
	Obtaining a Command Overview (help)
	Starting a New Server Instance (start)
	Stopping an Existing Server Instance (stop)
	Listing Server Related Information (list)
	Configuring the Server (config)
	Authentication
	Command Line Reference
	Environment Variables

	Connecting Vampir to VampirServer
	SSH Tunneling

	Using the Back-End Control Interface
	Manual Invocation
	Environment Variables

	Customizing Launch Scripts
	Adding Batch Support (LSF) to the MPI Launch Script
	Adding Custom Launch Arguments

	Vampir Proxy
	Prerequisites
	Starting a Proxy Session
	Connecting to a VampirServer Remote Station
	Launching VampirServer via VampirProxy

	Appendix
	Default MPI Launch Script
	MPI Launch Script with LSF Support

