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ABSTRACT 

A new approach for nonlinear stability analysis is presented.  In the framework of 
this approach, integrated BWR (system) codes and reduced order models (ROM’s) are 
used as complementary tools to examine the stability characteristic of fixed points and 
periodic solutions of the nonlinear differential equations describing the stability 
behaviour of a BWR loop.  Hence the methodology demonstrated in this paper is a novel 
one in a specific sense: We analyse the highly nonlinear processes of the BWR dynamics 
by application of system codes (in which numerical diffusion properties are examined in 
advance so far as possible) and by application of some sophisticated methods of the 
nonlinear dynamics (bifurcation analysis). We claim, the complementary application of 
independent methodologies to examine the nonlinear stability behaviour can increase the 
reliability of BWR stability analysis. This work is a continuation of the previous work at 
the Paul Scherrer Institute (PSI, Switzerland) and at the University of Illinois (USA) on 
this field.  The current ROM was extended by adding the recirculation loop model.  The 
necessity of consideration of the effect of subcooled boiling in an approximated manner 
was discussed.  Furthermore, a new calculation methodology for the feedback reactivity 
was implemented.  The modified ROM is coupled with the code BIFDD which performs 
semi-analytical bifurcation analysis.  In addition to the ROM extensions, a new approach 
for calculation of the ROM input data was developed.  The new approach for nonlinear 
BWR stability analysis is presented for NPP Leibstadt.  This investigation is carried out 
for an operational point for which an out-of-phase power oscillation has been observed 
during a stability test at the beginning of cycle 7 (KKL cycle 7 record #4).  The modified 
ROM and the new approach for the calculation of the ROM input data are qualified for 
BWR stability analysis in the framework of the approach (RAM-ROM methodology) 
demonstrated in this paper. 

1.  OJECTIVE 

In general, the dynamics of a BWR can be described by a system of coupled 
nonlinear partial differential equations.  From the nonlinear dynamics point of view, it is 
well known that such systems show, under specific conditions, a very complex temporal 
behaviour which is reflected in the solution manifold of the corresponding equation 
system.  Consequently, to understand the nonlinear stability behaviour of a BWR and to 
get an overview over types of instabilities, the solution manifold of the differential 
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equation systems must be examined.  In particular, with regard to the existence of 
operational points where stable and unstable power oscillations are observed, stable or 
unstable fixed points and stable or unstable oscillatory solutions are of paramount interest 
[1-4].  Notice, stable or unstable oscillatory (periodical) solutions correspond to stable or 
unstable limit cycles.  Saddle-node bifurcation of cycles (turning points or fold 
bifurcations), period doubling and other nonlinear phenomena which are important from 
the reactor safety point of view are also of interest in this work[5-8].  

It is worthy to mention that a linear stability analysis is not able to examine the 
existence of stable and unstable limit cycles, e.g. if the unstable limit cycle is “born” in a 
subcritical Hopf bifurcation point [7], stable fixed points and unstable limit cycles will 
coexist in the linear stable region (close to the bifurcation point) in which the asymptotic 
decay ratio is less than one ( 1DR < ).  This example show that conceivably unstable 
conditions (from the nonlinear point of view) are not recognized and the operational 
safety limits could be violated.  Hence, in order to reveal this kind of phenomena, 
nonlinear BWR stability analysis like bifurcation analysis is necessary. 

2.  METHODOLOGY 

In the framework of the approach applied in this work, integrated BWR (system) 
codes (RAMONA5, Studsvik/Scandpower) and simplified BWR models (reduced order 
model, ROM) are used as complementary tools to examine the stability characteristic of 
fixed points and periodic solutions [1,4].  This new approach is called RAM-ROM 
method, where RAM is a synonym for system code.  The intention is, firstly, to identify 
the stability properties of certain operational points by performing ROM analysis and, 
secondly, to apply the system code for a detailed stability investigation in the 
neighbourhood of these operational points.  Some (constitutive) essential characteristics 
of system codes and ROMs are summarized in Fig. 1.  

 
Fig. 1 Overview over the methodology applied for the nonlinear BWR stability 

analyses where RAMONA5 and ROM are used as complementary tools. 
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System codes are computer programs which include sufficiently detailed physical 
models of all nuclear power plant components which are significant for a particular 
transient analysis (including 3D core model).  Therefore, such detailed BWR models 
should be able to represent the stability characteristics of a BWR close to the physical 
reality.  Nonlinear BWR stability analysis using large system codes is currently common 
practice in many laboratories [1].  A particular requirement is the integration of a 3D 
neutron kinetic model, which permits the analysis of regional or higher mode stability 
behaviour [3].  A detailed investigation of the complete solution manifold of the 
nonlinear equations describing the BWR stability behaviour by applying system codes 
needs comprehensive parameter variation studies which require large computational 
effort.  Hence system codes are inappropriate to reveal the complete nonlinear stability 
characteristics (with other words: the whole solution manifold of the DE system) of a 
BWR.  Furthermore, user of system codes must pay attention to the stability behaviour of 
the algorithms employed.  In particular, physical and numerical effects regarding power 
oscillations and the behaviour of numerical damping of the algorithms should be known 
in detail.  Numerical diffusion, for example, can corrupt the results of system codes 
significantly.  Therefore, reduced order analytical models could be helpful to get a first 
overview over the stability landscape to be expected.  

The objective of the ROM development is to develop a model as simple as 
possible from the mathematical and numerical point of view while preserving the physics 
of the BWR stability behaviour [4].  The resulting equation system is characterized by a 
minimum number of system equations which is realized by the reduction of the 
geometrical complexity.  One demand on our ROM is, because the ROM sub-models 
should be as close as possible to the sub-models used in RAMONA, that the solution 
manifold of the RAMONA model should be as close as possible to the solution manifold 
of the ROM.  E.g., both neutron kinetic models (ROM and RAMONA) are based on the 
two neutron energy group diffusion equations.  Both thermal-hydraulic two phase flow 
models are represented by models which consider the mechanical non-equilibrium 
(different velocities of the phases of the fluid).  The main advantage of employing 
ROM’s is the possible coupling with codes including methods of nonlinear dynamics like 
bifurcation analysis.  Bifurcation analysis of a BWR system, for example, leads to an 
overview over types of instabilities in selected parameter spaces.  The existence of stable 
and unstable periodical solutions (corresponds to limit cycles) can be examined reliably.  
Thus, the stability behaviour of global and regional power oscillation states can be 
investigated in detail and can be interpreted in physical terms. 

In the scope of the present ROM analyses two independent techniques are 
employed.  These are the semi-analytical bifurcation analysis with the bifurcation code 
BIFDD [7] and the numerical integration of the ROM differential equation system [1].  
Bifurcation analysis with BIFDD determines the stability properties of fixed points and 
periodical solutions (correspond to limit cycle) [7,8].  For independent confirmation of 
these results, the ROM system will be solved directly by numerical integration for 
selected parameters [1,4,8]. 
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The procedure of the nonlinear BWR stability analysis applying the RAM-ROM 
method is depicted in Fig. 2.   

 
Fig. 2 This figure depicts the new approach for nonlinear BWR stability analyses 

using RAMONA5 and ROM as complementary tools. 

The goal is to simulate the stability behavior of the power plant with the ROM as close as 
possible to that one calculated by RAMONA5 in the neighborhood of a selected 
operational point.  Hence, at first, the reference OP has to be selected for which the 
nonlinear BWR stability analysis will be performed.  Secondly, the new procedure for the 
ROM input calculation is applied.  Thereby, all ROM input data are calculated from the 
specific RAMONA5 model and its steady state solution corresponding to the reference 
point.  We demand: the ROM should provide the correct steady state values in the 
reference operational point.  Thereby the most essential values (for the BWR stability 
behaviour) are the mode feedback reactivity coefficients, the core inlet mass flow, the 
axial void profile and the channel pressure drops over the reactor vessel components 
along the closed flow path.  E.g. the subcooling number and the pressure loss coefficients 
cannot be calculated directly from the RAMONA5 model (and its steady state output) 



C. Lange et al. “REMARKS TO A NOVEL NONLINEAR BWR STABILITY ANALYSIS APPROACH RAM-ROM method” 

  © ANS 2009, Topical Meeting ANFM 2009, p. 5/20 

because the models describing the axial power profile and the pressure drop along the 
closed flow path are different in both codes.  Hence a special calculation procedure for 
the pressure loss coefficients and the core inlet subcooling of the ROM is developed and 
applied.  Finally, after the calculation of the ROM input parameters, nonlinear BWR 
analysis is performed by using ROM and RAMONA5 as complementary tools. 

To summarize and roughly speaking, the ROM analysis provides an overview 
about the stability characteristics of fixed points and limit cycles in selected parameter 
spaces.  Besides, the occurrence of further types of nonlinear phenomenon such as 
saddle-node bifurcation of cycles can be revealed [8]. Hence, the system code analysis 
can be performed with more pre-information (is made more reliable).  

2.1  Local bifurcation analysis using BIFDD 

In the framework of the bifurcation analysis with BIFDD, the so-called Poincarè-
Andronov-Hopf bifurcation (PAH-B) theorem plays a dominant role [1,4,5,7,8].  This 
theorem guarantees the existence of stable and unstable periodic solutions of nonlinear 
differential equations if certain conditions are satisfied.  A mathematical description is 
given in [1,7-9] and thus is not repeated here.  In order to get information about the 
stability property of the periodic solution, the (linear) Floquet theory is applied (and 
several techniques such as Lindstedt-Poincarè asymptotic expansion, centre manifold 
reduction, transformation into the Poincarè normal form presented in [7-10]) where the 
so-called Floquet exponent (Floquet parameter) β  appears [1,7-9] which determine the 
stability of the periodic solution.  If 0β < , the periodic solution is stable (supercritical 
bifurcation) while if 0β > , the periodic solution is unstable (subcritical bifurcation). 
Roughly speaking, the Floquet parameter can be interpreted to be a stability indicator for 
limit cycles and is a result of a special technique from nonlinear dynamics. Notice, the 
existence of a Hopf bifurcation is the (mathematical) reason for the sudden 
appearance of periodic oscillations (limit cycles).  These periodic solutions will be 
observed in the BWR reactor dynamics as global (in-phase) or regional (e.g. out-of-phase 
or azimuthal mode) power oscillations. 

The bifurcation analysis is carried out with the bifurcation code BIFDD 
developed by Hassard [7].The user of BIFDD has to provide the input parameter vector, a 
set of nonlinear ODEs, the corresponding Jacobian matrix and the initial guess for the 
phase space variables.  The bifurcation analysis starts with selection of the so called 
iteration and bifurcation parameter.  Thereby the iteration parameter will be varied in the 
interval defined by the user.  For each iteration step BIFDD computes the critical value 

,k cγ  of the bifurcation parameter, the amplitude ε  of the oscillation, the Floquet 
parameter 2β β≈  and further certain expansion parameters defined in [1,7-10].  As a 
result of the bifurcation analysis using BIFDD, a set of fixed points where the Hopf 
conditions are fulfilled will be obtained in the two dimensional parameter space, which is 
spanned by the iteration and bifurcation parameter (left diagram of Fig. 3 b)) [4].  This 
set of fixed points is called linear stability boundary. In each of these fixed points a 
periodical solution is born whose stability property is determined by the Floquet 
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exponent [1,4].  The right diagram of Fig. 3 b) shows the Floquet exponent 2β β≈  for 
each iteration step.  

 
Fig. 3 Stability boundary in the two dimensional parameter space which is 

spanned by the iteration and bifurcation parameter and the corresponding 
bifurcation characteristic. 

In Fig. 3b is shown a selected stability map (incremental parameter, e.g. subN , vs. 
control or bifurcation parameter, kγ , left hand side) and the corresponding bifurcation 
characteristic ( 2β  vs. incremental parameter, right hand side).  The bifurcation 
characteristic predicts unstable limit cycles coexisting with stable fixed points (see Fig. 
3a) and stable limit cycles coexisting with unstable fixed points (see Fig. 3c) in the 
environment of the stability line.  Notice, an unstable limit cycle “born” in a subcritical 
Hopf bifurcation separates a set of trajectories (in phase space) which spiral into the 
steady state solution (singular fixed point) from a set of trajectories which spiral away ad 
infinitum of the phase space (the state variables diverges in an oscillatory manner; the 
system behaves unstable).   

2.2  Numerical integration 

Semi-analytical bifurcation analysis is only valid in the vicinity of the critical 
bifurcation parameter (SB) in a small neighbourhood of the singular fixed point.  In order 
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to get information of the stability behaviour beyond the local bifurcation findings 
numerical integration (in the time domain) of the set of the ODEs is necessary.  Besides, 
the predictions of the semi-analytical bifurcation analysis can be confirmed 
independently [1,4,8].  

3.  THE ROM 

The current BWR reduced order model consists of three coupled sub-models. 
These are a neutron kinetic model, a fuel heat conduction model and a two-channel 
thermal-hydraulic model (presented in [1, 2]). Fig. 4 depicts a schematic sketch of the 
ROM. In this paper, only the most important ROM assumptions are presented.  

 
Fig. 4 Schematic sketch of the ROM 

3.1  Neutron kinetic model 

The neutron kinetics model is based on (an effective) two energy groups (thermal 
and fast neutrons).  The spatial mode expansion approach of the neutron flux in terms of 
lambda modes ( λ -modes)  [12] is used (thereby it is assumed that the amplitude function 
is independent on the energy).  Only the first two modes (fundamental and the first mode) 
and one effective one group of delayed neutron precursors are considered.  The 
contribution of the delayed neutron precursors to the feedback reactivity is neglected.  A 
new calculation methodology for the mode feedback reactivities is implemented 
(close coupling to the system code RAMONA: the mode feedback reactivities are 
calculated with the aid of the 3D power distributions calculated by the LAMBDA 
code [12]; in turn, RAMONA provides the macroscopic cross sections).  Taking into 
account these assumptions, four mode kinetic equations could be developed, coupled 
with the equations of the heat conduction and the thermal-hydraulic via the feedback 
reactivity terms (void and Doppler feedback reactivities). 
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3.2  Fuel rod heat conductions 

The heat conduction model assumptions (this sub-model is completely 
adopted from Karve (1998) [2]):  (1) Two axial regions, corresponding to the single and 
two-phase regions, are considered;  (2) three distinct radial regions, the fuel pellet, the 
gap and the clad are modeled in each of the two axial regions;  (3) azimuthal symmetry 
for heat conduction in the radial direction is assumed;  (4) heat conduction in the z-
direction is neglected;  (5) time-dependent, spatially uniform volumetric heat generation 
is assumed.  These assumptions result in a one-dimensional (radial) time dependent 
partial differential equation (PDE). By assuming a two-piecewise quadratic spatial 
approximation for the fuel rod temperature, the PDE can be reduced to a system of ODEs 
by applying the variation principle approach. A detailed derivation is presented in [1,2]. 

3.3  Thermal-hydraulic model 

The thermal-hydraulic behavior of the BWR is represented by two heated 
channels coupled by the neutron kinetics and by the recirculation loop. This sub-
model is based on the following assumptions:  (1) the heated channel, which has a 
constant flow cross section, is divided into two axial regions, the single and the two-
phase region;  (2) all thermal-hydraulic values are averaged over the flow cross section;  
(3) the dynamical behavior of the two-phase region is presented by a drift flux 
model (DFM, Rizwan-uddin, 1981]) where mechanical non equilibrium (difference 
between the two phase velocities, and a radial non-uniform void distribution is 
considered) is assumed (the DFM represents the stability behavior of the two-phase more 
accurately than a homogeneous equilibrium model, in particular for high void content);  
(4) the two phases are assumed to be in thermodynamic equilibrium;  (5) the system 
pressure is considered to be constant;  (6) the fluid in both axial regions and the 
downcomer is assumed to be incompressible;  (7) the following terms are neglected in the 
energy balance: the kinetic energy, potential energy, pressure gradient, friction 
dissipation;  (8) the PDEs (three-dimensional mass, momentum and energy balance 
equation) are converted into the final ODEs by applying the weighted residual method in 
which spatial approximations (spatially quadratic but time-dependent profiles) for the 
single phase enthalpy [2] and the two-phase quality are used (is equivalent to a coarse 
grained axial discretization). The thermal-hydraulic model is extended by a 
recirculation loop model based on the following assumptions:  (9) the downcomer 
(constant flow cross section) region is considered to be a single phase region;  (10) all 
physical processes which lead to energy increase and energy decrease are neglected in 
the downcomer;  (11) the pump head due to the recirculation pumps is considered to be 
constant ( headP const∆ = );  (12) the effect of the subcooled boiling phenomenon on the BWR 
stability behaviour is assessed. (Profile-Fit model [Levy, 1967]) 

To summarize, the dynamical system of the reduced BWR model consists of 22 
ODEs, four from the neutron kinetic model, eight to describe the fuel rod heat conduction 
(two equations for each phase, in each channel) and ten that describe the thermal-
hydraulic model (five for each channel) [1]. 
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4.  NONLINEAR STABILITY ANALYSIS FOR NPP LEIBSTADT (KLLc7_rec4) 

In order to gather stability data for cycle 7 of the NPP Leibstadt (KKL) a stability 
test was performed on September 6th 1990 [11].  Comprehensive post-calculation stability 
analyses using system codes were conducted for KKL measurement record #4 and #5 
(KKLc7_rec4-OP and KKLc7_rec5-OP).  The paper contains a short presentation of 
results of the nonlinear stability analyses for KKLc7_rec4-OP [12] where increasing 
regional power oscillations occurred at approximately 60% power and 37% core mass 
flow [12].  Fig. 5 and Fig. 6 show the time evolutions of LPRM signals of the 
measurement and the RAMONA5 calculation.  
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Fig. 5 Time evolution of the LPRM signals, measured in KKLc7_rec4-OP. 
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Fig. 6 RAMONA5 result for the reference OP.  The relative amplitudes of 

signals are shown for LPRM 9 and LPRM 26.  Both LPRM signals have a 
phase shift of π . 
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The transient behaviour presented in Fig. 6 was initiated by introducing a 2 node 
sinusoidal control rod movement resulting in a perturbation of the state variables of the 
BWR system.  The signals of the LPRM 9 and 26 of the fourth level are located in 
different core half’s (RAMONA predicts a fixed symmetry line for the present case []).  
As can be seen, an increasing out of phase power oscillation is occurring in the reference 
OP.  RAMONA5 predicts a natural frequency of * 10.537NF s−=  while the measurement 
gives * 10.58NF s−= .  All RAMONA5 investigations for the reference OP and its close 
neighbourhood have shown that the out of phase power oscillation will not discharge into 
a stable limit cycle.  The existence of a stable limit cycle cannot be verified by the 
RAMONA5 and measurement results but it must not be excluded.  

For the ROM analyses, KKLc7_rec4-OP is defined to be the reference OP.  All 
design parameters of the ROM are calculated from the specific KKL-RAMONA5 model.  
The operating parameters are estimated from the steady state solution provided by 
RAMONA5 for KKLc7_rec4-OP where the new calculation procedure for the ROM-
input was applied.  The values of the heated channel pressure drops simulated by the 
ROM are close to the reference values provided by RAMONA5.  In addition to that the 
axial void profiles calculated by RAMONA5 and ROM are in good agreement.  Thereby 
the deviation of the total volumetric void fraction is less than 1%.  These steady state 
results are presented in [].  

The results of the numerical integration of the ROM equation system in the 
reference OP confirm the transient behavior predicted by RAMONA5.  The time 
evolution of the fundamental mode 0 ( )n t , first azimuthal mode 1( )n t  and the channel 
inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t  are shown in Fig. 7. 
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Fig. 7 Time evolutions of the fundamental 0 ( )n t  and first azimuthal mode 1( )n t  

and the channel inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t . 
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It can be seen that the amplitudes of the fundamental mode oscillation are decaying for 
the first 250 s and then increasing while the first azimuthal mode oscillation is increasing 
continuously, after the perturbation (an in-phase oscillation was triggered) was imposed 
on the system.  This means, an increasing out of phase power oscillation is occurring in 
the reference OP.  Thus, the prediction of the RAMONA5 investigation in the reference 
OP could be verified by the ROM.  The oscillation frequency predicted by the ROM is 

* 10.457NF s−= .  The behaviour of the fundamental mode oscillation (decaying for the 
first 250 s and then increasing) can be explained by the solution of a linearized system 
where each component of the solution depends on each eigenvalue of the Jacobian 
matrix.  This means, if there is at least one pair of complex conjugated eigenvalues with a 
real part larger then zero, all components of the solution will diverge asymptotically in an 
oscillatory manner.  This was shown in detail in [1]. 

4.1  Local bifurcation analysis with BIFDD 

The results of the semi-analytical bifurcation analysis of the ROM equation 
system are presented in the subN - extDP -operating plane ( subN  and extDP  are defined in 
Nomenclature at the end of this paper).  Notice, a variation of extDP  (steady state 
external pressure drop) corresponds to a movement on the rod-line which crosses the 
reference OP while the 3D-distributions will not be affected.  Thus the stability properties 
of operational points along a fixed rod-line (fixed control rod configuration) and its close 
neighborhood are analyzed.  The stability boundary (SB) and the bifurcation 
characteristic are shown in Fig. 8.  The SB is defined as the set of fixed points for which 
the Hopf conditions are fulfilled.  Roughly speaking, this means, in each of these fixed 
points a limit cycle is “born” and exists either in the (linear) stable or (linear) unstable 
region.  The stability characteristic of the limit cycle is determined by the Floquet 
parameter 2β  [7-9].  In Fig. 9 is shown the SB transformed into the power flow map. 
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Fig. 9 Stability boundary transformed into the power flow map.  

Unstable periodical solutions (unstable limit cycle) close to the KKLc7_rec4-OP 
are predicted by the semi-analytical bifurcation analysis (for 0.53 1.38subN< < , see Fig. 
8).  These solutions are located in the linear stable region close to the stability boundary.  
This means, in this region coexist stable fixed points and unstable limit cycles (see Fig. 
3a).  Notice, the asymptotic decay ratio (linear stability indicator) is less than 1 ( 1DR < ) 
in this region.  A linear stability analysis is not capable to examine the stability properties 
of limit cycles.  

4.2  Numerical Integration: Local Consideration 

For independent confirmation of the results which are predicted by the bifurcation 
analyses, numerical integration of the ROM equation system (in the time domain) has 
been carried out for selected parameters.  The ROM equations are solved in an 
operational point that is located in the (linear) stable region (see Fig. 10) close to the SB.  
In this region unstable limit cycles are predicted by the bifurcation analysis. 
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Fig. 10 SB and the point for which the unstable limit cycle will be verified by 

numerical integration.  
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Fig. 11 Numerical integration is carried out in an operational point in which an 

unstable limit cycle is predicted by the bifurcation analysis.  The transient 
was initiated by imposing perturbations of the core inlet mass flow with 
(small v 0.01inletδ = , large v 0.025inletδ = ). 

In order to verify the existence of the unstable limit cycle, perturbations of 
different amplitudes are imposed on the system.  This means, according to 

0( ) ( )X t X X tδ= + , the steady state solution 0X  is perturbed by different perturbation 
amplitudes ( )X tδ  and the transient behavior of the system state ( )X t  is calculated by 
numerical integration of the ROM equation system.  If a sufficient small perturbation is 
imposed on the system, the state variables will return to the steady state solution.  The 
terminus “sufficient small perturbation” means that the trajectory starts within the basin 
of attraction of the fixed point.  Roughly speaking, the perturbation amplitude is less than 
the repellor amplitude (see phase space portrait depicted in Fig. 3a).  But if a sufficient 
large perturbation is imposed on the system, the state variables will diverge in an 
oscillatory manner.  The terminus “sufficient large perturbation” means that the 
perturbation amplitude is larger than the repellor amplitude.  In this case the trajectory 
will start out of the basin of attraction of the fixed point.  As shown in Fig. 11, the results 
of the numerical integration method confirm locally the prediction of the bifurcation 
analysis.  

4.3  Numerical Integration: Global Consideration 

The local ROM analysis has shown that the bifurcation analyses using BIFDD 
and the numerical integration method provide locally in the origin of the dynamical 
system (phase or state space) in the vicinity of the critical parameter value ,k cγ  
(parameter space; index k  is ignored in the following discussion) consistent results.  The 
terminus “locally in the origin of the dynamical system” means that the close 
neighbourhood of the steady state solution 0X  (the singular fixed point) is taken into 
account in the phase space.  Further analyses in the reference OP and its neighbourhood, 
whereby numerical integration is carried out for a time period of 800 s revealed the 
existence of stable limit cycles.  The result of the time integration in the reference OP 
using the numerical integration code is shown in Fig. 12. 
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Fig. 12: Result of (a long time) numerical integration in the reference OP 

where a long time integration is carried out (reference OP of 
KKLc7rec4). 

The (cursory) conclusion is:  The existence of a stable limit cycle in the linear 
unstable region is inconsistent with the result of the bifurcation analysis which delivers 
subcritical Hopf bifurcations.  Hence, unstable limit cycles are predicted in the linear 
stable region for this analysis case.  In order to understand this behaviour, more in depth 
considerations are necessary. 

The above analysis reveals that the system behaviour cannot be examined only by 
local considerations such as semi-analytical bifurcation analysis using BIFDD.  The 
coexistence of a subcritical bifurcation point (where an unstable limit cycle is born) and 
stable limit cycles in the linear unstable region could be an unique indicator for a possible 
existence of global bifurcation.  In contrast to the Hopf bifurcation, global bifurcations 
involve large regions of the phase space rather than just the neighbourhood of a singular 
fixed point [6].  Thus, in the scope of the present work, the post-bifurcation state can only 
be determined through numerical integration of the ROM equations.  For this purpose, 
the amplitudes of the limit cycles vs. the core inlet subcooling will be determined by 
numerical integration.  Thereby, all the other parameters are fixed.  The results are 
plotted in Fig. 13 and Fig. 14.  The diagram shown in these figures is also known as 
bifurcation diagram.  In particular, the global behaviour in the close neighbourhood of 
the stability boundary will be analysed. 

The subcooling number subN  is varied between 0.6 and 0.9 and the stable limit 
cycle amplitudes of the first azimuthal mode 1( )A n  are determined. Fig. 13, Fig. 14 and 
Fig. 15 summarises results of this analysis.  The results show, that limit cycle amplitudes 

1( )A n  decreases with decreasing core inlet subcooling.  Below the critical value 
, 0.63547sub cN ≈  (the Hopf conditions are fulfilled at ,sub cN ) stable limit cycles still exist 



C. Lange et al. “REMARKS TO A NOVEL NONLINEAR BWR STABILITY ANALYSIS APPROACH RAM-ROM method” 

  © ANS 2009, Topical Meeting ANFM 2009, p. 15/20 

(see Fig. 14).  This means, stable and unstable limit cycles coexist in the linear stable 
region.  The coexistence of stable and unstable limit cycles for ,sub sub cN N<  is verified by 
numerical integration for 0.632subN =  by imposing different perturbation amplitudes 

( )X tδ  on the system.  A sufficient small perturbation leads to a stable behaviour.  But 
when a sufficient large perturbation is imposed on the system, the state variables are 
attracted by the limit cycle.  This is presented in Fig. 15.  
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Fig. 13 The results of the numerical integration are plotted as bifurcation diagram, 

where subN  is the bifurcation parameter and ,ext ext refDP DP= . 
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Fig. 14 (“Zoom in” of Fig. 13) Notice, the function of the amplitudes of the 

unstable limit cycle is an assessment only, not a calculated one. 
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Fig. 15 This figure shows the results of numerical integration for 0.632subN =  

and ,ext ext refDP DP= , where a sufficient small v 0.02inletδ =  and sufficient 
large v 0.1inletδ =  perturbation is imposed on the system.  When a small 
perturbation is imposed on the system, the state variables are returning to 
the steady state solution (origin of the dynamical system).  When a large 
perturbation is imposed on the system, the state variables are attracted by 
the limit cycle. 

The amplitudes of the unstable limit cycle correspond to the boundary which separates 
the basin of attraction of the singular fixed point and basin of attraction of the stable limit 
cycle.  

The analysis has shown that stable and unstable limit cycles do not exist for core 
inlet subcooling less than 0.63subN < .  Hence, there is a critical core inlet subcooling 

,sub tN , where the two limit cycles coalesce and annihilate.  Due to (numerical) 
convergence problems of numerical integration, ,sub tN  cannot be calculated exactly.  The 
estimated value of ,sub tN  is , 0.63sub tN ≈ .  From this result, it can be concluded that in 

,sub tN  there is a saddle-node bifurcation of a cycle.  This bifurcation type belongs to the 
class of global bifurcations and is also referred to as turning point or fold bifurcation [6]. 

The behaviour of a dynamical system which undergoes a saddle-node bifurcation 
of a cycle is summarized in Fig. 16 (there is depicted the bifurcation diagram and the 
corresponding radial phase portraits).  In the following Fig. 16 is discussed more in 
detail. To this end, the control parameter γ  in Fig. 16 is assumed to be subN  ( subNγ = ).  
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Fig. 16 This figure depicts a bifurcation diagram of a saddle-node 
bifurcation of a cycle and the corresponding radial phase portraits. 

1. The bifurcation at tγ  is a saddle-node bifurcation of a cycle. In this point, a stable 
and an unstable periodical solution (limit cycle) are born (“out the clear blue 
sky”). As depicted in Fig. 16, the phase portrait is changing significantly when 
passing tγ . 

2. In the range t cγ γ γ< < , two qualitatively different stable states coexist, namely 
the origin (fixed point solutions) and the stable limit cycle.  Both states are 
separated by an unstable limit cycle (see phase portrait in Fig. 16).  In other words, 
due to the saddle-node bifurcation at tγ γ= , a stable and an unstable limit cycle 
coexist with stable fixed points within the parameter range t cγ γ γ< < .  One 
consequence is that the origin is stable to “small” perturbations, but not to “large” 
ones.  In this sense the origin is locally stable, but not globally stable. 

3. From the stability analysis point of view, a saddle-node bifurcation is operational 
safety significant, if the amplitude of the stable limit cycle is sufficient large.  
Supposing the system is in steady state (origin) below tγ , and the control parameter 
γ  is slowly increased.  As long as cγ γ<  the state remains at the origin.  But at 

cγ γ=  the origin loses stability and thus the slightest “nudge” will cause the state to 
jump to the limit cycle.  In this case, the state will start to oscillate when reaching 

cγ γ=  and the oscillations are growing as long as they will be attracted by the 
stable limit cycle.  With further increase of γ , the state moves out along the limit 
cycle solution.  But if γ  is now reduced, the state remains on the stable limit cycle 
oscillation, even when γ  is decreased below cγ .  The system will return to the 
origin when the control parameter γ  is reduced below tγ . This characteristic 
(called hysteresis) can be considered as a loss of reversibility as the control 
parameter is varied. 
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4. The system behaviour near the origin is similar to the behaviour of a system 
which undergoes a subcritical Hopf bifurcation at cγ γ= .  

To summarize, local ROM analyses for KKLc7_rec4 have shown that the 
bifurcation analyses and the numerical integration method provide consistent results only 
in a small neighbourhood of the Hopf bifurcation point cγ  and in the vicinity of the 
origin (local consistency; Notice, it must be differentiated between the terminus “a small 
neighbourhood in parameter space” and “a small neighbourhood in the phase or state 
space”; see Fig. 17). In order to study the global character of the nonlinear system, 
numerical integration is necessary. For this purpose, numerical integration of the ROM 
equation system have been carried out, where subN  was varied in the range [0.62,....,0.9]. 
The analyses have shown that in the range , 0.9sub t subN N< <  ( , 0.63sub tN = ) stable limit 
cycles exist, even though the bifurcation analysis predicts only unstable limit cycles for 

,sub sub cN N<  ( ,sub cN  is the critical bifurcation parameter, for which the Hopf conditions 
are fulfilled). Hence, in the reference OP the state variables will also be attracted by the 
limit cycle. In addition to that, for , ,[ ,...., ]sub sub t sub cN N N∈  with , ,sub t sub cN N<  stable fixed 
point solution, unstable periodical solution and stable periodical solution coexist. Below 

,sub tN , only stable fixed point solution exist.  

One would think that the predictions of BIFDD and the results of the numerical 
integration are inconsistent. But notice: BIFDD is based on local methods.  Thus the 
stability investigation using BIFDD is concentrated only in the origin of the system close 
to the critical parameter cγ  (see Fig. 17). 

 
Fig. 17 Summary of the main characteristics of a system, which undergoes a 

saddle-node bifurcation of cycles.  The results of BIFDD are only valid 
locally in the close neighbourhood of the origin of the system close to cγ  
(region cΓ ).  The global character of the nonlinear system can only be 
examined by numerical integration. 
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5.  CONCLUSIONS 

The nonlinear analysis has shown that the stability behaviour of the reference OP 
and its close neighbourhood can be simulated reliably by the new ROM.  In this OP, the 
results of RAMONA5 and ROM are locally consistent.  Under stability related parameter 
variations the stability behaviour calculated by both ROM and RAM are consistent.  
Hence, the new ROM and the new procedure for the calculation of the ROM input data 
are qualified for BWR stability analysis in the framework of the new approach (RAM-
ROM methodology): The ROM analysis provides an overview about types of 
instability which have to be expected (in a selected BWR power-flow map region). 
With the RAM (system code), these phenomena are analyzed in detail (but with pre-
information received by ROM analysis). Hence the reliability of the stability 
analysis is improved.  

A more in depth nonlinear analysis, where global aspects are taken into account, 
revealed a system behavior which can be explained by the existence of a saddle-node 
bifurcation of cycles.  

Methods and results of this work will be the basis for further nonlinear BWR 
stability analyses.  An in-depth understanding of the BWR stability behavior should 
definitely contribute to an efficient design of “detection and suppression” systems. 

NOMENCLATURE 

The subcooling number subN  represents the core inlet subcooling and appears as a 
boundary condition in the single phase energy equation.  The subcooling number and the 
steady state external pressure drop are written as 

 
* * **

* * * *2
0

( ) ,
v

sat inlet ext
sub ext

fg g f

h h DPN DP
h

ρ
ρ ρ

− ∆
= ⋅ =

∆
 (1) 

where *
sath  is the saturation enthalpy, *

inleth  inlet enthalpy, * * *
f gρ ρ ρ∆ = −  liquid-vapor 

density, * * *
fg g fh h h∆ = −  liquid-vapor enthalpy, *

0v  reference velocity and *
extDP  is the steady 

state pressure drop over the vessel high. ( )X t  with ( ) nX t ∈  is the state vector of the 
dynamical system. An asterix on a variable or parameter indicates the original 
dimensional quantity and any quantity without an asterix is dimensionless. 
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