Lineare Abbildungen

Es seien V und W Vektorräume über einem Körper \mathbb{K} .

Eine Abbildung $f: V \to W$ heißt **linear** oder **Homomorphismus**, falls

- (1) $\forall \vec{u}, \vec{v} \in V : f(\vec{u} + v) = f(\vec{u}) + f(\vec{v}).$
- (2) $\forall \vec{v} \in V \, \forall \alpha \in \mathbb{K} : f(\alpha \vec{v}) = \alpha f(\vec{v}).$

d.h.:
$$\forall \vec{u}, \vec{v} \in V \, \forall \alpha, \beta \in \mathbb{K} : f(\alpha \vec{u} + \beta \vec{v}) = \alpha f(\vec{u}) + \beta f(\vec{v}).$$

Eine Abbildung $f: V \to W$ heißt

- injektiv, falls $\forall \vec{u}, \vec{v} \in V : \vec{u} \neq \vec{v} \Rightarrow f(\vec{u}) \neq f(\vec{v})$.
- **surjektiv**, falls $\forall \vec{w} \in W \ \exists \ \vec{v} \in V : f(\vec{v}) = \vec{w}$.
- **bijektiv**, falls f injektiv und surjektiv ist.

Der Kern einer Abbildung f ist $Ker(f) := \{ \vec{v} \in V \mid f(\vec{v}) = \vec{0}_{W} \} = f^{-1}(\{\vec{0}_{W}\}).$ Das **Bild einer Abbildung** f ist $Im(f) := \{ \vec{w} \in W \mid \exists \vec{v} \in V : f(\vec{v}) = \vec{w} \} = f(V)$.

Theorem 17:

- Ker(f) ist ein Unterraum des Vektorraumes V.
- Im(f) ist ein Unterraum des Vektorraumes W.

Ziel ist, zu zeigen, dass jede lineare Abbildung zwischen endlich-dimensionalen Vektorräumen durch eine Matrix charakterisiert werden kann.

Erinnerung:

Es sei A eine $(m \times n)$ -Matrix über einem Körper \mathbb{K} , d.h. $A \in \mathbb{K}^{m \times n}$.

Nach Theorem 1 gilt:

Die Abbildung $f: \mathbb{K}^n \to \mathbb{K}^m$, $f(\vec{x}) = A\vec{x}$ ist linear.

 \Rightarrow Die Suche nach Lösungen von $A\vec{x} = \vec{b}$ ist gleichbedeutend mit der Suche nach Urbildern \vec{x} unter der Abbildung f für einen Vektor \vec{b} des Bildraums \mathbb{K}^m .

Betrachten vorerst $V = \mathbb{K}^n$ und $W = \mathbb{K}^m$.

Es sei $f: \mathbb{K}^n \to \mathbb{K}^m$ eine lineare Abbildung.

Für
$$\vec{x} = (x_1 \ x_2 \ \dots \ x_n)^T \in \mathbb{K}^n$$
 gilt: $\vec{x} = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n$.

Da
$$f$$
 linear ist, folgt: $\forall \vec{x} \in \mathbb{K}^n : f(\vec{x}) = A\vec{x} \text{ mit } A := (f(\vec{e}_1) \ f(\vec{e}_2) \ \dots \ f(\vec{e}_n)).$

Theorem 18:

Zu jeder linearen Abbildung (Homomorphismus) $f: \mathbb{K}^n \to \mathbb{K}^m$ existiert eine eindeutig bestimmte $(m \times n)$ -Matrix A mit $f(\vec{x}) = A\vec{x}$ für alle $\vec{x} \in \mathbb{K}^n$.

Die Matrix A heißt **Standardmatrix** von f.

Betrachten vorerst $V = \mathbb{K}^n$ und $W = \mathbb{K}^m$.

Nutzen dann in der Verallgemeinerung die Isomorphie jedes n-dimensionalen Vektorraumes über \mathbb{K} zu \mathbb{K}^n .

Theorem 19: Es sei $f: \mathbb{K}^n \to \mathbb{K}^m$ eine lineare Abbildung mit der Standardmatrix $A \in \mathbb{K}^{m \times n}$, d.h. $\forall \vec{x} \in \mathbb{K}^n : f(\vec{x}) = A\vec{x}$. Dann gilt:

- Ker(f) = Ker(A) und Im(f) = Col(A).
- f ist **injektiv** \Leftrightarrow $A\vec{x} = \vec{0}$ hat nur die triviale Lösung.
 - $\Leftrightarrow \operatorname{Ker}(f) = \operatorname{Ker}(A) = \{\vec{0}\}.$
 - \Leftrightarrow Jede Spalte von A ist Pivotspalte.
- f ist **surjektiv** \Leftrightarrow $A\vec{x} = \vec{b}$ ist für jedes $\vec{b} \in \mathbb{K}^m$ lösbar.
 - $\Leftrightarrow \operatorname{Col}(A) = \mathbb{K}^m$.
 - ⇔ Jede Zeile von A enthält eine Pivotposition.
- f ist **bijektiv** \Leftrightarrow A ist invertierbar.

Es seien V und W Vektorräume der Dimensionen dim V=n und dim W=m über einem Körper \mathbb{K} mit Basen $\mathcal{B}=\{\vec{b}_1,\ldots,\vec{b}_n\}$ bzw. $\mathcal{D}=\{\vec{d}_1,\ldots,\vec{d}_m\}$.

Theorem 20:

Zu jeder linearen Abbildung $f: V \to W$ existiert eine eindeutig bestimmte $(m \times n)$ -Matrix A derart, dass für alle $\vec{v} \in V$ gilt:

$$[f(\vec{v})]_{\mathcal{D}} = A[\vec{v}]_{\mathcal{B}}.$$

Die Matrix A heißt **Darstellungsmatrix** von f bzgl. der Basen \mathcal{B} und \mathcal{D} .

Es seien V_1 , V_2 , V_3 Vektorräume der Dimensionen dim $V_i = n_i$, i = 1, 2, 3 über \mathbb{K} . Die **Komposition** zweier linearer Abbildungen $f_1: V_1 \to V_2$ und $f_2: V_2 \to V_3$

$$(f_2 \circ f_1)(\vec{v}) := f_2(f_1(\vec{v}))$$
 für alle $\vec{v} \in V_1$

ist ebenfalls linear.

Seien A_1 und A_2 die Darstellungsmatrizen von f_1 bzw. f_2 bzgl. \mathcal{B}_1 , \mathcal{B}_2 bzw. \mathcal{B}_2 , \mathcal{B}_3 . Dann qilt:

$$[f_1(\vec{v})]_{\mathcal{B}_2} = A_1[\vec{v}]_{\mathcal{B}_1}$$
 für alle $\vec{v} \in V_1$,

$$[\mathit{f}_2(\vec{w})]_{\mathcal{B}_3} \quad = \quad \mathit{A}_2\, [\vec{w}]_{\mathcal{B}_2} \quad \text{für alle } \vec{w} \in \mathit{V}_2.$$

Und damit:

$$[(f_2\circ f_1)(\vec{v})]_{\mathcal{B}_3}=(A_2\cdot A_1)\,[\vec{v}]_{\mathcal{B}_1}\quad\text{für alle }\vec{v}\in V_1.$$

 \Rightarrow $A_1 \cdot A_2$ ist die **Darstellungsmatrix der Komposition** $f_2 \circ f_1$ bzgl. \mathcal{B}_1 , \mathcal{B}_3 .

Darstellungsmatrix unter Basiswechsel

Basiswechsel:

Es seien $\tilde{\mathcal{B}} = \{\vec{\tilde{b}}_1, \dots, \vec{\tilde{b}}_n\}$ und $\tilde{\mathcal{D}} = \{\vec{\tilde{d}}_1, \dots, \vec{\tilde{d}}_m\}$ andere Basen in V bzw. W. Seien $W_{\mathcal{B},\tilde{\mathcal{B}}}$ und $W_{\mathcal{D},\tilde{\mathcal{D}}}$ die zugehörigen **Basiswechselmatrizen**, dann gilt:

$$\forall \vec{v} \in V: \ [\vec{v}]_{\tilde{\mathcal{B}}} = W_{\mathcal{B},\tilde{\mathcal{B}}} \ [\vec{v}]_{\mathcal{B}} \qquad \text{und} \qquad \forall \vec{w} \in W: \ [\vec{w}]_{\tilde{\mathcal{D}}} = W_{\mathcal{D},\tilde{\mathcal{D}}} \ [\vec{w}]_{\mathcal{D}}$$
 Folglich:

$$[f(\vec{\mathbf{v}})]_{\tilde{\mathcal{D}}} = W_{\mathcal{D},\tilde{\mathcal{D}}} [f(\vec{\mathbf{v}})]_{\mathcal{D}} = W_{\mathcal{D},\tilde{\mathcal{D}}} A [\vec{\mathbf{v}}]_{\mathcal{B}} = (\underbrace{W_{\mathcal{D},\tilde{\mathcal{D}}} \cdot A \cdot W_{\mathcal{B},\tilde{\mathcal{B}}}^{-1}}_{\mathcal{B},\tilde{\mathcal{B}}}) [\vec{\mathbf{v}}]_{\tilde{\mathcal{B}}}^{-1}$$

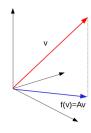
Die Darstellungsmatrix \tilde{A} von f zu den Basen $\tilde{\mathcal{B}}$ und $\tilde{\mathcal{D}}$ erfüllt die Beziehung:

$$\tilde{A} = W_{\mathcal{D},\tilde{\mathcal{D}}} \cdot A \cdot W_{\mathcal{B},\tilde{\mathcal{B}}}^{-1}$$

Spezialfall: V=W, $\mathcal{B}=\mathcal{D}$ und $\tilde{\mathcal{B}}=\tilde{\mathcal{D}}$. Dann gilt: $\tilde{A}=C\cdot A\cdot C^{-1}$ mit $C:=W_{\mathcal{B},\tilde{\mathcal{B}}}$. Die Matrizen A und \tilde{A} heißen zueinander **ähnlich**.

Betrachten $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(\vec{x}) = A\vec{x}$.

Projektionen



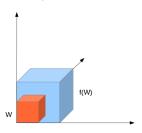
z.B.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

die senkrechte Projektion auf die xy-Ebene in \mathbb{R}^3 .

Projektionen sind weder injektiv noch surjektiv.

Betrachten $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(\vec{x}) = A\vec{x}$.

• Skalierungen (Vergrößern, Verkleinern & Spiegeln)



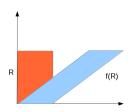
z.B.
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Vergrößerung um den Faktor 2 in \mathbb{R}^3 .

Skalierungen sind bijektiv.

Betrachten $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(\vec{x}) = A\vec{x}$.

• Scherungen



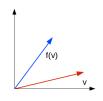
z.B.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Verzerrung in x-Richtung in \mathbb{R}^2 .

Scherungen sind bijektiv.

Betrachten $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(\vec{x}) = A\vec{x}$.

Rotationen



z.B.
$$A = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Rotation um den Winkel φ um den Nullpunkt im math. positiven Drehsinn in \mathbb{R}^2 .

Rotationen sind bijektiv.

Die Determinante

Die Determinante ist ein charakteristischer Wert für eine quadratische Matrix.

Geometrische Interpretation: $|\det A|$ ist der Flächeninhalt des durch die Spalten von A aufgespannten Parallelogramms.

$$\begin{array}{lll} \text{im } \mathbb{R}^3 \colon \\ & & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ &$$

(Sarrussche Regel)

Geometrische Interpretation: |det A| ist das Volumen des durch die Spalten von A aufgespannten Parallelepipeds.

Die Determinante

Die **Determinante** einer
$$(n \times n)$$
-Matrix $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{mn} \end{pmatrix}$ über einem Körper $\mathbb K$ ist der Wert

$$\det A := (-1)^{i+1} a_{i1} \det A_{i1} + (-1)^{i+2} a_{i2} \det A_{i2} + \dots + (-1)^{i+n} a_{in} \det A_{in}$$

$$= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}.$$

für eine beliebig fest gewählte Zeile *i* (**Entwicklung nach der i-ten Zeile**).

A_{ij} ist die Matrix, die übrig bleibt, wenn die i-te Zeile und j-te Spalte von A gestrichen werden.

Theorem 21:

- Die Definition der Determinante ist korrekt, d.h. ihr Wert ist unabhängig von der gewählten Entwicklungszeile.
- Die Determinante kann auch durch Entwicklung nach einer beliebigen Spalte j von A berechnet werden:

$$\det A = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj} .$$