Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Dr. A. Noack, Dr. C. Zschalig

Mathematik für Informatiker (Modul INF-B110), Teil Lineare Algebra, Wintersemester 2013/14

9. Übungsblatt für die Übungen vom 9.12.-13.12.2013

komplexe Zahlen

- Ü49. (a) Bestimmen Sie jeweils Real- und der Imaginärteil der komplexen Zahlen $z_1 = 2 + i$, $z_2 = 3 - 5i$, $z_3 = \sqrt{2}(\cos(\frac{3}{4}\pi) + i\sin(\frac{3}{4}\pi))$, $z_4 = 8e^{-i\frac{\pi}{6}}$. Geben Sie die komplexen Zahlen $z_1 + z_2$, $z_1 \cdot z_2$, $\frac{z_1}{z_2}$, z_3^2 , \overline{z}_4 in der kartesischen Form a + bi, $a, b \in \mathbb{R}$ an.
 - (b) Welche komplexen Zahlen z = x + yi genügen den folgenden Gleichungen?
 - (i) $|z| + \overline{z} = 1 3i$ (ii) $z^2 6z + 10 = 0$ (iii) $2z^2 + 4z = iz$
- Ü50. (a) Sei z=-2-i. Veranschaulichen Sie sich die Lage von $z, \overline{z}, z^2, z e^{i\frac{3}{2}\pi}$ in der Gaußschen Zahlenebene.
 - (b) Skizzieren Sie die Mengen aller $z \in \mathbb{C}$, die die folgenden Bedingungen erfüllen.
 - (ii) Re(z) = Im(z) (iii) $|z + 4 i| \le 1$ (i) |z| = 2
- Ü51. (a) Zeigen Sie, dass $z_1 = -1 + 2i$ Lösung der Gleichung $z^2 + 2z + 5 = 0$ ist und geben Sie die zweite Lösung an.
 - (b) Berechnen Sie alle Lösungen der folgenden Gleichungen in C und geben Sie diese in der Form a+bi an. Skizzieren Sie die Lösungsmengen in der Gaußschen Zahlenebene.
 - (i) $z^2 = 2i$ (ii) $z^4 = 1$ (iii) $z^4 = -16$ (iv) $(z 2 3i)^4 = -16$.
- (a) $z_0 = 0$ sei eine Lösung von $(z + 2 3i)^4 = a$ und a fest, $a \in \mathbb{C}$. Ermitteln Sie alle Lösungen in \mathbb{C} .
 - (b) Gesucht sind alle reellen x, so dass $z = (x + 2 i)^4$ reell wird.
- (a) Berechnen Sie für die gegebenen Gleichungen sämtliche Lösungen in C. H53.
 - (i) $z^4 + 8z^2 9 = 0$ (ii) $|z| + z - \overline{z} = 10 - 16i$
 - (b) Es sei z_0 jeweils eine Lösung der angegebenen Gleichung und a fest, $a \in \mathbb{C}$. Ermitteln Sie alle weiteren Lösungen.
 - (i) $z^4 + 2 i = a$, $z_0 = 2 + 3i$
 - (ii) $z^6 = a$, $z_0 = \sqrt{3} (\cos 225^\circ + i \sin 225^\circ)$
- H54. Welche komplexen Zahlen z = x + yi erfüllen jeweils folgende Bedingungen:
 - (i) |z-1| = |z+3| (ii) $|z| + 2\overline{z} = -3 + 6i$ (iii) $\frac{|z|}{|z-2|} < 1$.

Stellen Sie die Ergebnisse grafisch dar.