## Basis eines Vektorraumes

## Basisergänzungssatz:

Ist  $U\subseteq V$  ein Unterraum von V und dim V=n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden.

Und es gilt:

$$\dim U \leq \dim V$$
.

#### **Beweis:**

1.Fall:  $U = \{\vec{0}\}$ . Es gibt keine Menge linear unabhängiger Vektoren; dim U = 0.

2.Fall:  $U \neq \{\vec{0}\}$ . Es sei  $\{\vec{u}_1, \ldots, \vec{u}_k\} \subset U$  linear unabhängig.

Fall 2.1: 
$$U = \operatorname{Span}(\{\vec{u}_1, \dots, \vec{u}_k\}) \Rightarrow \{\vec{u}_1, \dots, \vec{u}_k\} \text{ ist Basis. } \sqrt{$$
Fall 2.2:  $U \neq \operatorname{Span}(\{\vec{u}_1, \dots, \vec{u}_k\}) \Rightarrow \exists \vec{u}_{k+1} \in U \setminus \operatorname{Span}(\{\vec{u}_1, \dots, \vec{u}_k\})$ 

$$\Rightarrow \{\vec{u}_1, \dots, \vec{u}_k, \vec{u}_{k+1}\} \text{ ist linear unabhängig.}$$

Wiederhole, bis Fall 2.1 eintritt.

Dies geschieht spätestens bei n Vektoren  $\{\vec{u}_1,\ldots,\vec{u}_n\}$ , da dim V= $\mathbf{n}$ .

## Basis eines Vektorraumes

## Basisergänzungssatz:

Ist  $U\subseteq V$  ein Unterraum von V und dim V=n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden.

Und es gilt:

$$\dim U \leq \dim V$$
.

**Folgerungen:** Hat V eine Basis  $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$  (d.h. dim V = n), so ist

- jede Menge aus *n* linear unabhängigen Vektoren in *V* eine Basis und
- jede Menge aus *n* den Vektorraum *V* aufspannenden Vektoren eine Basis.

Gegeben sei ein Vektorraum V mit einer Basis  $\mathcal{B}=\{\vec{b}_1,\ldots,\vec{b}_n\}$ . Es wird eine neue Basis  $\tilde{\mathcal{B}}=\{\vec{\tilde{b}}_1,\ldots,\vec{\tilde{b}}_n\}$  betrachtet.

**Frage:** Ein beliebiger Vektor  $\vec{v} \in V$  ist mit Koordinaten  $[\vec{v}]_{\mathcal{B}}$  gegeben. Wie lauten seine neuen Koordinaten  $[\vec{v}]_{\tilde{\kappa}}$ ?



Berechnen die Koordinatenvektoren der alten Basis  $\mathcal B$  in der neuen Basis  $\tilde{\mathcal B}$  aus den Bedingungen:

$$\vec{b}_1 = a_{11}\vec{b}_1 + \ldots + a_{1n}\vec{b}_n$$

$$\vdots$$

$$\vec{b}_n = a_{n1}\vec{b}_1 + \ldots + a_{nn}\vec{b}_n$$

Es sei nun  $\vec{v} \in V$  mit Koordinaten  $[\vec{v}]_{\mathcal{B}} = (v_1, \dots, v_n)^T$  gegeben:

$$\vec{v} = v_1 \vec{b}_1 + \dots + v_n \vec{b}_n$$

$$= v_1 (a_{11} \vec{b}_1 + a_{12} \vec{b}_2 + \dots + a_{1n} \vec{b}_n) + v_2 (a_{21} \vec{b}_1 + a_{22} \vec{b}_2 + \dots + a_{2n} \vec{b}_n) + \dots$$

$$+ v_n (a_{n1} \vec{b}_1 + a_{n2} \vec{b}_1 + \dots + a_{nn} \vec{b}_n)$$

$$= (v_1 a_{11} + v_2 a_{21} + \dots + v_n a_{n1}) \vec{b}_1 + (v_1 a_{12} + v_2 a_{22} + \dots + v_n a_{n2}) \vec{b}_2 + \dots$$

$$+ (v_1 a_{1n} + v_2 a_{2n} + \dots + v_n a_{nn}) \vec{b}_n$$

$$\begin{pmatrix} v_1 a_{11} + v_2 a_{21} + \dots + v_n a_{n1} \\ \end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \end{pmatrix}$$

$$\Rightarrow [\vec{v}]_{\vec{B}} = \begin{pmatrix} v_1 a_{11} + v_2 a_{21} + \dots + v_n a_{n1} \\ v_1 a_{12} + v_2 a_{22} + \dots + v_n a_{n2} \\ \vdots \\ v_1 a_{1n} + v_2 a_{2n} + \dots + v_n a_{nn} \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix}}_{=:W_{\vec{B},\vec{B}}} [\vec{v}]_{\vec{B}}$$

Die  $(n \times n)$ -Matrix  $W_{\mathcal{B},\tilde{\mathcal{B}}}$  heißt **Basiswechselmatrix** von  $\mathcal{B}$  nach  $\tilde{\mathcal{B}}$ .

Basiswechselmatrix:

$$W_{\mathcal{B},\tilde{\mathcal{B}}} = \left(\begin{array}{ccc} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{array}\right)$$

Koordinatenvektoren der alten Basis  $\mathcal{B}$  in der neuen Basis  $\tilde{\mathcal{B}}$ :

$$\vec{b}_1 = a_{11}\vec{\tilde{b}}_1 + \ldots + a_{1n}\vec{\tilde{b}}_n$$

$$\vdots$$

$$\vec{b}_n = a_{n1}\vec{\tilde{b}}_1 + \ldots + a_{nn}\vec{\tilde{b}}_n$$

$$\Rightarrow \boxed{W_{\mathcal{B},\tilde{\mathcal{B}}} = \left( [\vec{b}_1]_{\tilde{\mathcal{B}}}, \dots, [\vec{b}_n]_{\tilde{\mathcal{B}}} \right)}$$

Die Spalten der Basiswechselmatrix sind die Koordinatenvektoren der alten Basis in der neuen Basis.

**Spezialfall**: 
$$V = \mathbb{R}^n$$

Vektoren sind üblicherweise in Koordinaten der Standardbasis geschrieben.

Es seien Basen  $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$  und  $\tilde{\mathcal{B}} = \{\vec{b}_1, \dots, \vec{b}_n\}$  in  $\mathbb{R}^n$  gegeben.

Berechnung der Koordinatenvektoren der alten Basis  $\mathcal{B}$  in der neuen Basis  $\tilde{\mathcal{B}}$ :

$$\vec{b}_1 = a_{11}\vec{b}_1 + \dots + a_{1n}\vec{b}_n$$

$$\vdots$$

$$\vec{b}_n = a_{n1}\vec{b}_1 + \dots + a_{nn}\vec{b}_n$$

In Matrixform geschrieben:

$$\underbrace{\left(\vec{\tilde{b}}_{1},\ldots,\vec{\tilde{b}}_{n}\right)}_{=\tilde{B}}\cdot\underbrace{\left(\begin{array}{ccc}a_{11}&\ldots&a_{n1}\\\vdots&\ddots&\vdots\\a_{1n}&\ldots&a_{nn}\end{array}\right)}_{=W_{\mathcal{B},\tilde{\mathcal{B}}}}=\underbrace{\left(\vec{b}_{1},\ldots,\vec{b}_{n}\right)}_{=B}$$

Diese Matrixgleichung  $\widetilde{B} \cdot W_{\mathcal{B},\widetilde{\mathcal{B}}} = B$  ist mit dem Gauss-Algorithmus lösbar.

# Spaltenraum und Kern einer Matrix

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = (\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n)$$

**Spaltenraum von A**:  $Col(A) := Span(\{\vec{a}_1, \dots, \vec{a}_n\}).$ 

**Kern von A:** 
$$\operatorname{Ker}(A) := \{ \vec{x} \in \mathbb{K}^n \mid A\vec{x} = \vec{0} \}.$$

Ker(A) ist die Lösungsmenge des homogenen linearen Gleichungssystems  $A\vec{x} = \vec{0}$ .

## Es gilt:

- Col(A) ist ein Unterraum des Vektorraumes K<sup>m</sup>.
   Die Pivotspalten von A formen eine Basis von Col(A).
   Rang von A: rg(A) := dim Col(A).
- Ker(A) ist ein Unterraum des Vektorraumes K<sup>n</sup>.
   Ist { \vec{x} ∈ K<sup>n</sup> | \vec{x} = t<sub>1</sub> \vec{v}<sub>1</sub> + t<sub>2</sub> \vec{v}<sub>2</sub> + ... + t<sub>k</sub> \vec{v}<sub>k</sub>, t<sub>1</sub>, ..., t<sub>k</sub> ∈ K} die L\vec{\vec{v}} sungsmenge von A\vec{x} = \vec{0} in parametrischer Vektorform, so ist { \vec{v}<sub>1</sub>, ..., \vec{v}<sub>k</sub>} Basis von Ker(A).

**Dimensionsformel:** rg(A) + dim Ker(A) = n

# Spaltenraum und Kern einer Matrix

## **Beispiel**

$$\left(\begin{array}{cccccc}
1 & 6 & 2 & -5 & -2 \\
-1 & -6 & 0 & -3 & 1 \\
2 & 12 & 4 & -10 & -3
\end{array}\right) \sim \left(\begin{array}{ccccccc}
1 & 6 & 2 & -5 & -2 \\
0 & 0 & 2 & -8 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

### Ablesen:

- dim (Col(A)) = rg(A) = 3.
- Basis für Col(A):

$$\mathcal{B} = \left\{ \left( \begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right), \left( \begin{array}{c} 2 \\ 0 \\ 4 \end{array} \right), \left( \begin{array}{c} -2 \\ 1 \\ -3 \end{array} \right) \right\}$$

• dim (Ker(A)) = 2 = 5-dim (Col(A))

# Spaltenraum und Kern einer Matrix

#### Basis des Kerns bestimmen:

$$\left(\begin{array}{cccccc}
1 & 6 & 2 & -5 & -2 \\
-1 & -6 & 0 & -3 & 1 \\
2 & 12 & 4 & -10 & -3
\end{array}\right) \sim \left(\begin{array}{ccccccc}
1 & 6 & 0 & 3 & 0 \\
0 & 0 & 1 & -4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

### Lösungsmenge:

$$x_1 = -6x_2 - 3x_4$$

$$x_3 = 4x_4$$

$$x_6 = 0$$

mit Parametern  $x_2 = t$ ,  $x_4 = s$ :

$$\Rightarrow \quad \vec{x} = t \underbrace{\begin{pmatrix} -6 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}}_{=:\vec{V}_{1}} + s \underbrace{\begin{pmatrix} -3 \\ 0 \\ 4 \\ 1 \\ 0 \end{pmatrix}}_{=:\vec{V}_{2}}, t, s \in \mathbb{R}$$

 $\Rightarrow \{\vec{v}_1, \vec{v}_2\}$  ist eine Basis für Ker(A).

# Lineare Abbildungen

Es seien V und W Vektorräume über einem Körper  $\mathbb{K}$ .

Eine Abbildung  $f: V \to W$  heißt **linear** oder **Homomorphismus**, falls

- (1)  $\forall \vec{u}, \vec{v} \in V : f(\vec{u} + v) = f(\vec{u}) + f(\vec{v}).$
- (2)  $\forall \vec{v} \in V \, \forall \alpha \in \mathbb{K} : f(\alpha \vec{v}) = \alpha f(\vec{v}).$

d.h.: 
$$\forall \vec{u}, \vec{v} \in V \, \forall \alpha, \beta \in \mathbb{K} : f(\alpha \vec{u} + \beta \vec{v}) = \alpha f(\vec{u}) + \beta f(\vec{v}).$$

Eine Abbildung  $f: V \to W$  heißt

- injektiv, falls  $\forall \vec{u}, \vec{v} \in V : \vec{u} \neq \vec{v} \Rightarrow f(\vec{u}) \neq f(\vec{v})$ .
- surjektiv, falls  $\forall \vec{w} \in W \exists \vec{v} \in V : f(\vec{v}) = \vec{w}$ .
- **bijektiv**, falls *f* injektiv und surjektiv ist.

Der Kern einer Abbildung f ist  $Ker(f) := {\vec{v} \in V \mid f(\vec{v}) = \vec{0}} = f^{-1}({\{\vec{0}\}}).$ 

Das **Bild einer Abbildung** 
$$f$$
 ist  $Im(f) := \{ \vec{w} \in W \mid \exists \vec{v} \in V : f(\vec{v}) = \vec{w} \} = f(V).$ 

### Es ailt:

- Ker(f) ist ein Unterraum des Vektorraumes V.
- Im(f) ist ein Unterraum des Vektorraumes W.