Berechnung der Determinante

Verhalten der Determinante unter elementaren Zeilenoperationen:

- Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: ∀ i, j ∈ {1,...,n}, i ≠ j: det (\$\vec{a}_1,...,\vec{a}_i,...,\vec{a}_i,...,\vec{a}_n\)) = − det (\$\vec{a}_1,...,\vec{a}_i,...,\vec{a}_i,...,\vec{a}_n\).
- Beim **Skalieren** einer Zeile/Spalte skaliert die Determinante in gleicher Weise:

$$\forall \lambda \in \mathbb{K}, \forall i \in \{1, \ldots, n\}: \det(\vec{a}_1, \ldots, \lambda \vec{a}_i, \ldots, \vec{a}_n) = \lambda \det(\vec{a}_1, \ldots, \vec{a}_i, \ldots, \vec{a}_n).$$

 Die Addition eines Vielfachen einer Zeile/Spalte zu einer anderen ändert nicht den Wert der Determinante, d.h. ∀λ∈ K, ∀i, j∈ {1,...,n}, i ≠ j:

$$\det(\vec{a}_1,\ldots,\vec{a}_i+\lambda\vec{a}_i,\ldots,\vec{a}_n)=\det(\vec{a}_1,\ldots,\vec{a}_n).$$

Algorithmus zur Berechnung von det A:

- Reduziere die Matrix A auf Zeilenstufenform U ohne Skalierungen. Die Anzahl Zeilenvertauschungen sei m.
- (2) Berechne die Determinante aus der Determinante von *U*:

$$\det A = (-1)^m \det U = (-1)^m u_{11} \cdot \ldots \cdot u_{nn}.$$

Eigenschaften der Determinante

Es sei A eine $(n \times n)$ -Matrix.

det
$$\mathbf{A} \neq \mathbf{0} \Leftrightarrow u_{ii} \neq 0$$
 für alle $i \in \{1, ..., n\}$.

- \Leftrightarrow alle Spalten von A sind Pivotspalten.
- ⇔ alle Spalten von A sind linear unabhängig.
- ⇔ die Spalten von A spannen ein Parallelepiped von positivem (n-dimensionalem) Volumen.
- \Leftrightarrow rg A = n.
- \Leftrightarrow $A\vec{x} = \vec{0}$ ist nur trivial lösbar.
- $\Leftrightarrow \operatorname{Ker}(A) = \{\vec{0}\}.$

Theorem 22: Eine $(n \times n)$ -Matrix A ist invertierbar \Leftrightarrow det $A \neq 0$.

Eigenschaften der Determinante

Für beliebige $(n \times n)$ -Matrizen A, B gilt:

- 1. $\det A^T = \det A$.
- 2. $\det(A \cdot B) = \det A \cdot \det B$.
- 3. falls A^{-1} existiert, gilt: det $A^{-1} = \frac{1}{\det A}$.
- 4. Ist A von Blockstruktur, $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$, mit $(m \times m)$, $(m \times s)$ und $(s \times s)$ Matrizen A_1 , A_2 bzw. A_3 (0 ist die $s \times m$ -Nullmatrix), so gilt:

$$\det A = \det A_1 \cdot \det A_3$$
.

Determinante einer linearen Abbildung

Es sei $f:V\to V$ eine lineare Abbildung auf einem n-dimensionalen Vektorraum V über einem Körper \mathbb{K} .

Es gilt, dass der Wert der Determinante der Darstellungsmatrizen von f bzgl. aller Basen von V gleich ist. Die Determinante ist damit ein charakteristischer Wert der linearen Abbildung:

Die **Determinante** f ist definiert als $\det f := \det A$ für eine Darstellungsmatrix von f bzgl. einer beliebigen Basis von V.

Geometrische Bedeutung der Determinante:

Es sei $f: \mathbb{R}^n \to \mathbb{R}^n$ linear und $S \subset \mathbb{R}^n$ ein Gebiet endlichen Volumens. Dann gilt

 $Volumen(f(S)) = |det f| \cdot Volumen(S).$

Eigenwerte und Eigenvektoren

Es sei A eine beliebige $(n \times n)$ -Matrix über einem Körper \mathbb{K} .

Frage: Gibt es Vektoren $\vec{v} \in \mathbb{K}^n$, die unter der Wirkung von A lediglich skaliert werden?

Definition: Ein Vektor $\vec{v} \in \mathbb{K}^n$, $\vec{v} \neq \vec{0}$, heißt **Eigenvektor** der Matrix *A*, falls:

$$\exists\,\lambda\in\mathbb{K}:\quad A\vec{v}=\lambda\vec{v}.$$

Der zugehörige Skalar heißt Eigenwert der Matrix A.

Für
$$\vec{v} \in \mathbb{K}^n$$
, $\vec{v} \neq \vec{0}$, gilt: $A\vec{v} = \lambda \vec{v} \Leftrightarrow (A - \lambda E_n)\vec{v} = \vec{0}$.

Also gibt es einen Eigenvektor \vec{v} von A mit Eigenwert λ gdw. das homogene lineare Gleichungssystem $(A-\lambda E_n)\vec{v}=\vec{0}$ nichttriviale Lösungen besitzt.

Eigenwerte und Eigenvektoren

Erinnerung:

```
(A - \lambda E_n)\vec{v} = \vec{0} besitzt nichttriviale Lösungen
\Leftrightarrow A - \lambda E_n ist nicht invertierbar
\Leftrightarrow A - \lambda E_n hat Spalten, die keine Pivotspalten sind
\Leftrightarrow Ker(A - \lambda E_n) \neq \{\vec{0}\}
\Leftrightarrow det(A - \lambda E_n) = 0
```

Definition: Das Polynom n-ten Grades $p_A(\lambda) := \det(A - \lambda E_n)$ heißt charakteristisches Polynom der Matrix A.

Die Eigenwerte einer $(n \times n)$ -Matrix A sind die Nullstellen des Theorem 23: charakteristischen Polynoms $p_A(\lambda)$.

Eigenwerte und Eigenvektoren

Fundamentalsatz der Algebra:

Jedes reelle Polynom p(x) vom Grad n besitzt genau n Nullstellen x_1, \ldots, x_n in \mathbb{C} , und zwar reelle und ggf. Paare konjugiert komplexer Nullstellen. Dabei werden alle Nullstellen entsprechend ihrer Vielfachheit gezählt. Und es gilt:

$$p(x) = (x - x_1)(x - x_2) \cdot \ldots \cdot (x - x_n).$$

Die Vielfachheit der Eigenwerte einer Matrix A als Nullstellen von $p_A(\lambda)$ heißt **algebraische Vielfachheit**.

Eigenvektoren zu einem Eigenwert λ von A:

Theorem 24: Die Lösungsmenge von $(A - \lambda E_n)\vec{v} = \vec{0}$ ohne $\vec{0}$, d.h.

 $Ker(A - \lambda E_n) \setminus \{\vec{0}\}$, ist die Menge der Eigenvektoren von A zum Eigenwert λ .

Folgerung:

Die Menge aller Eigenvektoren zu einem Eigenwert λ von A bildet zusammen mit $\vec{0}$ einen Unterraum von \mathbb{K}^n , den sog. **Eigenraum von** A **zum Eigenwert** λ .

Bezeichung: $E_A(\lambda)$.

Die Dimension von $E_A(\lambda)$ heißt **geometrische Vielfachheit** von λ .